scrub.c 106.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10 11 12 13
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
14
#include "transaction.h"
15
#include "backref.h"
16
#include "extent_io.h"
17
#include "dev-replace.h"
18
#include "check-integrity.h"
19
#include "rcu-string.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
A
Arne Jansen 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

36
struct scrub_block;
37
struct scrub_ctx;
A
Arne Jansen 已提交
38

39 40 41 42 43 44 45 46 47
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
48 49 50 51 52 53

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
54
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
55

56
struct scrub_recover {
57
	refcount_t		refs;
58 59 60 61
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
62
struct scrub_page {
63 64
	struct scrub_block	*sblock;
	struct page		*page;
65
	struct btrfs_device	*dev;
66
	struct list_head	list;
A
Arne Jansen 已提交
67 68
	u64			flags;  /* extent flags */
	u64			generation;
69 70
	u64			logical;
	u64			physical;
71
	u64			physical_for_dev_replace;
72
	atomic_t		refs;
73 74 75 76 77
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u64			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164 165
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
166
	int			readonly;
167
	int			pages_per_rd_bio;
168 169

	int			is_dev_replace;
170 171 172 173 174

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
175
	bool                    flush_all_writes;
176

A
Arne Jansen 已提交
177 178 179 180 181
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
182 183 184 185 186 187 188 189

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
190
	refcount_t              refs;
A
Arne Jansen 已提交
191 192
};

193 194 195 196
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
197
	u64			physical;
198 199 200 201
	u64			logical;
	struct btrfs_device	*dev;
};

202 203 204 205 206 207 208
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

209 210
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213
				     struct scrub_block *sblocks_for_recheck);
214
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 216
				struct scrub_block *sblock,
				int retry_failed_mirror);
217
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219
					     struct scrub_block *sblock_good);
220 221 222
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
223 224 225
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
226 227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235 236
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
237
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
238
		       u64 physical, struct btrfs_device *dev, u64 flags,
239 240
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
241
static void scrub_bio_end_io(struct bio *bio);
242 243
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
244 245 246 247 248 249 250 251
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
252
static void scrub_wr_bio_end_io(struct bio *bio);
253
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
257

258 259 260 261 262
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
263

264 265
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
266
	refcount_inc(&sctx->refs);
267 268 269 270 271 272 273
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
274
	scrub_put_ctx(sctx);
275 276
}

277
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 279 280 281 282 283 284 285 286
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

287
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 289 290
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
291
}
292

293 294
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
295 296 297 298 299 300 301 302
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

303 304 305 306 307 308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

328
	lockdep_assert_held(&locks_root->lock);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

344 345 346
	/*
	 * Insert new lock.
	 */
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

372
	lockdep_assert_held(&locks_root->lock);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
392
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
393 394 395 396 397 398 399 400 401 402 403 404 405
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
406 407
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
425
	struct btrfs_block_group *bg_cache;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
472
	struct btrfs_block_group *bg_cache;
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

526
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
527
{
528
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
529
		struct btrfs_ordered_sum *sum;
530
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
531 532 533 534 535 536
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

537
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
538 539 540
{
	int i;

541
	if (!sctx)
A
Arne Jansen 已提交
542 543
		return;

544
	/* this can happen when scrub is cancelled */
545 546
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 548

		for (i = 0; i < sbio->page_count; i++) {
549
			WARN_ON(!sbio->pagev[i]->page);
550 551 552 553 554
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

555
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
556
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
557 558 559 560 561 562

		if (!sbio)
			break;
		kfree(sbio);
	}

563
	kfree(sctx->wr_curr_bio);
564 565
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
566 567
}

568 569
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
570
	if (refcount_dec_and_test(&sctx->refs))
571 572 573
		scrub_free_ctx(sctx);
}

574 575
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
576
{
577
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
578 579
	int		i;

580
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
581
	if (!sctx)
A
Arne Jansen 已提交
582
		goto nomem;
583
	refcount_set(&sctx->refs, 1);
584
	sctx->is_dev_replace = is_dev_replace;
585
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586
	sctx->curr = -1;
587
	sctx->fs_info = fs_info;
588
	INIT_LIST_HEAD(&sctx->csum_list);
589
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
590 591
		struct scrub_bio *sbio;

592
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
593 594
		if (!sbio)
			goto nomem;
595
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
596 597

		sbio->index = i;
598
		sbio->sctx = sctx;
599
		sbio->page_count = 0;
600 601
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
602

603
		if (i != SCRUB_BIOS_PER_SCTX - 1)
604
			sctx->bios[i]->next_free = i + 1;
605
		else
606 607 608
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
609 610
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
611 612 613 614 615 616
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
617

618 619 620
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
621
	if (is_dev_replace) {
622
		WARN_ON(!fs_info->dev_replace.tgtdev);
623
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
624
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
625
		sctx->flush_all_writes = false;
626
	}
627

628
	return sctx;
A
Arne Jansen 已提交
629 630

nomem:
631
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
632 633 634
	return ERR_PTR(-ENOMEM);
}

635 636
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
637 638 639 640 641
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
642
	unsigned nofs_flag;
643 644
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
645
	struct scrub_warning *swarn = warn_ctx;
646
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
647 648 649
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
650
	struct btrfs_key key;
651 652 653 654 655 656 657 658 659 660

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

661 662 663
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
664 665 666 667 668
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
669 670 671 672 673 674 675 676 677 678 679 680
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

681 682 683 684 685 686
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
687
	ipath = init_ipath(4096, local_root, swarn->path);
688
	memalloc_nofs_restore(nofs_flag);
689 690 691 692 693
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
694 695 696 697 698 699 700 701 702 703
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
704
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
705
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
706 707
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
708
				  swarn->physical,
J
Jeff Mahoney 已提交
709 710 711
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
712 713 714 715 716

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
717
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
718
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
719 720
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
721
			  swarn->physical,
J
Jeff Mahoney 已提交
722
			  root, inum, offset, ret);
723 724 725 726 727

	free_ipath(ipath);
	return 0;
}

728
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
729
{
730 731
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
732 733 734 735 736
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
737 738 739
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
740
	u64 ref_root;
741
	u32 item_size;
742
	u8 ref_level = 0;
743
	int ret;
744

