iwl-nvm-parse.c 47.2 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11
 * Copyright(c) 2018 - 2019 Intel Corporation
12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * The full GNU General Public License is included in this distribution
23
 * in the file called COPYING.
24 25
 *
 * Contact Information:
26
 *  Intel Linux Wireless <linuxwifi@intel.com>
27 28 29 30
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
31
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34
 * Copyright(c) 2018 - 2019 Intel Corporation
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
66
#include <linux/etherdevice.h>
67
#include <linux/pci.h>
68
#include <linux/firmware.h>
69

70
#include "iwl-drv.h"
71 72
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
73
#include "iwl-prph.h"
74 75
#include "iwl-io.h"
#include "iwl-csr.h"
76
#include "fw/acpi.h"
77
#include "fw/api/nvm-reg.h"
S
Shaul Triebitz 已提交
78 79 80
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
81 82

/* NVM offsets (in words) definitions */
83
enum nvm_offsets {
84
	/* NVM HW-Section offset (in words) definitions */
85
	SUBSYSTEM_ID = 0x0A,
86 87
	HW_ADDR = 0x15,

88
	/* NVM SW-Section offset (in words) definitions */
89 90 91 92 93 94 95
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

96
	/* NVM calibration section offset (in words) definitions */
97
	NVM_CALIB_SECTION = 0x2B8,
98 99 100 101
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
102 103
};

104
enum ext_nvm_offsets {
105
	/* NVM HW-Section offset (in words) definitions */
106
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 108

	/* NVM SW-Section offset (in words) definitions */
109 110
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 112
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
113

114
	/* NVM REGULATORY -Section offset (in words) definitions */
115 116 117 118
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
119 120
};

121 122
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
123 124 125 126 127
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 129 130 131 132
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
133
static const u16 iwl_nvm_channels[] = {
134 135 136 137 138 139 140 141
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

142
static const u16 iwl_ext_nvm_channels[] = {
143
	/* 2.4 GHz */
144
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 146 147 148 149 150
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

151 152 153 154 155 156 157 158
static const u16 iwl_uhb_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181,
	/* 6-7 GHz */
159 160 161 162
	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
163 164
};

165 166
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
167
#define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
168 169 170
#define NUM_2GHZ_CHANNELS		14
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
171
#define N_HW_ADDR_MASK			0xF
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
202 203 204
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
205 206 207 208 209 210
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
211 212
 */
enum iwl_nvm_channel_flags {
213 214 215 216 217 218 219 220 221 222 223 224
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
225 226
};

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
 * domain.
 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	2.4Ghz band is allowed.
 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
 *	5Ghz band is allowed.
 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
 *	for this regulatory domain (valid only in 5Ghz).
 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
 */
enum iwl_reg_capa_flags {
	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
};

255
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
256
					       int chan, u32 flags)
257
{
258
#define CHECK_AND_PRINT_I(x)	\
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
285

286
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
287
				 u32 nvm_flags, const struct iwl_cfg *cfg)
288 289 290
{
	u32 flags = IEEE80211_CHAN_NO_HT40;

291
	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
292 293 294 295
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
296
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
324
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
325 326 327 328

	return flags;
}

329 330 331 332 333 334 335
static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
{
	if (ch_idx >= NUM_2GHZ_CHANNELS)
		return NL80211_BAND_5GHZ;
	return NL80211_BAND_2GHZ;
}

336 337
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
338 339
				const void * const nvm_ch_flags,
				u32 sbands_flags, bool v4)
340 341 342 343
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
344
	u32 ch_flags;
345
	int num_of_ch;
346
	const u16 *nvm_chan;
347

348 349 350 351
	if (cfg->uhb_supported) {
		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
352
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
353 354 355 356
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		num_of_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
357
	}
358

359
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
360 361
		enum nl80211_band band =
			iwl_nl80211_band_from_channel_idx(ch_idx);
362

363 364 365 366 367 368
		if (v4)
			ch_flags =
				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
		else
			ch_flags =
				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
369

370 371
		if (band == NL80211_BAND_5GHZ &&
		    !data->sku_cap_band_52ghz_enable)
372
			continue;
373

374
		/* workaround to disable wide channels in 5GHz */
375
		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
376
		    band == NL80211_BAND_5GHZ) {
377 378 379 380 381
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

382 383 384
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

385 386
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
		    !(ch_flags & NVM_CHANNEL_VALID)) {
387 388 389 390 391
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
392 393
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
394 395 396 397 398 399
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

