i915_gem.c 130.7 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
382 383 384 385 386 387 388 389
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	kmem_cache_free(dev_priv->slab, obj);
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184 1185 1186 1187 1188 1189 1190 1191
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
{
	if (file_priv == NULL)
		return true;

	return !atomic_xchg(&file_priv->rps_wait_boost, true);
}

1192
/**
1193 1194 1195
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1196 1197 1198
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1199 1200 1201 1202 1203 1204 1205
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1206
 * Returns 0 if the request was found within the alloted time. Else returns the
1207 1208
 * errno with remaining time filled in timeout argument.
 */
1209
int __i915_wait_request(struct drm_i915_gem_request *req,
1210
			unsigned reset_counter,
1211
			bool interruptible,
1212
			s64 *timeout,
1213
			struct drm_i915_file_private *file_priv)
1214
{
1215
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1216
	struct drm_device *dev = ring->dev;
1217
	struct drm_i915_private *dev_priv = dev->dev_private;
1218 1219
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1220
	DEFINE_WAIT(wait);
1221
	unsigned long timeout_expire;
1222
	s64 before, now;
1223 1224
	int ret;

1225
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1226

1227
	if (i915_gem_request_completed(req, true))
1228 1229
		return 0;

1230 1231
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1232

1233
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1234 1235 1236 1237 1238 1239 1240
		gen6_rps_boost(dev_priv);
		if (file_priv)
			mod_delayed_work(dev_priv->wq,
					 &file_priv->mm.idle_work,
					 msecs_to_jiffies(100));
	}

1241
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1242 1243
		return -ENODEV;

1244
	/* Record current time in case interrupted by signal, or wedged */
1245
	trace_i915_gem_request_wait_begin(req);
1246
	before = ktime_get_raw_ns();
1247 1248
	for (;;) {
		struct timer_list timer;
1249

1250 1251
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1252

1253 1254
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1255 1256 1257 1258 1259 1260 1261 1262
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1263

1264
		if (i915_gem_request_completed(req, false)) {
1265 1266 1267
			ret = 0;
			break;
		}
1268

1269 1270 1271 1272 1273
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1274
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1275 1276 1277 1278 1279 1280
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1281 1282
			unsigned long expire;

1283
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1284
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1285 1286 1287
			mod_timer(&timer, expire);
		}

1288
		io_schedule();
1289 1290 1291 1292 1293 1294

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1295
	now = ktime_get_raw_ns();
1296
	trace_i915_gem_request_wait_end(req);
1297

1298 1299
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1300 1301

	finish_wait(&ring->irq_queue, &wait);
1302 1303

	if (timeout) {
1304 1305 1306
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1317 1318
	}

1319
	return ret;
1320 1321 1322
}

/**
1323
 * Waits for a request to be signaled, and cleans up the
1324 1325 1326
 * request and object lists appropriately for that event.
 */
int
1327
i915_wait_request(struct drm_i915_gem_request *req)
1328
{
1329 1330 1331
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1332
	unsigned reset_counter;
1333 1334
	int ret;

1335 1336 1337 1338 1339 1340
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1341 1342
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1343
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1344 1345 1346
	if (ret)
		return ret;

1347
	ret = i915_gem_check_olr(req);
1348 1349 1350
	if (ret)
		return ret;

1351
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352
	i915_gem_request_reference(req);
1353 1354
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1355 1356
	i915_gem_request_unreference(req);
	return ret;
1357 1358
}

1359
static int
1360
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1361
{
1362 1363
	if (!obj->active)
		return 0;
1364 1365 1366 1367

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1368 1369
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1370 1371
	 * we know we have passed the last write.
	 */
1372
	i915_gem_request_assign(&obj->last_write_req, NULL);
1373 1374 1375 1376

	return 0;
}

1377 1378 1379 1380 1381 1382 1383 1384
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1385
	struct drm_i915_gem_request *req;
1386 1387
	int ret;

1388 1389
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1390 1391
		return 0;

1392
	ret = i915_wait_request(req);
1393 1394 1395
	if (ret)
		return ret;

1396
	return i915_gem_object_wait_rendering__tail(obj);
1397 1398
}

1399 1400 1401 1402 1403
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1404
					    struct drm_i915_file_private *file_priv,
1405 1406
					    bool readonly)
{
1407
	struct drm_i915_gem_request *req;
1408 1409
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1410
	unsigned reset_counter;
1411 1412 1413 1414 1415
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1416 1417
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1418 1419
		return 0;

1420
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1421 1422 1423
	if (ret)
		return ret;

1424
	ret = i915_gem_check_olr(req);
1425 1426 1427
	if (ret)
		return ret;

1428
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1429
	i915_gem_request_reference(req);
1430
	mutex_unlock(&dev->struct_mutex);
1431
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1432
	mutex_lock(&dev->struct_mutex);
1433
	i915_gem_request_unreference(req);
1434 1435
	if (ret)
		return ret;
1436

1437
	return i915_gem_object_wait_rendering__tail(obj);
1438 1439
}

1440
/**
1441 1442
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1443 1444 1445
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1446
			  struct drm_file *file)
1447 1448
{
	struct drm_i915_gem_set_domain *args = data;
1449
	struct drm_i915_gem_object *obj;
1450 1451
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1452 1453
	int ret;

1454
	/* Only handle setting domains to types used by the CPU. */
1455
	if (write_domain & I915_GEM_GPU_DOMAINS)
1456 1457
		return -EINVAL;

1458
	if (read_domains & I915_GEM_GPU_DOMAINS)
1459 1460 1461 1462 1463 1464 1465 1466
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1467
	ret = i915_mutex_lock_interruptible(dev);
1468
	if (ret)
1469
		return ret;
1470

1471
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1472
	if (&obj->base == NULL) {
1473 1474
		ret = -ENOENT;
		goto unlock;
1475
	}
1476

1477 1478 1479 1480
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1481 1482 1483
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1484 1485 1486
	if (ret)
		goto unref;

1487
	if (read_domains & I915_GEM_DOMAIN_GTT)
1488
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1489
	else
1490
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1491

1492
unref:
1493
	drm_gem_object_unreference(&obj->base);
1494
unlock:
1495 1496 1497 1498 1499 1500 1501 1502 1503
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1504
			 struct drm_file *file)
1505 1506
{
	struct drm_i915_gem_sw_finish *args = data;
1507
	struct drm_i915_gem_object *obj;
1508 1509
	int ret = 0;

1510
	ret = i915_mutex_lock_interruptible(dev);
1511
	if (ret)
1512
		return ret;
1513

1514
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1515
	if (&obj->base == NULL) {
1516 1517
		ret = -ENOENT;
		goto unlock;
1518 1519 1520
	}

	/* Pinned buffers may be scanout, so flush the cache */
1521
	if (obj->pin_display)
1522
		i915_gem_object_flush_cpu_write_domain(obj);
1523

1524
	drm_gem_object_unreference(&obj->base);
1525
unlock:
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1546 1547 1548
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1549
		    struct drm_file *file)
1550 1551 1552 1553 1554
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1555 1556 1557 1558 1559 1560
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1561
	obj = drm_gem_object_lookup(dev, file, args->handle);
1562
	if (obj == NULL)
1563
		return -ENOENT;
1564

1565 1566 1567 1568 1569 1570 1571 1572
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1573
	addr = vm_mmap(obj->filp, 0, args->size,
1574 1575
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1589
	drm_gem_object_unreference_unlocked(obj);
1590 1591 1592 1593 1594 1595 1596 1597
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1616 1617
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1618
	struct drm_i915_private *dev_priv = dev->dev_private;
1619 1620 1621
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1622
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1623

1624 1625
	intel_runtime_pm_get(dev_priv);

1626 1627 1628 1629
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1630 1631 1632
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1633

C
Chris Wilson 已提交
1634 1635
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1636 1637 1638 1639 1640 1641 1642 1643 1644
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1645 1646
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1647
		ret = -EFAULT;
1648 1649 1650
		goto unlock;
	}

1651
	/* Now bind it into the GTT if needed */
1652
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1653 1654
	if (ret)
		goto unlock;
1655