745
	WARN_ON(sblock->page_count < 1);
746
	dev = sblock->pagev[0]->dev;
747
	fs_info = sblock->sctx->fs_info;
748

749
	path = btrfs_alloc_path();
750 751
	if (!path)
		return;
752

D
David Sterba 已提交
753
	swarn.physical = sblock->pagev[0]->physical;
754
	swarn.logical = sblock->pagev[0]->logical;
755
	swarn.errstr = errstr;
756
	swarn.dev = NULL;
757

758 759
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
760 761 762
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
763
	extent_item_pos = swarn.logical - found_key.objectid;
764 765 766 767 768 769
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

770
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
771
		do {
772 773 774
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
775
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
776
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
777
				errstr, swarn.logical,
778
				rcu_str_deref(dev->name),
D
David Sterba 已提交
779
				swarn.physical,
780 781 782 783
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
784
		btrfs_release_path(path);
785
	} else {
786
		btrfs_release_path(path);
787
		swarn.path = path;
788
		swarn.dev = dev;
789 790
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
791
					scrub_print_warning_inode, &swarn, false);
792 793 794 795 796 797
	}

out:
	btrfs_free_path(path);
}

798 799
static inline void scrub_get_recover(struct scrub_recover *recover)
{
800
	refcount_inc(&recover->refs);
801 802
}

803 804
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
805
{
806
	if (refcount_dec_and_test(&recover->refs)) {
807
		btrfs_bio_counter_dec(fs_info);
808
		btrfs_put_bbio(recover->bbio);
809 810 811 812
		kfree(recover);
	}
}

A
Arne Jansen 已提交
813
/*
814 815 816 817 818 819
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
820
 */
821
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
822
{
823
	struct scrub_ctx *sctx = sblock_to_check->sctx;
824
	struct btrfs_device *dev;
825 826 827 828 829 830 831 832 833 834 835
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
836
	bool full_stripe_locked;
837
	unsigned int nofs_flag;
838
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
839 840 841
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
842
	fs_info = sctx->fs_info;
843 844 845 846 847 848 849 850 851 852 853
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
854 855 856 857
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
858
			BTRFS_EXTENT_FLAG_DATA);
859 860
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
861

862 863 864 865 866 867 868 869 870 871
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
872 873 874 875 876 877 878 879 880
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
881
		memalloc_nofs_restore(nofs_flag);
882 883 884 885 886 887 888 889 890
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

920
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
921
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
922
	if (!sblocks_for_recheck) {
923 924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929
		goto out;
A
Arne Jansen 已提交
930 931
	}

932
	/* setup the context, map the logical blocks and alloc the pages */
933
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
934
	if (ret) {
935 936 937 938
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
939
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940 941 942 943
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
944

945
	/* build and submit the bios for the failed mirror, check checksums */
946
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
947

948 949 950 951 952 953 954 955 956 957
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
958 959
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
960
		sblock_to_check->data_corrected = 1;
961
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
962

963 964
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	if (!sblock_bad->no_io_error_seen) {
969 970 971
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
972 973
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
974
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975
	} else if (sblock_bad->checksum_error) {
976 977 978
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
979 980
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
981
		btrfs_dev_stat_inc_and_print(dev,
982
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
983
	} else if (sblock_bad->header_error) {
984 985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
987 988 989
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
990
		if (sblock_bad->generation_error)
991
			btrfs_dev_stat_inc_and_print(dev,
992 993
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
994
			btrfs_dev_stat_inc_and_print(dev,
995
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
996
	}
A
Arne Jansen 已提交
997

998 999 1000 1001
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1002

1003 1004
	/*
	 * now build and submit the bios for the other mirrors, check
1005 1006
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1018
	for (mirror_index = 0; ;mirror_index++) {
1019
		struct scrub_block *sblock_other;
1020

1021 1022
		if (mirror_index == failed_mirror_index)
			continue;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1046 1047

		/* build and submit the bios, check checksums */
1048
		scrub_recheck_block(fs_info, sblock_other, 0);
1049 1050

		if (!sblock_other->header_error &&
1051 1052
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1053 1054
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1055
				goto corrected_error;
1056 1057
			} else {
				ret = scrub_repair_block_from_good_copy(
1058 1059 1060
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1061
			}
1062 1063
		}
	}
A
Arne Jansen 已提交
1064

1065 1066
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1067 1068 1069

	/*
	 * In case of I/O errors in the area that is supposed to be
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1082
	 * the final checksum succeeds. But this would be a rare
1083 1084 1085 1086 1087 1088 1089 1090
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1091
	 */
1092
	success = 1;
1093 1094
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1095
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096
		struct scrub_block *sblock_other = NULL;
1097

1098 1099
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1100
			continue;
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1113 1114 1115 1116 1117 1118 1119 1120 1121
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1122 1123
				}
			}
1124 1125
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1126
		}
A
Arne Jansen 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1141
				atomic64_inc(
1142
					&fs_info->dev_replace.num_write_errors);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1153
		}
A
Arne Jansen 已提交
1154 1155
	}

1156
	if (success && !sctx->is_dev_replace) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1167
			scrub_recheck_block(fs_info, sblock_bad, 1);
1168
			if (!sblock_bad->header_error &&
1169 1170 1171 1172 1173 1174 1175
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1176 1177
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1178
			sblock_to_check->data_corrected = 1;
1179
			spin_unlock(&sctx->stat_lock);
1180 1181
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1182
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1183
		}
1184 1185
	} else {
did_not_correct_error:
1186 1187 1188
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1189 1190
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1191
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1192
	}
A
Arne Jansen 已提交
1193

1194 1195 1196 1197 1198 1199
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1200
			struct scrub_recover *recover;
1201 1202
			int page_index;

1203 1204 1205
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1206 1207
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1208
					scrub_put_recover(fs_info, recover);
1209 1210 1211
					sblock->pagev[page_index]->recover =
									NULL;
				}
1212 1213
				scrub_page_put(sblock->pagev[page_index]);
			}
1214 1215 1216
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1217

1218
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219
	memalloc_nofs_restore(nofs_flag);
1220 1221
	if (ret < 0)
		return ret;
1222 1223
	return 0;
}
A
Arne Jansen 已提交
1224

1225
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226
{
Z
Zhao Lei 已提交
1227 1228 1229 1230 1231
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1232 1233 1234
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1235 1236
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1237 1238 1239 1240 1241 1242 1243
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1244
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1265
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266 1267
				     struct scrub_block *sblocks_for_recheck)
{
1268
	struct scrub_ctx *sctx = original_sblock->sctx;
1269
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1270 1271
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1272 1273 1274
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1275 1276 1277 1278 1279 1280
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1281
	int page_index = 0;
1282
	int mirror_index;
1283
	int nmirrors;
1284 1285 1286
	int ret;