400
		channel->hw_value = nvm_chan[ch_idx];
401
		channel->band = band;
402 403 404 405 406 407
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

408 409 410 411
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
412
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
413 414

		/* don't put limitations in case we're using LAR */
415
		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
416
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
417
							       ch_idx, band,
418
							       ch_flags, cfg);
419 420 421
		else
			channel->flags = 0;

422 423 424 425
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
426 427 428 429 430
	}

	return n_channels;
}

431
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
432
				  struct iwl_nvm_data *data,
433 434
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
435
{
436
	const struct iwl_cfg *cfg = trans->cfg;
437 438
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
439 440
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
441

442 443 444 445 446
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
447
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
448 449
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
450

451
	if (data->vht160_supported)
452 453
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
454

455 456 457
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
458 459 460
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

461 462 463 464 465
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

466
	if (num_tx_ants > 1)
467
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
468 469
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
470

471
	switch (iwlwifi_mod_params.amsdu_size) {
472
	case IWL_AMSDU_DEF:
473
		if (trans->trans_cfg->mq_rx_supported)
474 475 476 477 478
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
479
	case IWL_AMSDU_2K:
480
		if (trans->trans_cfg->mq_rx_supported)
481 482 483 484 485
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			WARN(1, "RB size of 2K is not supported by this device\n");
		break;
486 487 488 489
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
490
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
491 492 493 494 495 496 497
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
498 499 500 501 502 503 504 505 506 507 508

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

509 510
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
511 512 513 514 515 516
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
517 518 519

	vht_cap->vht_mcs.tx_highest |=
		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
520 521
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
	{
		.types_mask = BIT(NL80211_IFTYPE_STATION),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
					IEEE80211_HE_MAC_CAP0_HTC_HE |
					IEEE80211_HE_MAC_CAP0_TWT_REQ,
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
L
Liad Kaufman 已提交
546 547 548
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
549 550 551 552 553 554 555
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
L
Liad Kaufman 已提交
556
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
557
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
558
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
559
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
560
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
561
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
562
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
563 564 565 566 567 568 569
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
570
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
571 572 573 574 575 576 577 578 579 580 581
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
582
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
583 584 585
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
586 587
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
607
		},
608 609 610 611 612 613 614
	},
	{
		.types_mask = BIT(NL80211_IFTYPE_AP),
		.he_cap = {
			.has_he = true,
			.he_cap_elem = {
				.mac_cap_info[0] =
615
					IEEE80211_HE_MAC_CAP0_HTC_HE,
616 617 618 619 620 621 622 623 624 625 626
				.mac_cap_info[1] =
					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
				.mac_cap_info[2] =
					IEEE80211_HE_MAC_CAP2_BSR |
					IEEE80211_HE_MAC_CAP2_ACK_EN,
				.mac_cap_info[3] =
					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
				.mac_cap_info[4] =
					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
L
Liad Kaufman 已提交
627 628
				.mac_cap_info[5] =
					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
629 630 631 632 633
				.phy_cap_info[0] =
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
				.phy_cap_info[1] =
L
Liad Kaufman 已提交
634
					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
635
				.phy_cap_info[2] =
L
Liad Kaufman 已提交
636
					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
637
				.phy_cap_info[3] =
L
Liad Kaufman 已提交
638
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
639
					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
L
Liad Kaufman 已提交
640
					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
641 642 643 644 645 646 647
					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
				.phy_cap_info[4] =
					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
				.phy_cap_info[5] =
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
L
Liad Kaufman 已提交
648
					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
649 650 651 652 653 654 655 656 657 658
				.phy_cap_info[6] =
					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
				.phy_cap_info[7] =
					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
				.phy_cap_info[8] =
					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
L
Liad Kaufman 已提交
659
					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
660 661
				.phy_cap_info[9] =
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
L
Liad Kaufman 已提交
662 663
					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
			},
			/*
			 * Set default Tx/Rx HE MCS NSS Support field.
			 * Indicate support for up to 2 spatial streams and all
			 * MCS, without any special cases
			 */
			.he_mcs_nss_supp = {
				.rx_mcs_80 = cpu_to_le16(0xfffa),
				.tx_mcs_80 = cpu_to_le16(0xfffa),
				.rx_mcs_160 = cpu_to_le16(0xfffa),
				.tx_mcs_160 = cpu_to_le16(0xfffa),
				.rx_mcs_80p80 = cpu_to_le16(0xffff),
				.tx_mcs_80p80 = cpu_to_le16(0xffff),
			},
			/*
			 * Set default PPE thresholds, with PPET16 set to 0,
			 * PPET8 set to 7
			 */
			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
683 684 685 686 687 688 689
		},
	},
};

static void iwl_init_he_hw_capab(struct ieee80211_supported_band *sband,
				 u8 tx_chains, u8 rx_chains)
{
S
Shaul Triebitz 已提交
690
	sband->iftype_data = iwl_he_capa;
691
	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
692 693 694