1656 1657 1658
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1659

1660
	ret = i915_gem_object_get_fence(obj);
1661
	if (ret)
1662
		goto unpin;
1663

1664
	/* Finally, remap it using the new GTT offset */
1665 1666
	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
	pfn >>= PAGE_SHIFT;
1667

1668
	if (!obj->fault_mappable) {
1669 1670 1671
		unsigned long size = min_t(unsigned long,
					   vma->vm_end - vma->vm_start,
					   obj->base.size);
1672 1673
		int i;

1674
		for (i = 0; i < size >> PAGE_SHIFT; i++) {
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
			ret = vm_insert_pfn(vma,
					    (unsigned long)vma->vm_start + i * PAGE_SIZE,
					    pfn + i);
			if (ret)
				break;
		}

		obj->fault_mappable = true;
	} else
		ret = vm_insert_pfn(vma,
				    (unsigned long)vmf->virtual_address,
				    pfn + page_offset);
1687
unpin:
B
Ben Widawsky 已提交
1688
	i915_gem_object_ggtt_unpin(obj);
1689
unlock:
1690
	mutex_unlock(&dev->struct_mutex);
1691
out:
1692
	switch (ret) {
1693
	case -EIO:
1694 1695 1696 1697 1698 1699 1700
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1701 1702 1703
			ret = VM_FAULT_SIGBUS;
			break;
		}
1704
	case -EAGAIN:
D
Daniel Vetter 已提交
1705 1706 1707 1708
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1709
		 */
1710 1711
	case 0:
	case -ERESTARTSYS:
1712
	case -EINTR:
1713 1714 1715 1716 1717
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1718 1719
		ret = VM_FAULT_NOPAGE;
		break;
1720
	case -ENOMEM:
1721 1722
		ret = VM_FAULT_OOM;
		break;
1723
	case -ENOSPC:
1724
	case -EFAULT:
1725 1726
		ret = VM_FAULT_SIGBUS;
		break;
1727
	default:
1728
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1729 1730
		ret = VM_FAULT_SIGBUS;
		break;
1731
	}
1732 1733 1734

	intel_runtime_pm_put(dev_priv);
	return ret;
1735 1736
}

1737 1738 1739 1740
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1741
 * Preserve the reservation of the mmapping with the DRM core code, but
1742 1743 1744 1745 1746 1747 1748 1749 1750
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1751
void
1752
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1753
{
1754 1755
	if (!obj->fault_mappable)
		return;
1756

1757 1758
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1759
	obj->fault_mappable = false;
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1771
uint32_t
1772
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1773
{
1774
	uint32_t gtt_size;
1775 1776

	if (INTEL_INFO(dev)->gen >= 4 ||
1777 1778
	    tiling_mode == I915_TILING_NONE)
		return size;
1779 1780 1781

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1782
		gtt_size = 1024*1024;
1783
	else
1784
		gtt_size = 512*1024;
1785

1786 1787
	while (gtt_size < size)
		gtt_size <<= 1;
1788

1789
	return gtt_size;
1790 1791
}

1792 1793 1794 1795 1796
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1797
 * potential fence register mapping.
1798
 */
1799 1800 1801
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1802 1803 1804 1805 1806
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1807
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1808
	    tiling_mode == I915_TILING_NONE)
1809 1810
		return 4096;

1811 1812 1813 1814
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1815
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1816 1817
}

1818 1819 1820 1821 1822
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1823
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1824 1825
		return 0;

1826 1827
	dev_priv->mm.shrinker_no_lock_stealing = true;

1828 1829
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1830
		goto out;
1831 1832 1833 1834 1835 1836 1837 1838

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1839 1840 1841 1842 1843
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1844 1845
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1846
		goto out;
1847 1848

	i915_gem_shrink_all(dev_priv);
1849 1850 1851 1852 1853
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1854 1855 1856 1857 1858 1859 1860
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1861
int
1862 1863
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1864
		  uint32_t handle,
1865
		  uint64_t *offset)
1866
{
1867
	struct drm_i915_private *dev_priv = dev->dev_private;
1868
	struct drm_i915_gem_object *obj;
1869 1870
	int ret;

1871
	ret = i915_mutex_lock_interruptible(dev);
1872
	if (ret)
1873
		return ret;
1874

1875
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1876
	if (&obj->base == NULL) {
1877 1878 1879
		ret = -ENOENT;
		goto unlock;
	}
1880

B
Ben Widawsky 已提交
1881
	if (obj->base.size > dev_priv->gtt.mappable_end) {
1882
		ret = -E2BIG;
1883
		goto out;
1884 1885
	}

1886
	if (obj->madv != I915_MADV_WILLNEED) {
1887
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1888
		ret = -EFAULT;
1889
		goto out;
1890 1891
	}

1892 1893 1894
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1895

1896
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1897

1898
out:
1899
	drm_gem_object_unreference(&obj->base);
1900
unlock:
1901
	mutex_unlock(&dev->struct_mutex);
1902
	return ret;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1926
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1927 1928
}

D
Daniel Vetter 已提交
1929 1930 1931
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1932
{
1933
	i915_gem_object_free_mmap_offset(obj);
1934

1935 1936
	if (obj->base.filp == NULL)
		return;
1937

D
Daniel Vetter 已提交
1938 1939 1940 1941 1942
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1943
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1944 1945
	obj->madv = __I915_MADV_PURGED;
}
1946

1947 1948 1949
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1950
{
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1965 1966
}

1967
static void
1968
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1969
{
1970 1971
	struct sg_page_iter sg_iter;
	int ret;
1972

1973
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1974

C
Chris Wilson 已提交
1975 1976 1977 1978 1979 1980
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
1981
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
1982 1983 1984
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1985
	if (i915_gem_object_needs_bit17_swizzle(obj))
1986 1987
		i915_gem_object_save_bit_17_swizzle(obj);

1988 1989
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1990

1991
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1992
		struct page *page = sg_page_iter_page(&sg_iter);
1993

1994
		if (obj->dirty)
1995
			set_page_dirty(page);
1996

1997
		if (obj->madv == I915_MADV_WILLNEED)
1998
			mark_page_accessed(page);
1999

2000
		page_cache_release(page);
2001
	}
2002
	obj->dirty = 0;
2003

2004 2005
	sg_free_table(obj->pages);
	kfree(obj->pages);
2006
}
C
Chris Wilson 已提交
2007

2008
int
2009 2010 2011 2012
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2013
	if (obj->pages == NULL)
2014 2015
		return 0;

2016 2017 2018
	if (obj->pages_pin_count)
		return -EBUSY;

2019
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2020

2021 2022 2023
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2024
	list_del(&obj->global_list);
2025

2026
	ops->put_pages(obj);
2027
	obj->pages = NULL;
2028

2029
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2030 2031 2032 2033

	return 0;
}

2034
static int
C
Chris Wilson 已提交
2035
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036
{
C
Chris Wilson 已提交
2037
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 2039
	int page_count, i;
	struct address_space *mapping;
2040 2041
	struct sg_table *st;
	struct scatterlist *sg;
2042
	struct sg_page_iter sg_iter;
2043
	struct page *page;
2044
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2045
	gfp_t gfp;
2046

C
Chris Wilson 已提交
2047 2048 2049 2050 2051 2052 2053
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2054 2055 2056 2057
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2058
	page_count = obj->base.size / PAGE_SIZE;
2059 2060
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2061
		return -ENOMEM;
2062
	}
2063

2064 2065 2066 2067 2068
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2069
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2070
	gfp = mapping_gfp_mask(mapping);
2071
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2072
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 2074 2075
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2076 2077
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2078 2079 2080 2081 2082
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2083 2084 2085 2086 2087 2088 2089 2090
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2091
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2092 2093 2094
			if (IS_ERR(page))
				goto err_pages;
		}
2095 2096 2097 2098 2099 2100 2101 2102
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2103 2104 2105 2106 2107 2108 2109 2110 2111
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2112 2113 2114

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115
	}
2116 2117 2118 2119
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2120 2121
	obj->pages = st;

2122
	if (i915_gem_object_needs_bit17_swizzle(obj))
2123 2124
		i915_gem_object_do_bit_17_swizzle(obj);