	/*
1287
	 * note: the two members refs and outstanding_pages
1288 1289 1290 1291 1292
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1293 1294 1295
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1296

1297 1298 1299 1300
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1301
		btrfs_bio_counter_inc_blocked(fs_info);
1302
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303
				logical, &mapped_length, &bbio);
1304
		if (ret || !bbio || mapped_length < sublen) {
1305
			btrfs_put_bbio(bbio);
1306
			btrfs_bio_counter_dec(fs_info);
1307 1308
			return -EIO;
		}
A
Arne Jansen 已提交
1309

1310 1311
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1312
			btrfs_put_bbio(bbio);
1313
			btrfs_bio_counter_dec(fs_info);
1314 1315 1316
			return -ENOMEM;
		}

1317
		refcount_set(&recover->refs, 1);
1318 1319 1320
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1321
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322

1323
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1324

1325
		for (mirror_index = 0; mirror_index < nmirrors;
1326 1327 1328 1329 1330
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1331
			sblock->sctx = sctx;
1332

1333 1334 1335
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1336 1337 1338
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1339
				scrub_put_recover(fs_info, recover);
1340 1341
				return -ENOMEM;
			}
1342 1343
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1344 1345 1346
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1347
			page->logical = logical;
1348 1349 1350 1351 1352
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1353

Z
Zhao Lei 已提交
1354 1355 1356
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1357
						      mapped_length,
1358 1359
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1360 1361 1362 1363 1364 1365 1366
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1367 1368 1369 1370
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1371 1372
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1373
			sblock->page_count++;
1374 1375 1376
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1377 1378 1379

			scrub_get_recover(recover);
			page->recover = recover;
1380
		}
1381
		scrub_put_recover(fs_info, recover);
1382 1383 1384 1385 1386 1387
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1388 1389
}

1390
static void scrub_bio_wait_endio(struct bio *bio)
1391
{
1392
	complete(bio->bi_private);
1393 1394 1395 1396 1397 1398
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1399
	DECLARE_COMPLETION_ONSTACK(done);
1400
	int ret;
1401
	int mirror_num;
1402 1403 1404 1405 1406

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1407
	mirror_num = page->sblock->pagev[0]->mirror_num;
1408
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409
				    page->recover->map_length,
1410
				    mirror_num, 0);
1411 1412 1413
	if (ret)
		return ret;

1414 1415
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1416 1417
}

L
Liu Bo 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1457 1458 1459 1460 1461 1462 1463
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1464
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465 1466
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1467
{
1468
	int page_num;
I
Ilya Dryomov 已提交
1469

1470
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1471

L
Liu Bo 已提交
1472 1473 1474 1475
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1476 1477
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1478
		struct scrub_page *page = sblock->pagev[page_num];
1479

1480
		if (page->dev->bdev == NULL) {
1481 1482 1483 1484 1485
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1486
		WARN_ON(!page->page);
1487
		bio = btrfs_io_bio_alloc(1);
1488
		bio_set_dev(bio, page->dev->bdev);
1489

1490
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1491 1492
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1493

L
Liu Bo 已提交
1494 1495 1496
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1497
		}
1498

1499 1500
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1501

1502
	if (sblock->no_io_error_seen)
1503
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1504 1505
}

M
Miao Xie 已提交
1506 1507 1508 1509 1510 1511
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1512
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1513 1514 1515
	return !ret;
}

1516
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1517
{
1518 1519 1520
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1521

1522 1523 1524 1525
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1526 1527
}

1528
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529
					     struct scrub_block *sblock_good)
1530 1531 1532
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1533

1534 1535
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1536

1537 1538
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1539
							   page_num, 1);
1540 1541
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1542
	}
1543 1544 1545 1546 1547 1548 1549 1550

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1551 1552
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1553
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554

1555 1556
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1557 1558 1559 1560 1561
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1562
		if (!page_bad->dev->bdev) {
1563
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1564
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565 1566 1567
			return -EIO;
		}

1568
		bio = btrfs_io_bio_alloc(1);
1569
		bio_set_dev(bio, page_bad->dev->bdev);
1570
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1571
		bio->bi_opf = REQ_OP_WRITE;
1572 1573 1574 1575 1576

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1577
		}
1578

1579
		if (btrfsic_submit_bio_wait(bio)) {
1580 1581
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1582
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583 1584 1585
			bio_put(bio);
			return -EIO;
		}
1586
		bio_put(bio);
A
Arne Jansen 已提交
1587 1588
	}

1589 1590 1591
	return 0;
}

1592 1593
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1594
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595 1596
	int page_num;

1597 1598 1599 1600 1601 1602 1603
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1604 1605 1606 1607 1608
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1609
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1622
		clear_page(mapped_buffer);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1635
	mutex_lock(&sctx->wr_lock);
1636
again:
1637 1638
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639
					      GFP_KERNEL);
1640 1641
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1642 1643
			return -ENOMEM;
		}
1644 1645
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1646
	}
1647
	sbio = sctx->wr_curr_bio;
1648 1649 1650 1651 1652
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1653
		sbio->dev = sctx->wr_tgtdev;
1654 1655
		bio = sbio->bio;
		if (!bio) {
1656
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1657 1658 1659 1660 1661
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1662
		bio_set_dev(bio, sbio->dev->bdev);
1663
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1664
		bio->bi_opf = REQ_OP_WRITE;
1665
		sbio->status = 0;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1679
			mutex_unlock(&sctx->wr_lock);
1680 1681 1682 1683 1684 1685 1686 1687 1688
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1689
	if (sbio->page_count == sctx->pages_per_wr_bio)
1690
		scrub_wr_submit(sctx);
1691
	mutex_unlock(&sctx->wr_lock);
1692 1693 1694 1695 1696 1697 1698 1699

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1700
	if (!sctx->wr_curr_bio)
1701 1702
		return;

1703 1704
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1705
	WARN_ON(!sbio->bio->bi_disk);
1706 1707 1708 1709 1710
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1711
	btrfsic_submit_bio(sbio->bio);
1712 1713
}

1714
static void scrub_wr_bio_end_io(struct bio *bio)
1715 1716
{
	struct scrub_bio *sbio = bio->bi_private;
1717
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718

1719
	sbio->status = bio->bi_status;
1720 1721
	sbio->bio = bio;