	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
	if ((tx_chains & rx_chains) != ANT_AB) {
695 696 697 698 699 700 701 702 703 704
		int i;

		for (i = 0; i < sband->n_iftype_data; i++) {
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
		}
705 706 707
	}
}

708
static void iwl_init_sbands(struct iwl_trans *trans,
S
Shaul Triebitz 已提交
709
			    struct iwl_nvm_data *data,
710 711
			    const void *nvm_ch_flags, u8 tx_chains,
			    u8 rx_chains, u32 sbands_flags, bool v4)
712
{
713 714
	struct device *dev = trans->dev;
	const struct iwl_cfg *cfg = trans->cfg;
715
	int n_channels;
716 717 718
	int n_used = 0;
	struct ieee80211_supported_band *sband;

719
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
720
					  sbands_flags, v4);
721 722
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
723 724 725
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
726
					  NL80211_BAND_2GHZ);
727
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
728
			     tx_chains, rx_chains);
729

730
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
731 732
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

733 734
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
735 736 737
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
738
					  NL80211_BAND_5GHZ);
739
	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
740
			     tx_chains, rx_chains);
741
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
742
		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
743
				      tx_chains, rx_chains);
744

745
	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
746 747
		iwl_init_he_hw_capab(sband, tx_chains, rx_chains);

748 749 750 751 752
	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}

753 754
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
755
{
756
	if (cfg->nvm_type != IWL_NVM_EXT)
757
		return le16_to_cpup(nvm_sw + SKU);
758

759
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
760 761
}

762
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
763
{
764
	if (cfg->nvm_type != IWL_NVM_EXT)
765 766 767
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
768
					       NVM_VERSION_EXT_NVM));
769 770
}

771 772
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
773
{
774
	if (cfg->nvm_type != IWL_NVM_EXT)
775
		return le16_to_cpup(nvm_sw + RADIO_CFG);
776

777
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
778

779 780
}

781
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
782
{
783 784
	int n_hw_addr;

785
	if (cfg->nvm_type != IWL_NVM_EXT)
786
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
787

788
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
789 790

	return n_hw_addr & N_HW_ADDR_MASK;
791 792 793 794 795 796
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
797
	if (cfg->nvm_type != IWL_NVM_EXT) {
798 799 800 801 802 803 804 805
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
806 807 808 809 810 811
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
812 813
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

S
Shaul Triebitz 已提交
829 830
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
					struct iwl_nvm_data *data)
831
{
832 833
	__le32 mac_addr0 =
		cpu_to_le32(iwl_read32(trans,
834
				       trans->trans_cfg->csr->mac_addr0_strap));
835 836
	__le32 mac_addr1 =
		cpu_to_le32(iwl_read32(trans,
837
				       trans->trans_cfg->csr->mac_addr1_strap));
838

839 840 841 842 843 844 845 846
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

847
	mac_addr0 = cpu_to_le32(iwl_read32(trans,
848
					trans->trans_cfg->csr->mac_addr0_otp));
849
	mac_addr1 = cpu_to_le32(iwl_read32(trans,
850
					trans->trans_cfg->csr->mac_addr1_otp));
851 852 853 854

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}

855
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
856
					   const struct iwl_cfg *cfg,
857 858
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
859
					   const __be16 *nvm_hw)
860 861 862 863
{
	const u8 *hw_addr;

	if (mac_override) {
864 865 866 867
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

868
		hw_addr = (const u8 *)(mac_override +
869
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
870

871 872 873 874 875
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
876

877 878 879 880 881 882
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
883
			return;
884

885 886
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
887 888
	}

889
	if (nvm_hw) {
890 891 892 893 894
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
895 896

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
897

898 899
		return;
	}
900

901 902 903
	IWL_ERR(trans, "mac address is not found\n");
}

904 905
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
906
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
907
			      const __le16 *mac_override)
908
{
909 910
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
911
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
912 913 914 915 916 917 918 919 920 921 922 923 924
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
925 926 927 928 929 930