2125 2126 2127 2128
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2129 2130 2131
	return 0;

err_pages:
2132 2133
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2134
		page_cache_release(sg_page_iter_page(&sg_iter));
2135 2136
	sg_free_table(st);
	kfree(st);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2150 2151
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2166
	if (obj->pages)
2167 2168
		return 0;

2169
	if (obj->madv != I915_MADV_WILLNEED) {
2170
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2171
		return -EFAULT;
2172 2173
	}

2174 2175
	BUG_ON(obj->pages_pin_count);

2176 2177 2178 2179
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2180
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2181
	return 0;
2182 2183
}

B
Ben Widawsky 已提交
2184
static void
2185
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2186
			       struct intel_engine_cs *ring)
2187
{
2188 2189
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2190

2191
	BUG_ON(ring == NULL);
2192 2193 2194 2195 2196

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2197 2198
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2199
	}
2200 2201

	/* Add a reference if we're newly entering the active list. */
2202 2203 2204
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2205
	}
2206

2207
	list_move_tail(&obj->ring_list, &ring->active_list);
2208

2209
	i915_gem_request_assign(&obj->last_read_req, req);
2210 2211
}

B
Ben Widawsky 已提交
2212
void i915_vma_move_to_active(struct i915_vma *vma,
2213
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2214 2215 2216 2217 2218
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2219 2220
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2221
{
2222
	struct i915_vma *vma;
2223

2224
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2225
	BUG_ON(!obj->active);
2226

2227 2228 2229
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2230
	}
2231

2232 2233
	intel_fb_obj_flush(obj, true);

2234
	list_del_init(&obj->ring_list);
2235

2236 2237
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2238 2239
	obj->base.write_domain = 0;

2240
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2241 2242 2243 2244 2245

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2246
}
2247

2248 2249 2250
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2251
	if (obj->last_read_req == NULL)
2252 2253
		return;

2254
	if (i915_gem_request_completed(obj->last_read_req, true))
2255 2256 2257
		i915_gem_object_move_to_inactive(obj);
}

2258
static int
2259
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2260
{
2261
	struct drm_i915_private *dev_priv = dev->dev_private;
2262
	struct intel_engine_cs *ring;
2263
	int ret, i, j;
2264

2265
	/* Carefully retire all requests without writing to the rings */
2266
	for_each_ring(ring, dev_priv, i) {
2267 2268 2269
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2270 2271
	}
	i915_gem_retire_requests(dev);
2272 2273

	/* Finally reset hw state */
2274
	for_each_ring(ring, dev_priv, i) {
2275
		intel_ring_init_seqno(ring, seqno);
2276

2277 2278
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2279
	}
2280

2281
	return 0;
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2310 2311
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2312
{
2313 2314 2315 2316
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2317
		int ret = i915_gem_init_seqno(dev, 0);
2318 2319
		if (ret)
			return ret;
2320

2321 2322
		dev_priv->next_seqno = 1;
	}
2323

2324
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2325
	return 0;
2326 2327
}

2328
int __i915_add_request(struct intel_engine_cs *ring,
2329
		       struct drm_file *file,
2330
		       struct drm_i915_gem_object *obj)
2331
{
2332
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333
	struct drm_i915_gem_request *request;
2334
	struct intel_ringbuffer *ringbuf;
2335
	u32 request_start;
2336 2337
	int ret;

2338
	request = ring->outstanding_lazy_request;
2339 2340 2341 2342
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2343
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2344 2345 2346 2347
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2348 2349 2350 2351 2352 2353 2354
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2355
	if (i915.enable_execlists) {
2356
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2357 2358 2359 2360 2361 2362 2363
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2364

2365 2366 2367 2368 2369
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2370
	request->postfix = intel_ring_get_tail(ringbuf);
2371

2372
	if (i915.enable_execlists) {
2373
		ret = ring->emit_request(ringbuf, request);
2374 2375 2376 2377 2378 2379 2380
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
	}
2381

2382
	request->head = request_start;
2383
	request->tail = intel_ring_get_tail(ringbuf);
2384 2385 2386 2387 2388 2389 2390

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2391
	request->batch_obj = obj;
2392

2393 2394 2395 2396 2397 2398 2399 2400
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2401

2402
	request->emitted_jiffies = jiffies;
2403
	list_add_tail(&request->list, &ring->request_list);
2404
	request->file_priv = NULL;
2405

C
Chris Wilson 已提交
2406 2407 2408
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2409
		spin_lock(&file_priv->mm.lock);
2410
		request->file_priv = file_priv;
2411
		list_add_tail(&request->client_list,
2412
			      &file_priv->mm.request_list);
2413
		spin_unlock(&file_priv->mm.lock);
2414 2415

		request->pid = get_pid(task_pid(current));
2416
	}
2417

2418
	trace_i915_gem_request_add(request);
2419
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2420

2421
	i915_queue_hangcheck(ring->dev);
2422

2423 2424 2425 2426 2427
	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2428

2429
	return 0;
2430 2431
}

2432 2433
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2434
{
2435
	struct drm_i915_file_private *file_priv = request->file_priv;
2436

2437 2438
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2439

2440
	spin_lock(&file_priv->mm.lock);
2441 2442
	list_del(&request->client_list);
	request->file_priv = NULL;
2443
	spin_unlock(&file_priv->mm.lock);
2444 2445
}

2446
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2447
				   const struct intel_context *ctx)
2448
{
2449
	unsigned long elapsed;
2450

2451 2452 2453
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2454 2455
		return true;

2456 2457
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2458
		if (!i915_gem_context_is_default(ctx)) {
2459
			DRM_DEBUG("context hanging too fast, banning!\n");
2460
			return true;
2461 2462 2463
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2464
			return true;
2465
		}
2466 2467 2468 2469 2470
	}

	return false;
}

2471
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2472
				  struct intel_context *ctx,
2473
				  const bool guilty)
2474
{
2475 2476 2477 2478
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2479

2480 2481 2482
	hs = &ctx->hang_stats;

	if (guilty) {
2483
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2484 2485 2486 2487
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2488 2489 2490
	}
}

2491 2492 2493 2494 2495
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2496 2497
	put_pid(request->pid);

2498 2499 2500 2501 2502 2503 2504 2505 2506
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2507 2508
	if (ctx) {
		if (i915.enable_execlists) {
2509
			struct intel_engine_cs *ring = req->ring;
2510

2511 2512 2513
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2514

2515 2516
		i915_gem_context_unreference(ctx);
	}
2517 2518

	kfree(req);
2519 2520
}

2521
struct drm_i915_gem_request *
2522
i915_gem_find_active_request(struct intel_engine_cs *ring)
2523
{
2524 2525 2526
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2527
		if (i915_gem_request_completed(request, false))
2528
			continue;
2529

2530
		return request;
2531
	}
2532 2533 2534 2535 2536

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2537
				       struct intel_engine_cs *ring)
2538 2539 2540 2541
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2542
	request = i915_gem_find_active_request(ring);
2543 2544 2545 2546 2547 2548

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2549
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2550 2551

	list_for_each_entry_continue(request, &ring->request_list, list)
2552
		i915_set_reset_status(dev_priv, request->ctx, false);
2553
}
2554

2555
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2556
					struct intel_engine_cs *ring)
2557
{
2558
	while (!list_empty(&ring->active_list)) {
2559
		struct drm_i915_gem_object *obj;
2560

2561 2562 2563
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2564

2565
		i915_gem_object_move_to_inactive(obj);
2566
	}
2567

2568 2569 2570 2571 2572 2573
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2574
		struct drm_i915_gem_request *submit_req;
2575 2576

		submit_req = list_first_entry(&ring->execlist_queue,
2577
				struct drm_i915_gem_request,
2578 2579 2580
				execlist_link);
		list_del(&submit_req->execlist_link);
		intel_runtime_pm_put(dev_priv);
2581 2582 2583 2584

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2585
		i915_gem_request_unreference(submit_req);
2586 2587
	}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2604

2605 2606
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2607 2608
}

2609
void i915_gem_restore_fences(struct drm_device *dev)
2610 2611 2612 2613
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2614
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2615
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2627 2628 2629
	}
}