1722
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1723
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724 1725 1726 1727 1728 1729 1730 1731 1732
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733
	if (sbio->status) {
1734
		struct btrfs_dev_replace *dev_replace =
1735
			&sbio->sctx->fs_info->dev_replace;
1736 1737 1738 1739 1740

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1741
			atomic64_inc(&dev_replace->num_write_errors);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1754 1755 1756 1757
{
	u64 flags;
	int ret;

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1770 1771
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1783 1784

	return ret;
A
Arne Jansen 已提交
1785 1786
}

1787
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1788
{
1789
	struct scrub_ctx *sctx = sblock->sctx;
1790 1791
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1792
	u8 csum[BTRFS_CSUM_SIZE];
1793 1794 1795 1796 1797
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
	u64 len;
	int index;
A
Arne Jansen 已提交
1798

1799
	BUG_ON(sblock->page_count < 1);
1800
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1801 1802
		return 0;

1803 1804 1805
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1806 1807
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1808
	buffer = kmap_atomic(page);
1809

1810
	len = sctx->fs_info->sectorsize;
1811 1812 1813 1814
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1815
		crypto_shash_update(shash, buffer, l);
1816
		kunmap_atomic(buffer);
1817 1818 1819 1820 1821
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1822 1823
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1824
		buffer = kmap_atomic(page);
1825 1826
	}

1827
	crypto_shash_final(shash, csum);
1828
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1829
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1830

1831
	return sblock->checksum_error;
A
Arne Jansen 已提交
1832 1833
}

1834
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1835
{
1836
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1837
	struct btrfs_header *h;
1838
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1839
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1840 1841 1842 1843 1844 1845 1846 1847 1848
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
	u64 len;
	int index;

1849 1850 1851
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1852
	BUG_ON(sblock->page_count < 1);
1853
	page = sblock->pagev[0]->page;
1854
	mapped_buffer = kmap_atomic(page);
1855
	h = (struct btrfs_header *)mapped_buffer;
1856
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1857 1858 1859 1860 1861 1862

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1863
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1864
		sblock->header_error = 1;
A
Arne Jansen 已提交
1865

1866 1867 1868 1869
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1870

M
Miao Xie 已提交
1871
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1872
		sblock->header_error = 1;
A
Arne Jansen 已提交
1873 1874 1875

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1876
		sblock->header_error = 1;
A
Arne Jansen 已提交
1877

1878
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1879 1880 1881 1882 1883 1884
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1885
		crypto_shash_update(shash, p, l);
1886
		kunmap_atomic(mapped_buffer);
1887 1888 1889 1890 1891
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1892 1893
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1894
		mapped_buffer = kmap_atomic(page);
1895 1896 1897 1898
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1899
	crypto_shash_final(shash, calculated_csum);
1900
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1901
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1902

1903
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1904 1905
}

1906
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1907 1908
{
	struct btrfs_super_block *s;
1909
	struct scrub_ctx *sctx = sblock->sctx;
1910 1911
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1912 1913 1914 1915 1916 1917
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
1918 1919
	int fail_gen = 0;
	int fail_cor = 0;
1920 1921
	u64 len;
	int index;
A
Arne Jansen 已提交
1922

1923 1924 1925
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);

1926
	BUG_ON(sblock->page_count < 1);
1927
	page = sblock->pagev[0]->page;
1928
	mapped_buffer = kmap_atomic(page);
1929
	s = (struct btrfs_super_block *)mapped_buffer;
1930
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1931

1932
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1933
		++fail_cor;
A
Arne Jansen 已提交
1934

1935
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1936
		++fail_gen;
A
Arne Jansen 已提交
1937

M
Miao Xie 已提交
1938
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1939
		++fail_cor;
A
Arne Jansen 已提交
1940

1941 1942 1943 1944 1945 1946 1947
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1948
		crypto_shash_update(shash, p, l);
1949
		kunmap_atomic(mapped_buffer);
1950 1951 1952 1953 1954
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1955 1956
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1957
		mapped_buffer = kmap_atomic(page);
1958 1959 1960 1961
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

1962
	crypto_shash_final(shash, calculated_csum);
1963
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1964
		++fail_cor;
A
Arne Jansen 已提交
1965

1966
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1967 1968 1969 1970 1971
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1972 1973 1974
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1975
		if (fail_cor)
1976
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1977 1978
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1979
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1980
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1981 1982
	}

1983
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1984 1985
}

1986 1987
static void scrub_block_get(struct scrub_block *sblock)
{
1988
	refcount_inc(&sblock->refs);
1989 1990 1991 1992
}

static void scrub_block_put(struct scrub_block *sblock)
{
1993
	if (refcount_dec_and_test(&sblock->refs)) {
1994 1995
		int i;

1996 1997 1998
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1999
		for (i = 0; i < sblock->page_count; i++)
2000
			scrub_page_put(sblock->pagev[i]);
2001 2002 2003 2004
		kfree(sblock);
	}
}

2005 2006
static void scrub_page_get(struct scrub_page *spage)
{
2007
	atomic_inc(&spage->refs);
2008 2009 2010 2011
}

static void scrub_page_put(struct scrub_page *spage)
{
2012
	if (atomic_dec_and_test(&spage->refs)) {
2013 2014 2015 2016 2017 2018
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2019
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2020 2021 2022
{
	struct scrub_bio *sbio;

2023
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2024
		return;
A
Arne Jansen 已提交
2025

2026 2027
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2028
	scrub_pending_bio_inc(sctx);
2029
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2030 2031
}

2032 2033
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2034
{
2035
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2036
	struct scrub_bio *sbio;
2037
	int ret;
A
Arne Jansen 已提交
2038 2039 2040 2041 2042

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2043 2044 2045 2046 2047 2048 2049 2050
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2051
		} else {
2052 2053
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2054 2055
		}
	}
2056
	sbio = sctx->bios[sctx->curr];
2057
	if (sbio->page_count == 0) {
2058 2059
		struct bio *bio;

2060 2061
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2062
		sbio->dev = spage->dev;
2063 2064
		bio = sbio->bio;
		if (!bio) {
2065
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2066 2067
			sbio->bio = bio;
		}
2068 2069 2070

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2071
		bio_set_dev(bio, sbio->dev->bdev);
2072
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2073
		bio->bi_opf = REQ_OP_READ;
2074
		sbio->status = 0;
2075 2076 2077
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2078 2079
		   spage->logical ||
		   sbio->dev != spage->dev) {
2080
		scrub_submit(sctx);
A
Arne Jansen 已提交
2081 2082
		goto again;
	}
2083