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

931 932
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

933
	return 0;
934 935
}

936
static bool
937
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
938
			const __be16 *nvm_hw)
939 940 941 942 943 944 945 946 947 948
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
949
	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
950 951 952 953
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
954
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
955 956 957
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
958
			IWL_DEBUG_EEPROM(trans->dev,
959 960 961 962 963 964 965 966 967
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

968
struct iwl_nvm_data *
969
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
970
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
971
		   const __le16 *nvm_calib, const __le16 *regulatory,
972
		   const __le16 *mac_override, const __le16 *phy_sku,
973
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
974 975
{
	struct iwl_nvm_data *data;
976 977
	bool lar_enabled;
	u32 sku, radio_cfg;
978
	u32 sbands_flags = 0;
979
	u16 lar_config;
980
	const __le16 *ch_section;
981

982 983 984 985 986
	if (cfg->uhb_supported)
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_UHB),
					   GFP_KERNEL);
	else if (cfg->nvm_type != IWL_NVM_EXT)
987 988 989
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS),
					   GFP_KERNEL);
990
	else
991 992 993
		data = kzalloc(struct_size(data, channels,
					   IWL_NVM_NUM_CHANNELS_EXT),
					   GFP_KERNEL);
994 995 996
	if (!data)
		return NULL;

997
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
998

999
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1000
	iwl_set_radio_cfg(cfg, data, radio_cfg);
1001 1002 1003 1004
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
1005

1006
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1007 1008
	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1009 1010 1011
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
1012 1013
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1014
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1015

1016
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1017

1018
	if (cfg->nvm_type != IWL_NVM_EXT) {
1019 1020
		/* Checking for required sections */
		if (!nvm_calib) {
1021 1022
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
1023
			kfree(data);
1024 1025
			return NULL;
		}
1026 1027 1028 1029 1030

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

1031 1032 1033
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1034
		lar_enabled = true;
1035
	} else {
1036
		u16 lar_offset = data->nvm_version < 0xE39 ?
1037 1038
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
1039 1040

		lar_config = le16_to_cpup(regulatory + lar_offset);
1041
		data->lar_enabled = !!(lar_config &
1042
				       NVM_LAR_ENABLED);
1043
		lar_enabled = data->lar_enabled;
1044
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1045
	}
1046

1047 1048 1049 1050 1051 1052
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

1053 1054 1055
	if (lar_fw_supported && lar_enabled)
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;

1056
	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1057 1058
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;

1059
	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1060
			sbands_flags, false);
1061
	data->calib_version = 255;
1062 1063 1064

	return data;
}
1065
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1066

1067
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1068
				       int ch_idx, u16 nvm_flags,
1069
				       u16 cap_flags,
1070
				       const struct iwl_cfg *cfg)
1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	u32 flags = NL80211_RRF_NO_HT40;

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
1080
	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/*
	 * cap_flags is per regulatory domain so apply it for every channel
	 */
	if (ch_idx >= NUM_2GHZ_CHANNELS) {
		if (cap_flags & REG_CAPA_40MHZ_FORBIDDEN)
			flags |= NL80211_RRF_NO_HT40;

		if (!(cap_flags & REG_CAPA_80MHZ_ALLOWED))
			flags |= NL80211_RRF_NO_80MHZ;

		if (!(cap_flags & REG_CAPA_160MHZ_ALLOWED))
			flags |= NL80211_RRF_NO_160MHZ;
	}

1122 1123 1124 1125
	return flags;
}

struct ieee80211_regdomain *
1126
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1127
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1128
		       u16 geo_info, u16 cap)
1129 1130
{
	int ch_idx;
1131 1132
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1133
	const u16 *nvm_chan;
1134
	struct ieee80211_regdomain *regd, *copy_rd;
1135
	struct ieee80211_reg_rule *rule;
1136
	enum nl80211_band band;
1137
	int center_freq, prev_center_freq = 0;
1138
	int valid_rules = 0;
1139
	bool new_rule;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	int max_num_ch;

	if (cfg->uhb_supported) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
		nvm_chan = iwl_uhb_nvm_channels;
	} else if (cfg->nvm_type == IWL_NVM_EXT) {
		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
		nvm_chan = iwl_ext_nvm_channels;
	} else {
		max_num_ch = IWL_NVM_NUM_CHANNELS;
		nvm_chan = iwl_nvm_channels;
	}
1152

1153 1154 1155
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

1156 1157 1158
	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

1159 1160 1161 1162
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
1163
	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1164 1165 1166
	if (!regd)
		return ERR_PTR(-ENOMEM);

