header.c 88.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
#include <errno.h>
3
#include <inttypes.h>
4
#include "string2.h"
5
#include <sys/param.h>
6
#include <sys/types.h>
7
#include <byteswap.h>
8 9 10
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
11
#include <linux/compiler.h>
12
#include <linux/list.h>
13
#include <linux/kernel.h>
14
#include <linux/bitops.h>
15
#include <linux/string.h>
16
#include <linux/stringify.h>
17
#include <linux/zalloc.h>
18
#include <sys/stat.h>
19
#include <sys/utsname.h>
20
#include <linux/time64.h>
21
#include <dirent.h>
22
#ifdef HAVE_LIBBPF_SUPPORT
23
#include <bpf/libbpf.h>
24
#endif
25
#include <perf/cpumap.h>
26

27
#include "dso.h"
28
#include "evlist.h"
29
#include "evsel.h"
30
#include "util/evsel_fprintf.h"
31
#include "header.h"
32
#include "memswap.h"
33
#include "trace-event.h"
34
#include "session.h"
35
#include "symbol.h"
36
#include "debug.h"
37
#include "cpumap.h"
38
#include "pmu.h"
39
#include "vdso.h"
40
#include "strbuf.h"
41
#include "build-id.h"
42
#include "data.h"
43 44
#include <api/fs/fs.h>
#include "asm/bug.h"
45
#include "tool.h"
46
#include "time-utils.h"
47
#include "units.h"
48
#include "util/util.h" // perf_exe()
J
Jiri Olsa 已提交
49
#include "cputopo.h"
50
#include "bpf-event.h"
51
#include "clockid.h"
52

53
#include <linux/ctype.h>
54
#include <internal/lib.h>
55

56 57 58 59 60 61 62 63 64 65 66 67
/*
 * magic2 = "PERFILE2"
 * must be a numerical value to let the endianness
 * determine the memory layout. That way we are able
 * to detect endianness when reading the perf.data file
 * back.
 *
 * we check for legacy (PERFFILE) format.
 */
static const char *__perf_magic1 = "PERFFILE";
static const u64 __perf_magic2    = 0x32454c4946524550ULL;
static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
68

69
#define PERF_MAGIC	__perf_magic2
70

71 72
const char perf_version_string[] = PERF_VERSION;

73
struct perf_file_attr {
74
	struct perf_event_attr	attr;
75 76 77
	struct perf_file_section	ids;
};

78
void perf_header__set_feat(struct perf_header *header, int feat)
79
{
80
	set_bit(feat, header->adds_features);
81 82
}

83
void perf_header__clear_feat(struct perf_header *header, int feat)
84
{
85
	clear_bit(feat, header->adds_features);
86 87
}

88
bool perf_header__has_feat(const struct perf_header *header, int feat)
89
{
90
	return test_bit(feat, header->adds_features);
91 92
}

93
static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
94
{
95
	ssize_t ret = writen(ff->fd, buf, size);
96

97 98
	if (ret != (ssize_t)size)
		return ret < 0 ? (int)ret : -1;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
	return 0;
}

static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
{
	/* struct perf_event_header::size is u16 */
	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
	size_t new_size = ff->size;
	void *addr;

	if (size + ff->offset > max_size)
		return -E2BIG;

	while (size > (new_size - ff->offset))
		new_size <<= 1;
	new_size = min(max_size, new_size);

	if (ff->size < new_size) {
		addr = realloc(ff->buf, new_size);
		if (!addr)
			return -ENOMEM;
		ff->buf = addr;
		ff->size = new_size;
	}

	memcpy(ff->buf + ff->offset, buf, size);
	ff->offset += size;
126 127

	return 0;
128 129
}

130 131 132 133 134 135 136 137
/* Return: 0 if succeded, -ERR if failed. */
int do_write(struct feat_fd *ff, const void *buf, size_t size)
{
	if (!ff->buf)
		return __do_write_fd(ff, buf, size);
	return __do_write_buf(ff, buf, size);
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/* Return: 0 if succeded, -ERR if failed. */
static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
{
	u64 *p = (u64 *) set;
	int i, ret;

	ret = do_write(ff, &size, sizeof(size));
	if (ret < 0)
		return ret;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_write(ff, p + i, sizeof(*p));
		if (ret < 0)
			return ret;
	}

	return 0;
}

157
/* Return: 0 if succeded, -ERR if failed. */
158 159
int write_padded(struct feat_fd *ff, const void *bf,
		 size_t count, size_t count_aligned)
160 161
{
	static const char zero_buf[NAME_ALIGN];
162
	int err = do_write(ff, bf, count);
163 164

	if (!err)
165
		err = do_write(ff, zero_buf, count_aligned - count);
166 167 168 169

	return err;
}

170 171 172
#define string_size(str)						\
	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))