2084 2085 2086 2087 2088 2089 2090 2091
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2092
		scrub_submit(sctx);
2093 2094 2095
		goto again;
	}

2096
	scrub_block_get(sblock); /* one for the page added to the bio */
2097 2098
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2099
	if (sbio->page_count == sctx->pages_per_rd_bio)
2100
		scrub_submit(sctx);
2101 2102 2103 2104

	return 0;
}

2105
static void scrub_missing_raid56_end_io(struct bio *bio)
2106 2107
{
	struct scrub_block *sblock = bio->bi_private;
2108
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2109

2110
	if (bio->bi_status)
2111 2112
		sblock->no_io_error_seen = 0;

2113 2114
	bio_put(bio);

2115 2116 2117 2118 2119 2120 2121
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2122
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2123 2124 2125 2126 2127 2128
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2129
	if (sblock->no_io_error_seen)
2130
		scrub_recheck_block_checksum(sblock);
2131 2132 2133 2134 2135

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2136
		btrfs_err_rl_in_rcu(fs_info,
2137
			"IO error rebuilding logical %llu for dev %s",
2138 2139 2140 2141 2142
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2143
		btrfs_err_rl_in_rcu(fs_info,
2144
			"failed to rebuild valid logical %llu for dev %s",
2145 2146 2147 2148 2149
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2150
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2151
		mutex_lock(&sctx->wr_lock);
2152
		scrub_wr_submit(sctx);
2153
		mutex_unlock(&sctx->wr_lock);
2154 2155
	}

2156
	scrub_block_put(sblock);
2157 2158 2159 2160 2161 2162
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2163
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2164 2165
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2166
	struct btrfs_bio *bbio = NULL;
2167 2168 2169 2170 2171
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2172
	btrfs_bio_counter_inc_blocked(fs_info);
2173
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2174
			&length, &bbio);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2189
	bio = btrfs_io_bio_alloc(0);
2190 2191 2192 2193
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2194
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2195 2196 2197 2198 2199 2200 2201 2202 2203
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2204
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2205 2206 2207 2208 2209 2210 2211 2212
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2213
	btrfs_bio_counter_dec(fs_info);
2214 2215 2216 2217 2218 2219
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2220
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2221
		       u64 physical, struct btrfs_device *dev, u64 flags,
2222 2223
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2224 2225 2226 2227
{
	struct scrub_block *sblock;
	int index;

2228
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229
	if (!sblock) {
2230 2231 2232
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2233
		return -ENOMEM;
A
Arne Jansen 已提交
2234
	}
2235

2236 2237
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2238
	refcount_set(&sblock->refs, 1);
2239
	sblock->sctx = sctx;
2240 2241 2242
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2243
		struct scrub_page *spage;
2244 2245
		u64 l = min_t(u64, len, PAGE_SIZE);

2246
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2247 2248
		if (!spage) {
leave_nomem:
2249 2250 2251
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2252
			scrub_block_put(sblock);
2253 2254
			return -ENOMEM;
		}
2255 2256 2257
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2258
		spage->sblock = sblock;
2259
		spage->dev = dev;
2260 2261 2262 2263
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2264
		spage->physical_for_dev_replace = physical_for_dev_replace;
2265 2266 2267
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2268
			memcpy(spage->csum, csum, sctx->csum_size);
2269 2270 2271 2272
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2273
		spage->page = alloc_page(GFP_KERNEL);
2274 2275
		if (!spage->page)
			goto leave_nomem;
2276 2277 2278
		len -= l;
		logical += l;
		physical += l;
2279
		physical_for_dev_replace += l;
2280 2281
	}

2282
	WARN_ON(sblock->page_count == 0);
2283
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2284 2285 2286 2287 2288 2289 2290 2291 2292
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2293

2294 2295 2296 2297 2298
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2299
		}
A
Arne Jansen 已提交
2300

2301 2302 2303
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2304

2305 2306
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2307 2308 2309
	return 0;
}

2310
static void scrub_bio_end_io(struct bio *bio)
2311 2312
{
	struct scrub_bio *sbio = bio->bi_private;
2313
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2314

2315
	sbio->status = bio->bi_status;
2316 2317
	sbio->bio = bio;

2318
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2319 2320 2321 2322 2323
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2324
	struct scrub_ctx *sctx = sbio->sctx;
2325 2326
	int i;

2327
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2328
	if (sbio->status) {
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2349 2350 2351 2352
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2353

2354
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2355
		mutex_lock(&sctx->wr_lock);
2356
		scrub_wr_submit(sctx);
2357
		mutex_unlock(&sctx->wr_lock);
2358 2359
	}

2360
	scrub_pending_bio_dec(sctx);
2361 2362
}

2363 2364 2365 2366
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2367
	u64 offset;
2368 2369
	u64 nsectors64;
	u32 nsectors;
2370
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2371 2372 2373 2374 2375 2376 2377

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2378 2379
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2380 2381 2382 2383
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2406 2407
static void scrub_block_complete(struct scrub_block *sblock)
{
2408 2409
	int corrupted = 0;

2410
	if (!sblock->no_io_error_seen) {
2411
		corrupted = 1;
2412
		scrub_handle_errored_block(sblock);
2413 2414 2415 2416 2417 2418
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2419 2420
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2421 2422
			scrub_write_block_to_dev_replace(sblock);
	}
2423 2424 2425 2426 2427 2428 2429 2430 2431

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2432 2433
}

2434
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2435 2436
{
	struct btrfs_ordered_sum *sum = NULL;
2437
	unsigned long index;
A
Arne Jansen 已提交
2438 2439
	unsigned long num_sectors;

2440 2441
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2442 2443 2444 2445 2446 2447
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2448
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2449 2450 2451 2452 2453 2454 2455
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2456 2457 2458
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2459
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2460
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2461
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2462 2463 2464
		list_del(&sum->list);
		kfree(sum);
	}
2465
	return 1;
A
Arne Jansen 已提交
2466 2467 2468
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2469 2470
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2471
			u64 physical, struct btrfs_device *dev, u64 flags,
2472
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2473 2474 2475
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2476 2477 2478
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2479 2480 2481 2482
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2483 2484 2485 2486
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2487
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2488 2489 2490 2491
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2492 2493 2494 2495
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2496
	} else {
2497
		blocksize = sctx->fs_info->sectorsize;
2498
		WARN_ON(1);
2499
	}
A
Arne Jansen 已提交
2500 2501

	while (len) {
2502
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2503 2504 2505 2506
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2507
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2508
			if (have_csum == 0)
2509
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2510
		}
2511
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2512 2513
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2514 2515 2516 2517 2518
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2519
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2520 2521 2522 2523
	}
	return 0;
}