2630
void i915_gem_reset(struct drm_device *dev)
2631
{
2632
	struct drm_i915_private *dev_priv = dev->dev_private;
2633
	struct intel_engine_cs *ring;
2634
	int i;
2635

2636 2637 2638 2639 2640 2641 2642 2643
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2644
	for_each_ring(ring, dev_priv, i)
2645
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2646

2647 2648
	i915_gem_context_reset(dev);

2649
	i915_gem_restore_fences(dev);
2650 2651 2652 2653 2654
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2655
void
2656
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2657
{
C
Chris Wilson 已提交
2658
	if (list_empty(&ring->request_list))
2659 2660
		return;

C
Chris Wilson 已提交
2661
	WARN_ON(i915_verify_lists(ring->dev));
2662

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

2674
		if (!i915_gem_request_completed(obj->last_read_req, true))
2675 2676 2677 2678 2679 2680
			break;

		i915_gem_object_move_to_inactive(obj);
	}


2681
	while (!list_empty(&ring->request_list)) {
2682 2683
		struct drm_i915_gem_request *request;

2684
		request = list_first_entry(&ring->request_list,
2685 2686 2687
					   struct drm_i915_gem_request,
					   list);

2688
		if (!i915_gem_request_completed(request, true))
2689 2690
			break;

2691
		trace_i915_gem_request_retire(request);
2692

2693 2694 2695 2696 2697
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2698
		request->ringbuf->last_retired_head = request->postfix;
2699

2700
		i915_gem_free_request(request);
2701
	}
2702

2703 2704
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2705
		ring->irq_put(ring);
2706
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2707
	}
2708

C
Chris Wilson 已提交
2709
	WARN_ON(i915_verify_lists(ring->dev));
2710 2711
}

2712
bool
2713 2714
i915_gem_retire_requests(struct drm_device *dev)
{
2715
	struct drm_i915_private *dev_priv = dev->dev_private;
2716
	struct intel_engine_cs *ring;
2717
	bool idle = true;
2718
	int i;
2719

2720
	for_each_ring(ring, dev_priv, i) {
2721
		i915_gem_retire_requests_ring(ring);
2722
		idle &= list_empty(&ring->request_list);
2723 2724 2725 2726 2727 2728 2729 2730 2731
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2732 2733 2734 2735 2736 2737 2738 2739
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2740 2741
}

2742
static void
2743 2744
i915_gem_retire_work_handler(struct work_struct *work)
{
2745 2746 2747
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2748
	bool idle;
2749

2750
	/* Come back later if the device is busy... */
2751 2752 2753 2754
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2755
	}
2756
	if (!idle)
2757 2758
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2759
}
2760

2761 2762 2763 2764 2765 2766 2767
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);

	intel_mark_idle(dev_priv->dev);
2768 2769
}

2770 2771 2772 2773 2774 2775 2776 2777
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2778
	struct intel_engine_cs *ring;
2779 2780 2781
	int ret;

	if (obj->active) {
2782 2783
		ring = i915_gem_request_get_ring(obj->last_read_req);

2784
		ret = i915_gem_check_olr(obj->last_read_req);
2785 2786 2787
		if (ret)
			return ret;

2788
		i915_gem_retire_requests_ring(ring);
2789 2790 2791 2792 2793
	}

	return 0;
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2819
	struct drm_i915_private *dev_priv = dev->dev_private;
2820 2821
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2822
	struct drm_i915_gem_request *req;
2823
	unsigned reset_counter;
2824 2825
	int ret = 0;

2826 2827 2828
	if (args->flags != 0)
		return -EINVAL;

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2839 2840
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2841 2842 2843
	if (ret)
		goto out;

2844 2845
	if (!obj->active || !obj->last_read_req)
		goto out;
2846

2847
	req = obj->last_read_req;
2848 2849

	/* Do this after OLR check to make sure we make forward progress polling
2850
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2851
	 */
2852
	if (args->timeout_ns == 0) {
2853 2854 2855 2856 2857
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2858
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2859
	i915_gem_request_reference(req);
2860 2861
	mutex_unlock(&dev->struct_mutex);

2862 2863
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2864
				  file->driver_priv);
2865 2866 2867 2868
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(req);
	mutex_unlock(&dev->struct_mutex);
	return ret;
2869 2870 2871 2872 2873 2874 2875

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2888 2889
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2890
		     struct intel_engine_cs *to)
2891
{
2892
	struct intel_engine_cs *from;
2893 2894 2895
	u32 seqno;
	int ret, idx;

2896 2897
	from = i915_gem_request_get_ring(obj->last_read_req);

2898 2899 2900
	if (from == NULL || to == from)
		return 0;

2901
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2902
		return i915_gem_object_wait_rendering(obj, false);
2903 2904 2905

	idx = intel_ring_sync_index(from, to);

2906
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
2907 2908
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
2909
	if (seqno <= from->semaphore.sync_seqno[idx])
2910 2911
		return 0;

2912
	ret = i915_gem_check_olr(obj->last_read_req);
2913 2914
	if (ret)
		return ret;
2915

2916
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2917
	ret = to->semaphore.sync_to(to, from, seqno);
2918
	if (!ret)
2919
		/* We use last_read_req because sync_to()
2920 2921 2922
		 * might have just caused seqno wrap under
		 * the radar.
		 */
2923 2924
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
2925

2926
	return ret;
2927 2928
}

2929 2930 2931 2932 2933 2934 2935
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2936 2937 2938
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2939 2940 2941
	/* Wait for any direct GTT access to complete */
	mb();

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2953
int i915_vma_unbind(struct i915_vma *vma)
2954
{
2955
	struct drm_i915_gem_object *obj = vma->obj;
2956
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2957
	int ret;
2958

2959
	if (list_empty(&vma->vma_link))
2960 2961
		return 0;

2962 2963 2964 2965
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
2966

B
Ben Widawsky 已提交
2967
	if (vma->pin_count)
2968
		return -EBUSY;
2969

2970 2971
	BUG_ON(obj->pages == NULL);

2972
	ret = i915_gem_object_finish_gpu(obj);
2973
	if (ret)
2974 2975 2976 2977 2978 2979
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2980 2981
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2982
		i915_gem_object_finish_gtt(obj);
2983

2984 2985 2986 2987 2988
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
2989

2990
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
2991

2992 2993
	vma->unbind_vma(vma);

2994
	list_del_init(&vma->mm_list);
2995 2996 2997 2998 2999 3000 3001 3002 3003
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3004

B
Ben Widawsky 已提交
3005 3006 3007 3008
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3009
	 * no more VMAs exist. */
3010
	if (list_empty(&obj->vma_list)) {
3011 3012 3013 3014
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3015
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3016
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3017
	}
3018

3019 3020 3021 3022 3023 3024
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3025
	return 0;
3026 3027
}

3028
int i915_gpu_idle(struct drm_device *dev)
3029
{
3030
	struct drm_i915_private *dev_priv = dev->dev_private;
3031
	struct intel_engine_cs *ring;
3032
	int ret, i;
3033 3034

	/* Flush everything onto the inactive list. */
3035
	for_each_ring(ring, dev_priv, i) {
3036 3037 3038 3039 3040
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3041

3042
		ret = intel_ring_idle(ring);
3043 3044 3045
		if (ret)
			return ret;
	}
3046

3047
	return 0;
3048 3049
}

3050 3051
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3052
{
3053
	struct drm_i915_private *dev_priv = dev->dev_private;
3054 3055
	int fence_reg;
	int fence_pitch_shift;
3056

3057 3058 3059 3060 3061 3062 3063 3064
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3079
	if (obj) {
3080
		u32 size = i915_gem_obj_ggtt_size(obj);
3081
		uint64_t val;
3082

3083 3084 3085 3086 3087 3088 3089
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3090
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3091
				 0xfffff000) << 32;
3092
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3093
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3094 3095 3096
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3107 3108
}

3109 3110
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3111
{
3112
	struct drm_i915_private *dev_priv = dev->dev_private;
3113
	u32 val;
3114

3115
	if (obj) {
3116
		u32 size = i915_gem_obj_ggtt_size(obj);
3117 3118
		int pitch_val;
		int tile_width;
3119

3120
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3121
		     (size & -size) != size ||
3122 3123 3124
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3135
		val = i915_gem_obj_ggtt_offset(obj);
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3151 3152
}