1167 1168 1169 1170
	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

1171 1172 1173
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
1174
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1175 1176 1177 1178 1179
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1180 1181
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
1182 1183 1184
			continue;
		}

1185
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1186 1187
							     ch_flags, cap,
							     cfg);
1188

1189
		/* we can't continue the same rule */
1190
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1206 1207
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1208

1209
		rule->flags = reg_rule_flags;
1210 1211 1212 1213 1214 1215

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
1216
		prev_reg_rule_flags = reg_rule_flags;
1217

1218 1219
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
1220 1221 1222 1223 1224

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

1225
		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1226 1227 1228 1229
	}

	regd->n_reg_rules = valid_rules;

1230 1231 1232 1233
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
1234 1235
	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
			  GFP_KERNEL);
1236
	if (!copy_rd)
1237 1238 1239 1240
		copy_rd = ERR_PTR(-ENOMEM);

	kfree(regd);
	return copy_rd;
1241 1242
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

#define IWL_MAX_NVM_SECTION_SIZE	0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
#define MAX_NVM_FILE_LEN	16384

void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
		    unsigned int len)
{
#define IWL_4165_DEVICE_ID	0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)

	if (section == NVM_SECTION_TYPE_PHY_SKU &&
	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
		/* OTP 0x52 bug work around: it's a 1x1 device */
		data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);

/*
 * Reads external NVM from a file into mvm->nvm_sections
 *
 * HOW TO CREATE THE NVM FILE FORMAT:
 * ------------------------------
 * 1. create hex file, format:
 *      3800 -> header
 *      0000 -> header
 *      5a40 -> data
 *
 *   rev - 6 bit (word1)
 *   len - 10 bit (word1)
 *   id - 4 bit (word2)
 *   rsv - 12 bit (word2)
 *
 * 2. flip 8bits with 8 bits per line to get the right NVM file format
 *
 * 3. create binary file from the hex file
 *
 * 4. save as "iNVM_xxx.bin" under /lib/firmware
 */
int iwl_read_external_nvm(struct iwl_trans *trans,
			  const char *nvm_file_name,
			  struct iwl_nvm_section *nvm_sections)
{
	int ret, section_size;
	u16 section_id;
	const struct firmware *fw_entry;
	const struct {
		__le16 word1;
		__le16 word2;
		u8 data[];
	} *file_sec;
	const u8 *eof;
	u8 *temp;
	int max_section_size;
	const __le32 *dword_buff;

#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0	(0x2A504C54)
#define NVM_HEADER_1	(0x4E564D2A)
#define NVM_HEADER_SIZE	(4 * sizeof(u32))

	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");

	/* Maximal size depends on NVM version */
	if (trans->cfg->nvm_type != IWL_NVM_EXT)
		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
	else
		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;

	/*
	 * Obtain NVM image via request_firmware. Since we already used
	 * request_firmware_nowait() for the firmware binary load and only
	 * get here after that we assume the NVM request can be satisfied
	 * synchronously.
	 */
	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
	if (ret) {
		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
			nvm_file_name, ret);
		return ret;
	}

	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
		 nvm_file_name, fw_entry->size);

	if (fw_entry->size > MAX_NVM_FILE_LEN) {
		IWL_ERR(trans, "NVM file too large\n");
		ret = -EINVAL;
		goto out;
	}

	eof = fw_entry->data + fw_entry->size;
	dword_buff = (__le32 *)fw_entry->data;

	/* some NVM file will contain a header.
	 * The header is identified by 2 dwords header as follow:
	 * dword[0] = 0x2A504C54
	 * dword[1] = 0x4E564D2A
	 *
	 * This header must be skipped when providing the NVM data to the FW.
	 */
	if (fw_entry->size > NVM_HEADER_SIZE &&
	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
			 le32_to_cpu(dword_buff[3]));

		/* nvm file validation, dword_buff[2] holds the file version */
1357
		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
			ret = -EFAULT;
			goto out;
		}
	} else {
		file_sec = (void *)fw_entry->data;
	}

	while (true) {
		if (file_sec->data > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section header\n");
			ret = -EINVAL;
			break;
		}

		/* check for EOF marker */
		if (!file_sec->word1 && !file_sec->word2) {
			ret = 0;
			break;
		}