2524 2525 2526 2527 2528 2529 2530 2531 2532
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2533
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2534 2535 2536 2537 2538 2539 2540 2541 2542
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2543
	refcount_set(&sblock->refs, 1);
2544 2545 2546 2547 2548 2549 2550 2551 2552
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2553
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2583
		spage->page = alloc_page(GFP_KERNEL);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2618
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2619 2620 2621 2622
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2623
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2624
		blocksize = sparity->stripe_len;
2625
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2626
		blocksize = sparity->stripe_len;
2627
	} else {
2628
		blocksize = sctx->fs_info->sectorsize;
2629 2630 2631 2632 2633 2634 2635 2636 2637
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2638
			have_csum = scrub_find_csum(sctx, logical, csum);
2639 2640 2641 2642 2643 2644 2645 2646
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2647
skip:
2648 2649 2650 2651 2652 2653 2654
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2655 2656 2657 2658 2659 2660 2661 2662
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2663 2664
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2665 2666 2667 2668 2669
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2670 2671
	u32 stripe_index;
	u32 rot;
2672
	const int data_stripes = nr_data_stripes(map);
2673

2674
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2675 2676 2677
	if (stripe_start)
		*stripe_start = last_offset;

2678
	*offset = last_offset;
2679
	for (i = 0; i < data_stripes; i++) {
2680 2681
		*offset = last_offset + i * map->stripe_len;

2682
		stripe_nr = div64_u64(*offset, map->stripe_len);
2683
		stripe_nr = div_u64(stripe_nr, data_stripes);
2684 2685

		/* Work out the disk rotation on this stripe-set */
2686
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2687 2688
		/* calculate which stripe this data locates */
		rot += i;
2689
		stripe_index = rot % map->num_stripes;
2690 2691 2692 2693 2694 2695 2696 2697 2698
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2731
static void scrub_parity_bio_endio(struct bio *bio)
2732 2733
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2734
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2735

2736
	if (bio->bi_status)
2737 2738 2739 2740
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2741

2742 2743
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2744
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2745 2746 2747 2748 2749
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2750
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2761
	length = sparity->logic_end - sparity->logic_start;
2762 2763

	btrfs_bio_counter_inc_blocked(fs_info);
2764
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2765
			       &length, &bbio);
2766
	if (ret || !bbio || !bbio->raid_map)
2767 2768
		goto bbio_out;

2769
	bio = btrfs_io_bio_alloc(0);
2770 2771 2772 2773
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2774
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2775
					      length, sparity->scrub_dev,
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2788
	btrfs_bio_counter_dec(fs_info);
2789
	btrfs_put_bbio(bbio);
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2801
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2802 2803 2804 2805
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2806
	refcount_inc(&sparity->refs);
2807 2808 2809 2810
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2811
	if (!refcount_dec_and_test(&sparity->refs))
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2824
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2825 2826 2827
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2828
	struct btrfs_bio *bbio = NULL;
2829 2830 2831 2832 2833 2834 2835 2836 2837
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2838
	u64 mapped_length;
2839 2840 2841 2842 2843 2844 2845
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2846
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2863
	refcount_set(&sparity->refs, 1);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2912 2913 2914 2915
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2916
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2917
				bytes = fs_info->nodesize;
2918 2919 2920 2921 2922 2923
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2924
			if (key.objectid >= logic_end) {
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2937 2938 2939 2940
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2941 2942
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2943
					  key.objectid, logic_start);
2944 2945 2946
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2966
			mapped_length = extent_len;
2967
			bbio = NULL;
2968 2969 2970
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
2997 2998 2999

			scrub_free_csums(sctx);

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3031
						logic_end - logic_start);
3032 3033
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3034
	mutex_lock(&sctx->wr_lock);
3035
	scrub_wr_submit(sctx);
3036
	mutex_unlock(&sctx->wr_lock);
3037 3038 3039 3040 3041

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3042
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3043 3044
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3045
					   int num, u64 base, u64 length)
A
Arne Jansen 已提交
3046
{
3047
	struct btrfs_path *path, *ppath;
3048
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3049 3050 3051
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3052
	struct blk_plug plug;
A
Arne Jansen 已提交
3053 3054 3055 3056 3057 3058 3059
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3060
	u64 logic_end;
3061
	u64 physical_end;
A
Arne Jansen 已提交
3062
	u64 generation;
3063
	int mirror_num;
A
Arne Jansen 已提交
3064 3065
	struct reada_control *reada1;
	struct reada_control *reada2;
3066
	struct btrfs_key key;
A
Arne Jansen 已提交
3067
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3068 3069
	u64 increment = map->stripe_len;
	u64 offset;
3070 3071 3072
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3073 3074
	u64 stripe_logical;
	u64 stripe_end;
3075 3076
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3077
	int stop_loop = 0;
D
David Woodhouse 已提交
3078

3079
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3080
	offset = 0;
3081
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3082 3083 3084
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3085
		mirror_num = 1;
A
Arne Jansen 已提交
3086 3087 3088 3089
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3090
		mirror_num = num % map->sub_stripes + 1;
3091
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3092
		increment = map->stripe_len;
3093
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3094 3095
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3096
		mirror_num = num % map->num_stripes + 1;
3097
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3098
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3099 3100
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3101 3102
	} else {
		increment = map->stripe_len;
3103
		mirror_num = 1;
A
Arne Jansen 已提交
3104 3105 3106 3107 3108 3109
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3110 3111
	ppath = btrfs_alloc_path();
	if (!ppath) {
3112
		btrfs_free_path(path);
3113 3114 3115
		return -ENOMEM;
	}

3116 3117 3118 3119 3120
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3121 3122 3123
	path->search_commit_root = 1;
	path->skip_locking = 1;

3124 3125
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3126
	/*
A
Arne Jansen 已提交
3127 3128 3129
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3130 3131
	 */
	logical = base + offset;
3132
	physical_end = physical + nstripes * map->stripe_len;
3133
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3134
		get_raid56_logic_offset(physical_end, num,
3135
					map, &logic_end, NULL);
3136 3137 3138 3139
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3140
	wait_event(sctx->list_wait,
3141
		   atomic_read(&sctx->bios_in_flight) == 0);
3142
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3143 3144