3153 3154
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3155
{
3156
	struct drm_i915_private *dev_priv = dev->dev_private;
3157 3158
	uint32_t val;

3159
	if (obj) {
3160
		u32 size = i915_gem_obj_ggtt_size(obj);
3161
		uint32_t pitch_val;
3162

3163
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3164
		     (size & -size) != size ||
3165 3166 3167
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3168

3169 3170
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3171

3172
		val = i915_gem_obj_ggtt_offset(obj);
3173 3174 3175 3176 3177 3178 3179
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3180

3181 3182 3183 3184
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3185 3186 3187 3188 3189
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3190 3191 3192
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3193 3194 3195 3196 3197 3198 3199 3200
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3201 3202 3203 3204
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3205 3206 3207 3208 3209 3210
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3211 3212 3213 3214 3215 3216

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3217 3218
}

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3229
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3230 3231 3232
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3233 3234

	if (enable) {
3235
		obj->fence_reg = reg;
3236 3237 3238 3239 3240 3241 3242
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3243
	obj->fence_dirty = false;
3244 3245
}

3246
static int
3247
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3248
{
3249
	if (obj->last_fenced_req) {
3250
		int ret = i915_wait_request(obj->last_fenced_req);
3251 3252
		if (ret)
			return ret;
3253

3254
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3255 3256 3257 3258 3259 3260 3261 3262
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3263
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3264
	struct drm_i915_fence_reg *fence;
3265 3266
	int ret;

3267
	ret = i915_gem_object_wait_fence(obj);
3268 3269 3270
	if (ret)
		return ret;

3271 3272
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3273

3274 3275
	fence = &dev_priv->fence_regs[obj->fence_reg];

3276 3277 3278
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3279
	i915_gem_object_fence_lost(obj);
3280
	i915_gem_object_update_fence(obj, fence, false);
3281 3282 3283 3284 3285

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3286
i915_find_fence_reg(struct drm_device *dev)
3287 3288
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3289
	struct drm_i915_fence_reg *reg, *avail;
3290
	int i;
3291 3292

	/* First try to find a free reg */
3293
	avail = NULL;
3294 3295 3296
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3297
			return reg;
3298

3299
		if (!reg->pin_count)
3300
			avail = reg;
3301 3302
	}

3303
	if (avail == NULL)
3304
		goto deadlock;
3305 3306

	/* None available, try to steal one or wait for a user to finish */
3307
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3308
		if (reg->pin_count)
3309 3310
			continue;

C
Chris Wilson 已提交
3311
		return reg;
3312 3313
	}

3314 3315 3316 3317 3318 3319
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3320 3321
}

3322
/**
3323
 * i915_gem_object_get_fence - set up fencing for an object
3324 3325 3326 3327 3328 3329 3330 3331 3332
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3333 3334
 *
 * For an untiled surface, this removes any existing fence.
3335
 */
3336
int
3337
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3338
{
3339
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3340
	struct drm_i915_private *dev_priv = dev->dev_private;
3341
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3342
	struct drm_i915_fence_reg *reg;
3343
	int ret;
3344

3345 3346 3347
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3348
	if (obj->fence_dirty) {
3349
		ret = i915_gem_object_wait_fence(obj);
3350 3351 3352
		if (ret)
			return ret;
	}
3353

3354
	/* Just update our place in the LRU if our fence is getting reused. */
3355 3356
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3357
		if (!obj->fence_dirty) {
3358 3359 3360 3361 3362
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3363 3364 3365
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3366
		reg = i915_find_fence_reg(dev);
3367 3368
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3369

3370 3371 3372
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3373
			ret = i915_gem_object_wait_fence(old);
3374 3375 3376
			if (ret)
				return ret;

3377
			i915_gem_object_fence_lost(old);
3378
		}
3379
	} else
3380 3381
		return 0;

3382 3383
	i915_gem_object_update_fence(obj, reg, enable);

3384
	return 0;
3385 3386
}

3387
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3388 3389
				     unsigned long cache_level)
{
3390
	struct drm_mm_node *gtt_space = &vma->node;
3391 3392
	struct drm_mm_node *other;

3393 3394 3395 3396 3397 3398
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3399
	 */
3400
	if (vma->vm->mm.color_adjust == NULL)
3401 3402
		return true;

3403
	if (!drm_mm_node_allocated(gtt_space))
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3420 3421 3422
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
3423
static struct i915_vma *
3424 3425
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3426
			   const struct i915_ggtt_view *ggtt_view,
3427
			   unsigned alignment,
3428
			   uint64_t flags)
3429
{
3430
	struct drm_device *dev = obj->base.dev;
3431
	struct drm_i915_private *dev_priv = dev->dev_private;
3432
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3433 3434 3435
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3436
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3437
	struct i915_vma *vma;
3438
	int ret;
3439

3440 3441 3442
	if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return ERR_PTR(-EINVAL);

3443 3444 3445 3446 3447
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
3448
						     obj->tiling_mode, true);
3449
	unfenced_alignment =
3450
		i915_gem_get_gtt_alignment(dev,
3451 3452
					   obj->base.size,
					   obj->tiling_mode, false);
3453

3454
	if (alignment == 0)
3455
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3456
						unfenced_alignment;
3457
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3458
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3459
		return ERR_PTR(-EINVAL);
3460 3461
	}

3462
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3463

3464 3465 3466
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
3467 3468
	if (obj->base.size > end) {
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3469
			  obj->base.size,
3470
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3471
			  end);
3472
		return ERR_PTR(-E2BIG);
3473 3474
	}

3475
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3476
	if (ret)
3477
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3478

3479 3480
	i915_gem_object_pin_pages(obj);

3481 3482 3483
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3484
	if (IS_ERR(vma))
3485
		goto err_unpin;
B
Ben Widawsky 已提交
3486

3487
search_free:
3488
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3489
						  size, alignment,
3490 3491
						  obj->cache_level,
						  start, end,
3492 3493
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3494
	if (ret) {
3495
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3496 3497 3498
					       obj->cache_level,
					       start, end,
					       flags);
3499 3500
		if (ret == 0)
			goto search_free;
3501

3502
		goto err_free_vma;
3503
	}
3504
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3505
		ret = -EINVAL;
3506
		goto err_remove_node;
3507 3508
	}

3509
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3510
	if (ret)
3511
		goto err_remove_node;
3512

3513 3514 3515 3516 3517 3518
	trace_i915_vma_bind(vma, flags);
	ret = i915_vma_bind(vma, obj->cache_level,
			    flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
	if (ret)
		goto err_finish_gtt;

3519
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3520
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3521

3522
	return vma;
B
Ben Widawsky 已提交
3523

3524 3525
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3526
err_remove_node:
3527
	drm_mm_remove_node(&vma->node);
3528
err_free_vma:
B
Ben Widawsky 已提交
3529
	i915_gem_vma_destroy(vma);
3530
	vma = ERR_PTR(ret);
3531
err_unpin:
B
Ben Widawsky 已提交
3532
	i915_gem_object_unpin_pages(obj);
3533
	return vma;
3534 3535
}

3536
bool
3537 3538
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3539 3540 3541 3542 3543
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3544
	if (obj->pages == NULL)
3545
		return false;
3546

3547 3548 3549 3550
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3551
	if (obj->stolen || obj->phys_handle)
3552
		return false;
3553

3554 3555 3556 3557 3558 3559 3560 3561
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3562 3563
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3564
		return false;
3565
	}
3566

C
Chris Wilson 已提交
3567
	trace_i915_gem_object_clflush(obj);
3568
	drm_clflush_sg(obj->pages);
3569
	obj->cache_dirty = false;
3570 3571

	return true;
3572 3573 3574 3575
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3576
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3577
{
C
Chris Wilson 已提交
3578 3579
	uint32_t old_write_domain;

3580
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3581 3582
		return;

3583
	/* No actual flushing is required for the GTT write domain.  Writes
3584 3585
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3586 3587 3588 3589
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3590
	 */
3591 3592
	wmb();