		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
			section_size =
				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
		} else {
			section_size = 2 * EXT_NVM_WORD2_LEN(
						le16_to_cpu(file_sec->word2));
			section_id = EXT_NVM_WORD1_ID(
						le16_to_cpu(file_sec->word1));
		}

		if (section_size > max_section_size) {
			IWL_ERR(trans, "ERROR - section too large (%d)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (!section_size) {
			IWL_ERR(trans, "ERROR - section empty\n");
			ret = -EINVAL;
			break;
		}

		if (file_sec->data + section_size > eof) {
			IWL_ERR(trans,
				"ERROR - NVM file too short for section (%d bytes)\n",
				section_size);
			ret = -EINVAL;
			break;
		}

		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
			 "Invalid NVM section ID %d\n", section_id)) {
			ret = -EINVAL;
			break;
		}

		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
		if (!temp) {
			ret = -ENOMEM;
			break;
		}

		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);

		kfree(nvm_sections[section_id].data);
		nvm_sections[section_id].data = temp;
		nvm_sections[section_id].length = section_size;

		/* advance to the next section */
		file_sec = (void *)(file_sec->data + section_size);
	}
out:
	release_firmware(fw_entry);
	return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
S
Shaul Triebitz 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
				 const struct iwl_fw *fw)
{
	struct iwl_nvm_get_info cmd = {};
	struct iwl_nvm_data *nvm;
	struct iwl_host_cmd hcmd = {
		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
		.data = { &cmd, },
		.len = { sizeof(cmd) },
		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
	};
	int  ret;
	bool lar_fw_supported = !iwlwifi_mod_params.lar_disable &&
				fw_has_capa(&fw->ucode_capa,
					    IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
1455
	bool empty_otp;
S
Shaul Triebitz 已提交
1456 1457
	u32 mac_flags;
	u32 sbands_flags = 0;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
	 * in v3, except for the channel profile part of the
	 * regulatory.  So we can just access the new struct, with the
	 * exception of the latter.
	 */
	struct iwl_nvm_get_info_rsp *rsp;
	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
	bool v4 = fw_has_api(&fw->ucode_capa,
			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
	void *channel_profile;
S
Shaul Triebitz 已提交
1470 1471 1472 1473 1474

	ret = iwl_trans_send_cmd(trans, &hcmd);
	if (ret)
		return ERR_PTR(ret);

1475
	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
S
Shaul Triebitz 已提交
1476 1477 1478 1479 1480 1481 1482
		 "Invalid payload len in NVM response from FW %d",
		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
		ret = -EINVAL;
		goto out;
	}

	rsp = (void *)hcmd.resp_pkt->data;
1483 1484 1485
	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
		       NVM_GENERAL_FLAGS_EMPTY_OTP);
	if (empty_otp)
S
Shaul Triebitz 已提交
1486 1487
		IWL_INFO(trans, "OTP is empty\n");

1488
	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
S
Shaul Triebitz 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (!nvm) {
		ret = -ENOMEM;
		goto out;
	}

	iwl_set_hw_address_from_csr(trans, nvm);
	/* TODO: if platform NVM has MAC address - override it here */

	if (!is_valid_ether_addr(nvm->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		ret = -EINVAL;
		goto err_free;
	}

	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);

	/* Initialize general data */
	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1507 1508 1509 1510 1511
	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
	if (nvm->n_hw_addrs == 0)
		IWL_WARN(trans,
			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
			 empty_otp);
S
Shaul Triebitz 已提交
1512 1513 1514 1515 1516 1517 1518

	/* Initialize MAC sku data */
	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
	nvm->sku_cap_11ac_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
	nvm->sku_cap_11n_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1519 1520
	nvm->sku_cap_11ax_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
S
Shaul Triebitz 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	nvm->sku_cap_band_24ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
	nvm->sku_cap_band_52ghz_enable =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
	nvm->sku_cap_mimo_disabled =
		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);

	/* Initialize PHY sku data */
	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);

	if (le32_to_cpu(rsp->regulatory.lar_enabled) && lar_fw_supported) {
		nvm->lar_enabled = true;
		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
	}

1537 1538 1539 1540
	rsp_v3 = (void *)rsp;
	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
			  (void *)rsp_v3->regulatory.channel_profile;

1541
	iwl_init_sbands(trans, nvm,
1542
			channel_profile,
S
Shaul Triebitz 已提交
1543 1544
			nvm->valid_tx_ant & fw->valid_tx_ant,
			nvm->valid_rx_ant & fw->valid_rx_ant,
1545
			sbands_flags, v4);
S
Shaul Triebitz 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

	iwl_free_resp(&hcmd);
	return nvm;

err_free:
	kfree(nvm);
out:
	iwl_free_resp(&hcmd);
	return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);