	/* FIXME it might be better to start readahead at commit root */
3145 3146 3147
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3148
	key_end.objectid = logic_end;
3149 3150
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3151
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3152

3153 3154 3155
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3156 3157
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3158
	key_end.offset = logic_end;
3159
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3160 3161 3162 3163 3164 3165

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3166 3167 3168 3169 3170

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3171
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3172 3173 3174 3175 3176

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3177
	while (physical < physical_end) {
A
Arne Jansen 已提交
3178 3179 3180 3181
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3182
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3183 3184 3185 3186 3187 3188 3189 3190
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3191
			sctx->flush_all_writes = true;
3192
			scrub_submit(sctx);
3193
			mutex_lock(&sctx->wr_lock);
3194
			scrub_wr_submit(sctx);
3195
			mutex_unlock(&sctx->wr_lock);
3196
			wait_event(sctx->list_wait,
3197
				   atomic_read(&sctx->bios_in_flight) == 0);
3198
			sctx->flush_all_writes = false;
3199
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3200 3201
		}

3202 3203 3204 3205 3206 3207
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3208
				/* it is parity strip */
3209
				stripe_logical += base;
3210
				stripe_end = stripe_logical + increment;
3211 3212 3213 3214 3215 3216 3217 3218 3219
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3220 3221 3222 3223
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3224
		key.objectid = logical;
L
Liu Bo 已提交
3225
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3226 3227 3228 3229

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3230

3231
		if (ret > 0) {
3232
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3233 3234
			if (ret < 0)
				goto out;
3235 3236 3237 3238 3239 3240 3241 3242 3243
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3244 3245
		}

L
Liu Bo 已提交
3246
		stop_loop = 0;
A
Arne Jansen 已提交
3247
		while (1) {
3248 3249
			u64 bytes;

A
Arne Jansen 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3259
				stop_loop = 1;
A
Arne Jansen 已提交
3260 3261 3262 3263
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3264 3265 3266 3267
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3268
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3269
				bytes = fs_info->nodesize;
3270 3271 3272 3273
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3274 3275
				goto next;

L
Liu Bo 已提交
3276 3277 3278 3279 3280 3281
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3282 3283 3284 3285 3286 3287

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3288 3289 3290 3291
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3292
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3293
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3294
				       key.objectid, logical);
3295 3296 3297
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3298 3299 3300
				goto next;
			}

L
Liu Bo 已提交
3301 3302 3303 3304
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3305 3306 3307
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3308 3309 3310
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3311
			}
L
Liu Bo 已提交
3312
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3313
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3314 3315
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3316 3317
			}

L
Liu Bo 已提交
3318
			extent_physical = extent_logical - logical + physical;
3319 3320
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3321
			if (sctx->is_dev_replace)
3322 3323 3324 3325
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3326

3327 3328 3329 3330 3331
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3332 3333 3334
			if (ret)
				goto out;

L
Liu Bo 已提交
3335
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3336 3337
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3338
					   extent_logical - logical + physical);
3339 3340 3341

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3342 3343 3344
			if (ret)
				goto out;

L
Liu Bo 已提交
3345 3346
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3347
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3348 3349 3350 3351
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3362
								increment;
3363 3364 3365 3366 3367 3368 3369 3370
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3371 3372 3373 3374
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3375 3376 3377 3378 3379
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3380
				if (physical >= physical_end) {
L
Liu Bo 已提交
3381 3382 3383 3384
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3385 3386 3387
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3388
		btrfs_release_path(path);
3389
skip:
A
Arne Jansen 已提交
3390 3391
		logical += increment;
		physical += map->stripe_len;
3392
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3393 3394 3395 3396 3397
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3398
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3399 3400
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3401
	}
3402
out:
A
Arne Jansen 已提交
3403
	/* push queued extents */
3404
	scrub_submit(sctx);
3405
	mutex_lock(&sctx->wr_lock);
3406
	scrub_wr_submit(sctx);
3407
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3408

3409
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3410
	btrfs_free_path(path);
3411
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3412 3413 3414
	return ret < 0 ? ret : 0;
}

3415
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3416 3417
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3418
					  u64 dev_offset,
3419
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3420
{
3421
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3422
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3423 3424 3425
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3426
	int ret = 0;
A
Arne Jansen 已提交
3427

3428 3429 3430
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3444

3445
	map = em->map_lookup;
A
Arne Jansen 已提交
3446 3447 3448 3449 3450 3451 3452
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3453
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3454
		    map->stripes[i].physical == dev_offset) {
3455
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3456
					   chunk_offset, length);
A
Arne Jansen 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3468
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3469
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3470 3471 3472
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3473 3474
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3475 3476
	u64 length;
	u64 chunk_offset;
3477
	int ret = 0;
3478
	int ro_set;
A
Arne Jansen 已提交
3479 3480 3481 3482
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3483
	struct btrfs_block_group *cache;
3484
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3485 3486 3487 3488 3489

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3490
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3491 3492 3493
	path->search_commit_root = 1;
	path->skip_locking = 1;

3494
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3495 3496 3497 3498 3499 3500
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3501 3502 3503 3504 3505
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3506 3507 3508 3509
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3510
					break;
3511 3512 3513
				}
			} else {
				ret = 0;
3514 3515
			}
		}
A
Arne Jansen 已提交
3516 3517 3518 3519 3520 3521

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3522
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3523 3524
			break;

3525
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3537 3538
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3539 3540 3541 3542 3543 3544 3545 3546

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3547 3548 3549 3550 3551 3552

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3553 3554 3555 3556 3557 3558 3559 3560 3561
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3592
		 */
3593
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3594 3595
		if (ret == 0) {
			ro_set = 1;
3596
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3597 3598 3599
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3600
			 * It is not a problem for scrub, because
3601 3602 3603 3604 3605
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3606
			btrfs_warn(fs_info,
3607
				   "failed setting block group ro: %d", ret);
3608
			btrfs_put_block_group(cache);
3609
			scrub_pause_off(fs_info);
3610 3611 3612
			break;
		}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3625
		down_write(&dev_replace->rwsem);
3626 3627 3628
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3629 3630
		up_write(&dev_replace->rwsem);