3593 3594
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3595

3596 3597
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3598
	trace_i915_gem_object_change_domain(obj,
3599
					    obj->base.read_domains,
C
Chris Wilson 已提交
3600
					    old_write_domain);
3601 3602 3603 3604
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3605
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3606
{
C
Chris Wilson 已提交
3607
	uint32_t old_write_domain;
3608

3609
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3610 3611
		return;

3612
	if (i915_gem_clflush_object(obj, obj->pin_display))
3613 3614
		i915_gem_chipset_flush(obj->base.dev);

3615 3616
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3617

3618 3619
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3620
	trace_i915_gem_object_change_domain(obj,
3621
					    obj->base.read_domains,
C
Chris Wilson 已提交
3622
					    old_write_domain);
3623 3624
}

3625 3626 3627 3628 3629 3630
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3631
int
3632
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3633
{
C
Chris Wilson 已提交
3634
	uint32_t old_write_domain, old_read_domains;
3635
	struct i915_vma *vma;
3636
	int ret;
3637

3638 3639 3640
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3641
	ret = i915_gem_object_wait_rendering(obj, !write);
3642 3643 3644
	if (ret)
		return ret;

3645
	i915_gem_object_retire(obj);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3659
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3660

3661 3662 3663 3664 3665 3666 3667
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3668 3669
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3670

3671 3672 3673
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3674 3675
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3676
	if (write) {
3677 3678 3679
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3680 3681
	}

3682
	if (write)
3683
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3684

C
Chris Wilson 已提交
3685 3686 3687 3688
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3689
	/* And bump the LRU for this access */
3690 3691
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3692
		list_move_tail(&vma->mm_list,
3693
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3694

3695 3696 3697
	return 0;
}

3698 3699 3700
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3701
	struct drm_device *dev = obj->base.dev;
3702
	struct i915_vma *vma, *next;
3703 3704 3705 3706 3707
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3708
	if (i915_gem_obj_is_pinned(obj)) {
3709 3710 3711 3712
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3713
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3714
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3715
			ret = i915_vma_unbind(vma);
3716 3717 3718
			if (ret)
				return ret;
		}
3719 3720
	}

3721
	if (i915_gem_obj_bound_any(obj)) {
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3732
		if (INTEL_INFO(dev)->gen < 6) {
3733 3734 3735 3736 3737
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3738
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3739 3740 3741 3742 3743 3744
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
						    vma->bound & GLOBAL_BIND);
				if (ret)
					return ret;
			}
3745 3746
	}

3747 3748 3749 3750
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3751 3752 3753 3754 3755
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3756 3757 3758 3759 3760
	}

	return 0;
}

B
Ben Widawsky 已提交
3761 3762
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3763
{
B
Ben Widawsky 已提交
3764
	struct drm_i915_gem_caching *args = data;
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

3778 3779 3780 3781 3782 3783
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3784 3785 3786 3787
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3788 3789 3790 3791
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3792 3793 3794 3795 3796 3797 3798

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3799 3800
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3801
{
B
Ben Widawsky 已提交
3802
	struct drm_i915_gem_caching *args = data;
3803 3804 3805 3806
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3807 3808
	switch (args->caching) {
	case I915_CACHING_NONE:
3809 3810
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3811
	case I915_CACHING_CACHED:
3812 3813
		level = I915_CACHE_LLC;
		break;
3814 3815 3816
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3817 3818 3819 3820
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3821 3822 3823 3824
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3839 3840
static bool is_pin_display(struct drm_i915_gem_object *obj)
{
3841 3842 3843 3844 3845 3846
	struct i915_vma *vma;

	vma = i915_gem_obj_to_ggtt(obj);
	if (!vma)
		return false;

D
Daniel Vetter 已提交
3847
	/* There are 2 sources that pin objects:
3848 3849 3850 3851
	 *   1. The display engine (scanouts, sprites, cursors);
	 *   2. Reservations for execbuffer;
	 *
	 * We can ignore reservations as we hold the struct_mutex and
D
Daniel Vetter 已提交
3852
	 * are only called outside of the reservation path.
3853
	 */
D
Daniel Vetter 已提交
3854
	return vma->pin_count;
3855 3856
}

3857
/*
3858 3859 3860
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3861 3862
 */
int
3863 3864
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3865
				     struct intel_engine_cs *pipelined)
3866
{
3867
	u32 old_read_domains, old_write_domain;
3868
	bool was_pin_display;
3869 3870
	int ret;

3871
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3872 3873
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3874 3875 3876
			return ret;
	}

3877 3878 3879
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3880
	was_pin_display = obj->pin_display;
3881 3882
	obj->pin_display = true;

3883 3884 3885 3886 3887 3888 3889 3890 3891
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3892 3893
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3894
	if (ret)
3895
		goto err_unpin_display;
3896

3897 3898 3899 3900
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3901
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3902
	if (ret)
3903
		goto err_unpin_display;
3904

3905
	i915_gem_object_flush_cpu_write_domain(obj);
3906

3907
	old_write_domain = obj->base.write_domain;
3908
	old_read_domains = obj->base.read_domains;
3909 3910 3911 3912

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3913
	obj->base.write_domain = 0;
3914
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3915 3916 3917

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3918
					    old_write_domain);
3919 3920

	return 0;
3921 3922

err_unpin_display:
3923 3924
	WARN_ON(was_pin_display != is_pin_display(obj));
	obj->pin_display = was_pin_display;
3925 3926 3927 3928 3929 3930
	return ret;
}

void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
{
B
Ben Widawsky 已提交
3931
	i915_gem_object_ggtt_unpin(obj);
3932
	obj->pin_display = is_pin_display(obj);
3933 3934
}

3935
int
3936
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3937
{
3938 3939
	int ret;

3940
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3941 3942
		return 0;

3943
	ret = i915_gem_object_wait_rendering(obj, false);
3944 3945 3946
	if (ret)
		return ret;

3947 3948
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3949
	return 0;
3950 3951
}

3952 3953 3954 3955 3956 3957
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3958
int
3959
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3960
{
C
Chris Wilson 已提交
3961
	uint32_t old_write_domain, old_read_domains;
3962 3963
	int ret;

3964 3965 3966
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3967
	ret = i915_gem_object_wait_rendering(obj, !write);
3968 3969 3970
	if (ret)
		return ret;

3971
	i915_gem_object_retire(obj);
3972
	i915_gem_object_flush_gtt_write_domain(obj);
3973

3974 3975
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3976

3977
	/* Flush the CPU cache if it's still invalid. */
3978
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3979
		i915_gem_clflush_object(obj, false);
3980

3981
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3982 3983 3984 3985 3986
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3987
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3988 3989 3990 3991 3992

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3993 3994
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3995
	}
3996

3997
	if (write)
3998
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
3999

C
Chris Wilson 已提交
4000 4001 4002 4003
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4004 4005 4006
	return 0;
}

4007 4008 4009
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4010 4011 4012 4013
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4014 4015 4016
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4017
static int
4018
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4019
{
4020 4021
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4022
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4023
	struct drm_i915_gem_request *request, *target = NULL;
4024
	unsigned reset_counter;
4025
	int ret;
4026

4027 4028 4029 4030 4031 4032 4033
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4034

4035
	spin_lock(&file_priv->mm.lock);
4036
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4037 4038
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4039

4040
		target = request;
4041
	}
4042
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4043 4044
	if (target)
		i915_gem_request_reference(target);
4045
	spin_unlock(&file_priv->mm.lock);
4046

4047
	if (target == NULL)
4048
		return 0;
4049

4050
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4051 4052
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4053

4054 4055 4056 4057
	mutex_lock(&dev->struct_mutex);
	i915_gem_request_unreference(target);
	mutex_unlock(&dev->struct_mutex);

4058 4059 4060
	return ret;
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4080 4081 4082 4083 4084 4085
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4086
{
4087
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4088
	struct i915_vma *vma;
4089
	unsigned bound;
4090 4091
	int ret;

4092 4093 4094
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4095
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4096
		return -EINVAL;
4097