173
/* Return: 0 if succeded, -ERR if failed. */
174
static int do_write_string(struct feat_fd *ff, const char *str)
175 176 177 178 179
{
	u32 len, olen;
	int ret;

	olen = strlen(str) + 1;
180
	len = PERF_ALIGN(olen, NAME_ALIGN);
181 182

	/* write len, incl. \0 */
183
	ret = do_write(ff, &len, sizeof(len));
184 185 186
	if (ret < 0)
		return ret;

187
	return write_padded(ff, str, olen, len);
188 189
}

190
static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
191
{
192
	ssize_t ret = readn(ff->fd, addr, size);
193 194 195 196 197 198

	if (ret != size)
		return ret < 0 ? (int)ret : -1;
	return 0;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (size > (ssize_t)ff->size - ff->offset)
		return -1;

	memcpy(addr, ff->buf + ff->offset, size);
	ff->offset += size;

	return 0;

}

static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
{
	if (!ff->buf)
		return __do_read_fd(ff, addr, size);
	return __do_read_buf(ff, addr, size);
}

218
static int do_read_u32(struct feat_fd *ff, u32 *addr)
219 220 221
{
	int ret;

222
	ret = __do_read(ff, addr, sizeof(*addr));
223 224 225
	if (ret)
		return ret;

226
	if (ff->ph->needs_swap)
227 228 229 230
		*addr = bswap_32(*addr);
	return 0;
}

231
static int do_read_u64(struct feat_fd *ff, u64 *addr)
232 233 234
{
	int ret;

235
	ret = __do_read(ff, addr, sizeof(*addr));
236 237 238
	if (ret)
		return ret;

239
	if (ff->ph->needs_swap)
240 241 242 243
		*addr = bswap_64(*addr);
	return 0;
}

244
static char *do_read_string(struct feat_fd *ff)
245 246 247 248
{
	u32 len;
	char *buf;

249
	if (do_read_u32(ff, &len))
250 251 252 253 254 255
		return NULL;

	buf = malloc(len);
	if (!buf)
		return NULL;

256
	if (!__do_read(ff, buf, len)) {
257 258 259 260 261 262 263 264 265 266 267 268
		/*
		 * strings are padded by zeroes
		 * thus the actual strlen of buf
		 * may be less than len
		 */
		return buf;
	}

	free(buf);
	return NULL;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* Return: 0 if succeded, -ERR if failed. */
static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
{
	unsigned long *set;
	u64 size, *p;
	int i, ret;

	ret = do_read_u64(ff, &size);
	if (ret)
		return ret;

	set = bitmap_alloc(size);
	if (!set)
		return -ENOMEM;

	p = (u64 *) set;

	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
		ret = do_read_u64(ff, p + i);
		if (ret < 0) {
			free(set);
			return ret;
		}
	}

	*pset  = set;
	*psize = size;
	return 0;
}

299
static int write_tracing_data(struct feat_fd *ff,
300
			      struct evlist *evlist)
301
{
302 303 304
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

305
	return read_tracing_data(ff->fd, &evlist->core.entries);
306 307
}

308
static int write_build_id(struct feat_fd *ff,
309
			  struct evlist *evlist __maybe_unused)
310 311 312 313
{
	struct perf_session *session;
	int err;

314
	session = container_of(ff->ph, struct perf_session, header);
315

316 317 318
	if (!perf_session__read_build_ids(session, true))
		return -1;

319 320 321
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

322
	err = perf_session__write_buildid_table(session, ff);
323 324 325 326
	if (err < 0) {
		pr_debug("failed to write buildid table\n");
		return err;
	}
327
	perf_session__cache_build_ids(session);
328 329 330 331

	return 0;
}

332
static int write_hostname(struct feat_fd *ff,
333
			  struct evlist *evlist __maybe_unused)
334 335 336 337 338 339 340 341
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

342
	return do_write_string(ff, uts.nodename);
343 344
}

345
static int write_osrelease(struct feat_fd *ff,
346
			   struct evlist *evlist __maybe_unused)
347 348 349 350 351 352 353 354
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