3631
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3632
				  found_key.offset, cache);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3644
		sctx->flush_all_writes = true;
3645
		scrub_submit(sctx);
3646
		mutex_lock(&sctx->wr_lock);
3647
		scrub_wr_submit(sctx);
3648
		mutex_unlock(&sctx->wr_lock);
3649 3650 3651

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3652 3653

		scrub_pause_on(fs_info);
3654 3655 3656 3657 3658 3659

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3660 3661
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3662
		sctx->flush_all_writes = false;
3663

3664
		scrub_pause_off(fs_info);
3665

3666
		down_write(&dev_replace->rwsem);
3667 3668
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3669
		up_write(&dev_replace->rwsem);
3670

3671
		if (ro_set)
3672
			btrfs_dec_block_group_ro(cache);
3673

3674 3675 3676 3677 3678 3679 3680 3681 3682
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3683
		    cache->used == 0) {
3684
			spin_unlock(&cache->lock);
3685
			btrfs_mark_bg_unused(cache);
3686 3687 3688 3689
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3690 3691 3692
		btrfs_put_block_group(cache);
		if (ret)
			break;
3693
		if (sctx->is_dev_replace &&
3694
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3695 3696 3697 3698 3699 3700 3701
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3702
skip:
A
Arne Jansen 已提交
3703
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3704
		btrfs_release_path(path);
A
Arne Jansen 已提交
3705 3706 3707
	}

	btrfs_free_path(path);
3708

3709
	return ret;
A
Arne Jansen 已提交
3710 3711
}

3712 3713
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3714 3715 3716 3717 3718
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3719
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3720

3721
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3722 3723
		return -EIO;

3724
	/* Seed devices of a new filesystem has their own generation. */
3725
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3726 3727
		gen = scrub_dev->generation;
	else
3728
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3729 3730 3731

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3732 3733
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3734 3735
			break;

3736
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3737
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3738
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3739 3740 3741
		if (ret)
			return ret;
	}
3742
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3743 3744 3745 3746 3747 3748 3749

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3750 3751
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3752
{
3753
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3754
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3755

3756 3757
	lockdep_assert_held(&fs_info->scrub_lock);

3758
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3759
		ASSERT(fs_info->scrub_workers == NULL);
3760 3761
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3762 3763 3764
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3765
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3766
		fs_info->scrub_wr_completion_workers =
3767
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3768
					      max_active, 2);
3769 3770 3771
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3772
		ASSERT(fs_info->scrub_parity_workers == NULL);
3773
		fs_info->scrub_parity_workers =
3774
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3775
					      max_active, 2);
3776 3777
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3778 3779 3780 3781

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3782
	}
3783 3784 3785 3786 3787 3788 3789 3790
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3791 3792
}

3793 3794
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3795
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3796
{
3797
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3798 3799
	int ret;
	struct btrfs_device *dev;
3800
	unsigned int nofs_flag;
3801 3802 3803
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3804

3805
	if (btrfs_fs_closing(fs_info))
3806
		return -EAGAIN;
A
Arne Jansen 已提交
3807

3808
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3809 3810 3811 3812 3813
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3814 3815
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3816 3817
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3818 3819 3820
		return -EINVAL;
	}

3821
	if (fs_info->sectorsize != PAGE_SIZE) {
3822
		/* not supported for data w/o checksums */
3823
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3824
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3825
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3826 3827 3828
		return -EINVAL;
	}

3829
	if (fs_info->nodesize >
3830
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3831
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3832 3833 3834 3835
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3836 3837
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3838
		       fs_info->nodesize,
3839
		       SCRUB_MAX_PAGES_PER_BLOCK,
3840
		       fs_info->sectorsize,
3841 3842 3843 3844
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3845 3846 3847 3848
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3849

3850
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3851
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3852 3853
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3854
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855 3856
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3857 3858
	}

3859 3860
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3861
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3862 3863
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3864 3865
		ret = -EROFS;
		goto out_free_ctx;
3866 3867
	}

3868
	mutex_lock(&fs_info->scrub_lock);
3869
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3870
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3871
		mutex_unlock(&fs_info->scrub_lock);
3872
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3873 3874
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3875 3876
	}

3877
	down_read(&fs_info->dev_replace.rwsem);
3878
	if (dev->scrub_ctx ||
3879 3880
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3881
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3882
		mutex_unlock(&fs_info->scrub_lock);
3883
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3884 3885
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3886
	}
3887
	up_read(&fs_info->dev_replace.rwsem);
3888 3889 3890 3891 3892

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893
		goto out_free_ctx;
3894 3895
	}

3896
	sctx->readonly = readonly;
3897
	dev->scrub_ctx = sctx;
3898
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3899

3900 3901 3902 3903
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3904
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3905 3906 3907
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3918
	if (!is_dev_replace) {
3919
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3920 3921 3922 3923
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3924
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3925
		ret = scrub_supers(sctx, dev);
3926
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3927
	}
A
Arne Jansen 已提交
3928 3929

	if (!ret)
3930
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3931
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3932

3933
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3934 3935 3936
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3937
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3938

A
Arne Jansen 已提交
3939
	if (progress)
3940
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3941

3942 3943 3944 3945
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3946
	mutex_lock(&fs_info->scrub_lock);
3947
	dev->scrub_ctx = NULL;
3948
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3949 3950 3951
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3952 3953 3954 3955

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3956
	}
A
Arne Jansen 已提交
3957 3958
	mutex_unlock(&fs_info->scrub_lock);

3959 3960 3961
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
3962
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3963

3964 3965 3966 3967 3968
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
3969 3970 3971
	return ret;
}

3972
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3987
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3988 3989 3990 3991 3992
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3993
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4014
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4015
{
4016
	struct btrfs_fs_info *fs_info = dev->fs_info;
4017
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4018 4019

	mutex_lock(&fs_info->scrub_lock);
4020
	sctx = dev->scrub_ctx;
4021
	if (!sctx) {
A
Arne Jansen 已提交
4022 4023 4024
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4025
	atomic_inc(&sctx->cancel_req);
4026
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4027 4028
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4029
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4030 4031 4032 4033 4034 4035
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4036

4037
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4038 4039 4040
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4041
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4042

4043
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4044
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4045
	if (dev)
4046
		sctx = dev->scrub_ctx;
4047 4048
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4049
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4050

4051
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4052
}
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4065
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4066 4067 4068
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4069
		btrfs_put_bbio(bbio);
4070 4071 4072 4073 4074 4075
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4076
	btrfs_put_bbio(bbio);
4077
}