4098 4099 4100
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4101 4102 4103 4104 4105 4106 4107 4108 4109
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4110
	if (vma) {
B
Ben Widawsky 已提交
4111 4112 4113
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4114
		if (i915_vma_misplaced(vma, alignment, flags)) {
4115 4116 4117
			unsigned long offset;
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view->type) :
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4118
			WARN(vma->pin_count,
4119
			     "bo is already pinned in %s with incorrect alignment:"
4120
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4121
			     " obj->map_and_fenceable=%d\n",
4122 4123
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4124
			     alignment,
4125
			     !!(flags & PIN_MAPPABLE),
4126
			     obj->map_and_fenceable);
4127
			ret = i915_vma_unbind(vma);
4128 4129
			if (ret)
				return ret;
4130 4131

			vma = NULL;
4132 4133 4134
		}
	}

4135
	bound = vma ? vma->bound : 0;
4136
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4137 4138
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4139 4140
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4141
	}
J
Jesse Barnes 已提交
4142

4143 4144 4145 4146 4147
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
		ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
		if (ret)
			return ret;
	}
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4164
		mappable = (vma->node.start + fence_size <=
4165 4166 4167 4168 4169 4170 4171
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;
	}

	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);

4172
	vma->pin_count++;
4173 4174
	if (flags & PIN_MAPPABLE)
		obj->pin_mappable |= true;
4175 4176 4177 4178

	return 0;
}

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4200
				      alignment, flags | PIN_GLOBAL);
4201 4202
}

4203
void
B
Ben Widawsky 已提交
4204
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4205
{
B
Ben Widawsky 已提交
4206
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4207

B
Ben Widawsky 已提交
4208 4209 4210 4211 4212
	BUG_ON(!vma);
	BUG_ON(vma->pin_count == 0);
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));

	if (--vma->pin_count == 0)
4213
		obj->pin_mappable = false;
4214 4215
}

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4242 4243
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4244
		    struct drm_file *file)
4245 4246
{
	struct drm_i915_gem_busy *args = data;
4247
	struct drm_i915_gem_object *obj;
4248 4249
	int ret;

4250
	ret = i915_mutex_lock_interruptible(dev);
4251
	if (ret)
4252
		return ret;
4253

4254
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4255
	if (&obj->base == NULL) {
4256 4257
		ret = -ENOENT;
		goto unlock;
4258
	}
4259

4260 4261 4262 4263
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4264
	 */
4265
	ret = i915_gem_object_flush_active(obj);
4266

4267
	args->busy = obj->active;
4268 4269
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4270
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4271 4272
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4273
	}
4274

4275
	drm_gem_object_unreference(&obj->base);
4276
unlock:
4277
	mutex_unlock(&dev->struct_mutex);
4278
	return ret;
4279 4280 4281 4282 4283 4284
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4285
	return i915_gem_ring_throttle(dev, file_priv);
4286 4287
}

4288 4289 4290 4291
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4292
	struct drm_i915_private *dev_priv = dev->dev_private;
4293
	struct drm_i915_gem_madvise *args = data;
4294
	struct drm_i915_gem_object *obj;
4295
	int ret;
4296 4297 4298 4299 4300 4301 4302 4303 4304

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4305 4306 4307 4308
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4309
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4310
	if (&obj->base == NULL) {
4311 4312
		ret = -ENOENT;
		goto unlock;
4313 4314
	}

B
Ben Widawsky 已提交
4315
	if (i915_gem_obj_is_pinned(obj)) {
4316 4317
		ret = -EINVAL;
		goto out;
4318 4319
	}

4320 4321 4322 4323 4324 4325 4326 4327 4328
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4329 4330
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4331

C
Chris Wilson 已提交
4332
	/* if the object is no longer attached, discard its backing storage */
4333
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4334 4335
		i915_gem_object_truncate(obj);

4336
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4337

4338
out:
4339
	drm_gem_object_unreference(&obj->base);
4340
unlock:
4341
	mutex_unlock(&dev->struct_mutex);
4342
	return ret;
4343 4344
}

4345 4346
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4347
{
4348
	INIT_LIST_HEAD(&obj->global_list);
4349
	INIT_LIST_HEAD(&obj->ring_list);
4350
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4351
	INIT_LIST_HEAD(&obj->vma_list);
4352
	INIT_LIST_HEAD(&obj->batch_pool_list);
4353

4354 4355
	obj->ops = ops;

4356 4357 4358 4359 4360 4361
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4362 4363 4364 4365 4366
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4367 4368
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4369
{
4370
	struct drm_i915_gem_object *obj;
4371
	struct address_space *mapping;
D
Daniel Vetter 已提交
4372
	gfp_t mask;
4373

4374
	obj = i915_gem_object_alloc(dev);
4375 4376
	if (obj == NULL)
		return NULL;
4377

4378
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4379
		i915_gem_object_free(obj);
4380 4381
		return NULL;
	}
4382

4383 4384 4385 4386 4387 4388 4389
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4390
	mapping = file_inode(obj->base.filp)->i_mapping;
4391
	mapping_set_gfp_mask(mapping, mask);
4392

4393
	i915_gem_object_init(obj, &i915_gem_object_ops);
4394

4395 4396
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4397

4398 4399
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4415 4416
	trace_i915_gem_object_create(obj);

4417
	return obj;
4418 4419
}

4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4444
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4445
{
4446
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4447
	struct drm_device *dev = obj->base.dev;
4448
	struct drm_i915_private *dev_priv = dev->dev_private;
4449
	struct i915_vma *vma, *next;
4450

4451 4452
	intel_runtime_pm_get(dev_priv);

4453 4454
	trace_i915_gem_object_destroy(obj);

4455
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4456 4457 4458 4459
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4460 4461
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4462

4463 4464
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4465

4466
			WARN_ON(i915_vma_unbind(vma));
4467

4468 4469
			dev_priv->mm.interruptible = was_interruptible;
		}
4470 4471
	}

B
Ben Widawsky 已提交
4472 4473 4474 4475 4476
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4477 4478
	WARN_ON(obj->frontbuffer_bits);

4479 4480 4481 4482 4483
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4484 4485
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4486
	if (discard_backing_storage(obj))
4487
		obj->madv = I915_MADV_DONTNEED;
4488
	i915_gem_object_put_pages(obj);
4489
	i915_gem_object_free_mmap_offset(obj);
4490

4491 4492
	BUG_ON(obj->pages);

4493 4494
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4495

4496 4497 4498
	if (obj->ops->release)
		obj->ops->release(obj);

4499 4500
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4501

4502
	kfree(obj->bit_17);
4503
	i915_gem_object_free(obj);
4504 4505

	intel_runtime_pm_put(dev_priv);
4506 4507
}

4508 4509
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4510 4511
{
	struct i915_vma *vma;
4512 4513 4514 4515 4516
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4517
			return vma;
4518 4519 4520 4521 4522 4523 4524 4525 4526
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4527

4528 4529 4530 4531 4532 4533
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
		if (vma->vm == ggtt && vma->ggtt_view.type == view->type)
			return vma;
4534 4535 4536
	return NULL;
}

B
Ben Widawsky 已提交
4537 4538
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4539
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4540
	WARN_ON(vma->node.allocated);
4541 4542 4543 4544 4545

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4546 4547
	vm = vma->vm;

4548 4549
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4550

4551
	list_del(&vma->vma_link);
4552

B
Ben Widawsky 已提交
4553 4554 4555
	kfree(vma);
}

4556 4557 4558 4559
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4560
	struct intel_engine_cs *ring;
4561 4562 4563
	int i;

	for_each_ring(ring, dev_priv, i)
4564
		dev_priv->gt.stop_ring(ring);
4565 4566
}

4567
int
4568
i915_gem_suspend(struct drm_device *dev)
4569
{
4570
	struct drm_i915_private *dev_priv = dev->dev_private;
4571
	int ret = 0;
4572

4573
	mutex_lock(&dev->struct_mutex);
4574
	ret = i915_gpu_idle(dev);
4575
	if (ret)
4576
		goto err;
4577

4578
	i915_gem_retire_requests(dev);
4579

4580
	i915_gem_stop_ringbuffers(dev);
4581 4582
	mutex_unlock(&dev->struct_mutex);

4583
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4584
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4585
	flush_delayed_work(&dev_priv->mm.idle_work);
4586

4587 4588 4589 4590 4591
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4592
	return 0;
4593 4594 4595 4596