355
	return do_write_string(ff, uts.release);
356 357
}

358
static int write_arch(struct feat_fd *ff,
359
		      struct evlist *evlist __maybe_unused)
360 361 362 363 364 365 366 367
{
	struct utsname uts;
	int ret;

	ret = uname(&uts);
	if (ret < 0)
		return -1;

368
	return do_write_string(ff, uts.machine);
369 370
}

371
static int write_version(struct feat_fd *ff,
372
			 struct evlist *evlist __maybe_unused)
373
{
374
	return do_write_string(ff, perf_version_string);
375 376
}

377
static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 379 380 381
{
	FILE *file;
	char *buf = NULL;
	char *s, *p;
382
	const char *search = cpuinfo_proc;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	size_t len = 0;
	int ret = -1;

	if (!search)
		return -1;

	file = fopen("/proc/cpuinfo", "r");
	if (!file)
		return -1;

	while (getline(&buf, &len, file) > 0) {
		ret = strncmp(buf, search, strlen(search));
		if (!ret)
			break;
	}

399 400
	if (ret) {
		ret = -1;
401
		goto done;
402
	}
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	s = buf;

	p = strchr(buf, ':');
	if (p && *(p+1) == ' ' && *(p+2))
		s = p + 2;
	p = strchr(s, '\n');
	if (p)
		*p = '\0';

	/* squash extra space characters (branding string) */
	p = s;
	while (*p) {
		if (isspace(*p)) {
			char *r = p + 1;
418
			char *q = skip_spaces(r);
419 420 421 422 423 424
			*p = ' ';
			if (q != (p+1))
				while ((*r++ = *q++));
		}
		p++;
	}
425
	ret = do_write_string(ff, s);
426 427 428 429 430 431
done:
	free(buf);
	fclose(file);
	return ret;
}

432
static int write_cpudesc(struct feat_fd *ff,
433
		       struct evlist *evlist __maybe_unused)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
#define CPUINFO_PROC	{ "cpu", }
#elif defined(__s390__)
#define CPUINFO_PROC	{ "vendor_id", }
#elif defined(__sh__)
#define CPUINFO_PROC	{ "cpu type", }
#elif defined(__alpha__) || defined(__mips__)
#define CPUINFO_PROC	{ "cpu model", }
#elif defined(__arm__)
#define CPUINFO_PROC	{ "model name", "Processor", }
#elif defined(__arc__)
#define CPUINFO_PROC	{ "Processor", }
#elif defined(__xtensa__)
#define CPUINFO_PROC	{ "core ID", }
#else
#define CPUINFO_PROC	{ "model name", }
#endif
452
	const char *cpuinfo_procs[] = CPUINFO_PROC;
453
#undef CPUINFO_PROC
454 455 456 457
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
		int ret;
458
		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
459 460 461 462 463 464 465
		if (ret >= 0)
			return ret;
	}
	return -1;
}


466
static int write_nrcpus(struct feat_fd *ff,
467
			struct evlist *evlist __maybe_unused)
468 469 470 471 472
{
	long nr;
	u32 nrc, nra;
	int ret;

473
	nrc = cpu__max_present_cpu();
474 475 476 477 478 479 480

	nr = sysconf(_SC_NPROCESSORS_ONLN);
	if (nr < 0)
		return -1;

	nra = (u32)(nr & UINT_MAX);

481
	ret = do_write(ff, &nrc, sizeof(nrc));
482 483 484
	if (ret < 0)
		return ret;

485
	return do_write(ff, &nra, sizeof(nra));
486 487
}

488
static int write_event_desc(struct feat_fd *ff,
489
			    struct evlist *evlist)
490
{
491
	struct evsel *evsel;
492
	u32 nre, nri, sz;
493 494
	int ret;

495
	nre = evlist->core.nr_entries;
496 497 498 499

	/*
	 * write number of events
	 */
500
	ret = do_write(ff, &nre, sizeof(nre));
501 502 503 504 505 506
	if (ret < 0)
		return ret;

	/*
	 * size of perf_event_attr struct
	 */
507
	sz = (u32)sizeof(evsel->core.attr);
508
	ret = do_write(ff, &sz, sizeof(sz));
509 510 511
	if (ret < 0)
		return ret;

512
	evlist__for_each_entry(evlist, evsel) {
513
		ret = do_write(ff, &evsel->core.attr, sz);
514 515 516 517 518 519 520 521 522
		if (ret < 0)
			return ret;
		/*
		 * write number of unique id per event
		 * there is one id per instance of an event
		 *
		 * copy into an nri to be independent of the
		 * type of ids,
		 */
523
		nri = evsel->core.ids;
524
		ret = do_write(ff, &nri, sizeof(nri));
525 526 527 528 529 530
		if (ret < 0)
			return ret;

		/*
		 * write event string as passed on cmdline
		 */
531
		ret = do_write_string(ff, evsel__name(evsel));
532 533 534 535 536
		if (ret < 0)
			return ret;
		/*
		 * write unique ids for this event
		 */
537
		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
538 539 540 541 542 543
		if (ret < 0)
			return ret;
	}
	return 0;
}

544
static int write_cmdline(struct feat_fd *ff,
545
			 struct evlist *evlist __maybe_unused)
546
{
547 548
	char pbuf[MAXPATHLEN], *buf;
	int i, ret, n;
549

550
	/* actual path to perf binary */
551
	buf = perf_exe(pbuf, MAXPATHLEN);
552 553

	/* account for binary path */
554
	n = perf_env.nr_cmdline + 1;
555

556
	ret = do_write(ff, &n, sizeof(n));
557 558 559
	if (ret < 0)
		return ret;

560
	ret = do_write_string(ff, buf);
561 562 563
	if (ret < 0)
		return ret;

564
	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
565
		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
566 567 568 569 570 571 572
		if (ret < 0)
			return ret;
	}
	return 0;
}


573
static int write_cpu_topology(struct feat_fd *ff,
574
			      struct evlist *evlist __maybe_unused)
575
{
J
Jiri Olsa 已提交
576
	struct cpu_topology *tp;
577
	u32 i;
578
	int ret, j;
579

J
Jiri Olsa 已提交
580
	tp = cpu_topology__new();
581 582 583
	if (!tp)
		return -1;

584
	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
585 586 587 588
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->core_sib; i++) {
589
		ret = do_write_string(ff, tp->core_siblings[i]);
590 591 592
		if (ret < 0)
			goto done;
	}
593
	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
594 595 596 597
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->thread_sib; i++) {
598
		ret = do_write_string(ff, tp->thread_siblings[i]);
599 600 601
		if (ret < 0)
			break;
	}
602

603 604 605 606 607
	ret = perf_env__read_cpu_topology_map(&perf_env);
	if (ret < 0)
		goto done;

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
608
		ret = do_write(ff, &perf_env.cpu[j].core_id,
609
			       sizeof(perf_env.cpu[j].core_id));
610 611
		if (ret < 0)
			return ret;
612
		ret = do_write(ff, &perf_env.cpu[j].socket_id,
613
			       sizeof(perf_env.cpu[j].socket_id));
614 615 616
		if (ret < 0)
			return ret;
	}
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	if (!tp->die_sib)
		goto done;

	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
	if (ret < 0)
		goto done;

	for (i = 0; i < tp->die_sib; i++) {
		ret = do_write_string(ff, tp->die_siblings[i]);
		if (ret < 0)
			goto done;
	}

	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
		ret = do_write(ff, &perf_env.cpu[j].die_id,
			       sizeof(perf_env.cpu[j].die_id));
		if (ret < 0)
			return ret;
	}

638
done:
J
Jiri Olsa 已提交
639
	cpu_topology__delete(tp);
640 641 642 643 644
	return ret;
}



645
static int write_total_mem(struct feat_fd *ff,
646
			   struct evlist *evlist __maybe_unused)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
{
	char *buf = NULL;
	FILE *fp;
	size_t len = 0;
	int ret = -1, n;
	uint64_t mem;

	fp = fopen("/proc/meminfo", "r");
	if (!fp)
		return -1;

	while (getline(&buf, &len, fp) > 0) {
		ret = strncmp(buf, "MemTotal:", 9);
		if (!ret)
			break;
	}
	if (!ret) {
		n = sscanf(buf, "%*s %"PRIu64, &mem);
		if (n == 1)
666
			ret = do_write(ff, &mem, sizeof(mem));
667 668
	} else
		ret = -1;
669 670 671 672 673
	free(buf);
	fclose(fp);
	return ret;
}

674
static int write_numa_topology(struct feat_fd *ff,
675
			       struct evlist *evlist __maybe_unused)
676
{
J
Jiri Olsa 已提交
677
	struct numa_topology *tp;
678
	int ret = -1;
J
Jiri Olsa 已提交
679
	u32 i;
680

J
Jiri Olsa 已提交
681 682 683
	tp = numa_topology__new();
	if (!tp)
		return -ENOMEM;
684

J
Jiri Olsa 已提交
685 686 687
	ret = do_write(ff, &tp->nr, sizeof(u32));
	if (ret < 0)
		goto err;
688