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4597 4598
}

4599
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4600
{
4601
	struct drm_device *dev = ring->dev;
4602
	struct drm_i915_private *dev_priv = dev->dev_private;
4603 4604
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4605
	int i, ret;
B
Ben Widawsky 已提交
4606

4607
	if (!HAS_L3_DPF(dev) || !remap_info)
4608
		return 0;
B
Ben Widawsky 已提交
4609

4610 4611 4612
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4613

4614 4615 4616 4617 4618
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4619
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4620 4621 4622
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4623 4624
	}

4625
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4626

4627
	return ret;
B
Ben Widawsky 已提交
4628 4629
}

4630 4631
void i915_gem_init_swizzling(struct drm_device *dev)
{
4632
	struct drm_i915_private *dev_priv = dev->dev_private;
4633

4634
	if (INTEL_INFO(dev)->gen < 5 ||
4635 4636 4637 4638 4639 4640
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4641 4642 4643
	if (IS_GEN5(dev))
		return;

4644 4645
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4646
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4647
	else if (IS_GEN7(dev))
4648
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4649 4650
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4651 4652
	else
		BUG();
4653
}
D
Daniel Vetter 已提交
4654

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4698
int i915_gem_init_rings(struct drm_device *dev)
4699
{
4700
	struct drm_i915_private *dev_priv = dev->dev_private;
4701
	int ret;
4702

4703
	ret = intel_init_render_ring_buffer(dev);
4704
	if (ret)
4705
		return ret;
4706 4707

	if (HAS_BSD(dev)) {
4708
		ret = intel_init_bsd_ring_buffer(dev);
4709 4710
		if (ret)
			goto cleanup_render_ring;
4711
	}
4712

4713
	if (intel_enable_blt(dev)) {
4714 4715 4716 4717 4718
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4719 4720 4721 4722 4723 4724
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4725 4726 4727 4728 4729
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4730

4731
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4732
	if (ret)
4733
		goto cleanup_bsd2_ring;
4734 4735 4736

	return 0;

4737 4738
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4739 4740
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4754
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4755
	struct intel_engine_cs *ring;
4756
	int ret, i;
4757 4758 4759 4760

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4761 4762 4763
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4764
	if (dev_priv->ellc_size)
4765
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4766

4767 4768 4769
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4770

4771
	if (HAS_PCH_NOP(dev)) {
4772 4773 4774 4775 4776 4777 4778 4779 4780
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4781 4782
	}

4783 4784
	i915_gem_init_swizzling(dev);

4785 4786 4787 4788 4789 4790 4791 4792
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4793 4794 4795
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4796
			goto out;
D
Daniel Vetter 已提交
4797
	}
4798

4799 4800 4801
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4802
	ret = i915_ppgtt_init_hw(dev);
4803
	if (ret && ret != -EIO) {
4804
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4805
		i915_gem_cleanup_ringbuffer(dev);
4806 4807
	}

4808
	ret = i915_gem_context_enable(dev_priv);
4809
	if (ret && ret != -EIO) {
4810
		DRM_ERROR("Context enable failed %d\n", ret);
4811
		i915_gem_cleanup_ringbuffer(dev);
4812

4813
		goto out;
4814
	}
D
Daniel Vetter 已提交
4815

4816 4817
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4818
	return ret;
4819 4820
}

4821 4822 4823 4824 4825
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4826 4827 4828
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4829
	mutex_lock(&dev->struct_mutex);
4830 4831 4832

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4833 4834 4835
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4836 4837 4838
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4839 4840 4841 4842 4843
	if (!i915.enable_execlists) {
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4844 4845 4846 4847 4848
	} else {
		dev_priv->gt.do_execbuf = intel_execlists_submission;
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4849 4850
	}

4851 4852 4853 4854 4855 4856 4857 4858
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4859
	ret = i915_gem_init_userptr(dev);
4860 4861
	if (ret)
		goto out_unlock;
4862

4863
	i915_gem_init_global_gtt(dev);
4864

4865
	ret = i915_gem_context_init(dev);
4866 4867
	if (ret)
		goto out_unlock;
4868

D
Daniel Vetter 已提交
4869 4870
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4871
		goto out_unlock;
4872

4873
	ret = i915_gem_init_hw(dev);
4874 4875 4876 4877 4878 4879 4880 4881
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4882
	}
4883 4884

out_unlock:
4885
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4886
	mutex_unlock(&dev->struct_mutex);
4887

4888
	return ret;
4889 4890
}

4891 4892 4893
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
4894
	struct drm_i915_private *dev_priv = dev->dev_private;
4895
	struct intel_engine_cs *ring;
4896
	int i;
4897

4898
	for_each_ring(ring, dev_priv, i)
4899
		dev_priv->gt.cleanup_ring(ring);
4900 4901
}

4902
static void
4903
init_ring_lists(struct intel_engine_cs *ring)
4904 4905 4906 4907 4908
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4909 4910
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
4911
{
4912 4913
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
4914 4915 4916 4917
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
4918
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
4919 4920
}

4921 4922 4923
void
i915_gem_load(struct drm_device *dev)
{
4924
	struct drm_i915_private *dev_priv = dev->dev_private;
4925 4926 4927 4928 4929 4930 4931
	int i;

	dev_priv->slab =
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4932

B
Ben Widawsky 已提交
4933 4934 4935
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

4936
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4937 4938
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940 4941
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4942
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4943
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4944 4945
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4946 4947
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
4948
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4949

4950 4951
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4952 4953 4954
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4955 4956 4957 4958
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4959 4960 4961 4962
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

4963
	/* Initialize fence registers to zero */
4964 4965
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
4966

4967
	i915_gem_detect_bit_6_swizzle(dev);
4968
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4969

4970 4971
	dev_priv->mm.interruptible = true;

4972
	i915_gem_shrinker_init(dev_priv);
4973

4974 4975
	i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);

4976
	mutex_init(&dev_priv->fb_tracking.lock);
4977
}
4978

4979
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4980
{
4981
	struct drm_i915_file_private *file_priv = file->driver_priv;
4982

4983 4984
	cancel_delayed_work_sync(&file_priv->mm.idle_work);

4985 4986 4987 4988
	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4989
	spin_lock(&file_priv->mm.lock);
4990 4991 4992 4993 4994 4995 4996 4997 4998
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4999
	spin_unlock(&file_priv->mm.lock);
5000
}
5001

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
static void
i915_gem_file_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_file_private *file_priv =
		container_of(work, typeof(*file_priv), mm.idle_work.work);

	atomic_set(&file_priv->rps_wait_boost, false);
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5014
	int ret;
5015 5016 5017 5018 5019 5020 5021 5022 5023

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5024
	file_priv->file = file;
5025 5026 5027 5028 5029 5030

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);
	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
			  i915_gem_file_idle_work_handler);

5031 5032 5033
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5034

5035
	return ret;
5036 5037
}

5038 5039 5040 5041 5042 5043 5044 5045 5046
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5064
/* All the new VM stuff */
5065 5066 5067
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5068 5069 5070 5071
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5072
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5073 5074

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5075 5076 5077 5078
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5079 5080
			return vma->node.start;
	}
5081

5082 5083
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5084 5085 5086
	return -1;
}

5087 5088 5089
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
			      enum i915_ggtt_view_type view)
5090
{
5091
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5092 5093 5094
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
		if (vma->vm == ggtt && vma->ggtt_view.type == view)
			return vma->node.start;

	WARN(1, "global vma for this object not found.\n");
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
				  enum i915_ggtt_view_type view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5126 5127
		    vma->ggtt_view.type == view &&
		    drm_mm_node_allocated(&vma->node))
5128 5129 5130 5131 5132 5133 5134
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5135
	struct i915_vma *vma;
5136

5137 5138
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5150
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5151 5152 5153

	BUG_ON(list_empty(&o->vma_list));

5154 5155 5156 5157
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5158 5159
		if (vma->vm == vm)
			return vma->node.size;
5160
	}
5161 5162 5163
	return 0;
}

5164
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5165 5166
{
	struct i915_vma *vma;
5167 5168 5169 5170 5171 5172 5173 5174
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->pin_count > 0)
			return true;
	}
	return false;
5175
}
5176