J
Jiri Olsa 已提交
689 690
	for (i = 0; i < tp->nr; i++) {
		struct numa_topology_node *n = &tp->nodes[i];
691

J
Jiri Olsa 已提交
692 693 694
		ret = do_write(ff, &n->node, sizeof(u32));
		if (ret < 0)
			goto err;
695

J
Jiri Olsa 已提交
696 697 698
		ret = do_write(ff, &n->mem_total, sizeof(u64));
		if (ret)
			goto err;
699

J
Jiri Olsa 已提交
700 701 702
		ret = do_write(ff, &n->mem_free, sizeof(u64));
		if (ret)
			goto err;
703

J
Jiri Olsa 已提交
704
		ret = do_write_string(ff, n->cpus);
705
		if (ret < 0)
J
Jiri Olsa 已提交
706
			goto err;
707
	}
J
Jiri Olsa 已提交
708 709 710 711 712

	ret = 0;

err:
	numa_topology__delete(tp);
713 714 715
	return ret;
}

716 717 718 719 720 721 722 723 724 725 726 727
/*
 * File format:
 *
 * struct pmu_mappings {
 *	u32	pmu_num;
 *	struct pmu_map {
 *		u32	type;
 *		char	name[];
 *	}[pmu_num];
 * };
 */

728
static int write_pmu_mappings(struct feat_fd *ff,
729
			      struct evlist *evlist __maybe_unused)
730 731
{
	struct perf_pmu *pmu = NULL;
732
	u32 pmu_num = 0;
733
	int ret;
734

735 736 737 738 739 740 741 742 743 744
	/*
	 * Do a first pass to count number of pmu to avoid lseek so this
	 * works in pipe mode as well.
	 */
	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
		pmu_num++;
	}

745
	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
746 747
	if (ret < 0)
		return ret;
748 749 750 751

	while ((pmu = perf_pmu__scan(pmu))) {
		if (!pmu->name)
			continue;
752

753
		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
754 755 756
		if (ret < 0)
			return ret;

757
		ret = do_write_string(ff, pmu->name);
758 759
		if (ret < 0)
			return ret;
760 761 762 763 764
	}

	return 0;
}

765 766 767 768 769 770 771 772 773 774 775 776
/*
 * File format:
 *
 * struct group_descs {
 *	u32	nr_groups;
 *	struct group_desc {
 *		char	name[];
 *		u32	leader_idx;
 *		u32	nr_members;
 *	}[nr_groups];
 * };
 */
777
static int write_group_desc(struct feat_fd *ff,
778
			    struct evlist *evlist)
779 780
{
	u32 nr_groups = evlist->nr_groups;
781
	struct evsel *evsel;
782 783
	int ret;

784
	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
785 786 787
	if (ret < 0)
		return ret;

788
	evlist__for_each_entry(evlist, evsel) {
789
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
790 791
			const char *name = evsel->group_name ?: "{anon_group}";
			u32 leader_idx = evsel->idx;
792
			u32 nr_members = evsel->core.nr_members;
793

794
			ret = do_write_string(ff, name);
795 796 797
			if (ret < 0)
				return ret;

798
			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
799 800 801
			if (ret < 0)
				return ret;

802
			ret = do_write(ff, &nr_members, sizeof(nr_members));
803 804 805 806 807 808 809
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/*
 * Return the CPU id as a raw string.
 *
 * Each architecture should provide a more precise id string that
 * can be use to match the architecture's "mapfile".
 */
char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
{
	return NULL;
}

/* Return zero when the cpuid from the mapfile.csv matches the
 * cpuid string generated on this platform.
 * Otherwise return non-zero.
 */
int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
{
	regex_t re;
	regmatch_t pmatch[1];
	int match;

	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
		/* Warn unable to generate match particular string. */
		pr_info("Invalid regular expression %s\n", mapcpuid);
		return 1;
	}

	match = !regexec(&re, cpuid, 1, pmatch, 0);
	regfree(&re);
	if (match) {
		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);

		/* Verify the entire string matched. */
		if (match_len == strlen(cpuid))
			return 0;
	}
	return 1;
}

849 850
/*
 * default get_cpuid(): nothing gets recorded
851
 * actual implementation must be in arch/$(SRCARCH)/util/header.c
852
 */
853
int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
854
{
855
	return ENOSYS; /* Not implemented */
856 857
}

858
static int write_cpuid(struct feat_fd *ff,
859
		       struct evlist *evlist __maybe_unused)
860 861 862 863 864
{
	char buffer[64];
	int ret;

	ret = get_cpuid(buffer, sizeof(buffer));
865 866
	if (ret)
		return -1;
867

868
	return do_write_string(ff, buffer);
869 870
}

871
static int write_branch_stack(struct feat_fd *ff __maybe_unused,
872
			      struct evlist *evlist __maybe_unused)
873 874 875 876
{
	return 0;
}

877
static int write_auxtrace(struct feat_fd *ff,
878
			  struct evlist *evlist __maybe_unused)
879
{
880 881 882
	struct perf_session *session;
	int err;

883 884 885
	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
		return -1;

886
	session = container_of(ff->ph, struct perf_session, header);
887

888
	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
889 890 891
	if (err < 0)
		pr_err("Failed to write auxtrace index\n");
	return err;
892 893
}

894
static int write_clockid(struct feat_fd *ff,
895
			 struct evlist *evlist __maybe_unused)
896
{
897 898
	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
			sizeof(ff->ph->env.clock.clockid_res_ns));
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int write_clock_data(struct feat_fd *ff,
			    struct evlist *evlist __maybe_unused)
{
	u64 *data64;
	u32 data32;
	int ret;

	/* version */
	data32 = 1;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* clockid */
	data32 = ff->ph->env.clock.clockid;

	ret = do_write(ff, &data32, sizeof(data32));
	if (ret < 0)
		return ret;

	/* TOD ref time */
	data64 = &ff->ph->env.clock.tod_ns;

	ret = do_write(ff, data64, sizeof(*data64));
	if (ret < 0)
		return ret;

	/* clockid ref time */
	data64 = &ff->ph->env.clock.clockid_ns;

	return do_write(ff, data64, sizeof(*data64));
}

935
static int write_dir_format(struct feat_fd *ff,
936
			    struct evlist *evlist __maybe_unused)
937 938 939 940 941 942 943 944 945 946 947 948 949
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
}

950 951
#ifdef HAVE_LIBBPF_SUPPORT
static int write_bpf_prog_info(struct feat_fd *ff,
952
			       struct evlist *evlist __maybe_unused)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.infos_cnt,
		       sizeof(env->bpf_progs.infos_cnt));
	if (ret < 0)
		goto out;

	root = &env->bpf_progs.infos;
	next = rb_first(root);
	while (next) {
		struct bpf_prog_info_node *node;
		size_t len;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
		len = sizeof(struct bpf_prog_info_linear) +
			node->info_linear->data_len;

		/* before writing to file, translate address to offset */
		bpf_program__bpil_addr_to_offs(node->info_linear);
		ret = do_write(ff, node->info_linear, len);
		/*
		 * translate back to address even when do_write() fails,
		 * so that this function never changes the data.
		 */
		bpf_program__bpil_offs_to_addr(node->info_linear);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}

993
static int write_bpf_btf(struct feat_fd *ff,
994
			 struct evlist *evlist __maybe_unused)
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;
	int ret;

	down_read(&env->bpf_progs.lock);

	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
		       sizeof(env->bpf_progs.btfs_cnt));

	if (ret < 0)
		goto out;

	root = &env->bpf_progs.btfs;
	next = rb_first(root);
	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		ret = do_write(ff, &node->id,
			       sizeof(u32) * 2 + node->data_size);
		if (ret < 0)
			goto out;
	}
out:
	up_read(&env->bpf_progs.lock);
	return ret;
}
1025
#endif // HAVE_LIBBPF_SUPPORT
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static int cpu_cache_level__sort(const void *a, const void *b)
{
	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;

	return cache_a->level - cache_b->level;
}

static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
{
	if (a->level != b->level)
		return false;

	if (a->line_size != b->line_size)
		return false;

	if (a->sets != b->sets)
		return false;

	if (a->ways != b->ways)
		return false;

	if (strcmp(a->type, b->type))
		return false;

	if (strcmp(a->size, b->size))
		return false;

	if (strcmp(a->map, b->map))
		return false;

	return true;
}

static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
{
	char path[PATH_MAX], file[PATH_MAX];
	struct stat st;
	size_t len;

	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);

	if (stat(file, &st))
		return 1;

	scnprintf(file, PATH_MAX, "%s/level", path);
	if (sysfs__read_int(file, (int *) &cache->level))
		return -1;

	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
	if (sysfs__read_int(file, (int *) &cache->line_size))
		return -1;

	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
	if (sysfs__read_int(file, (int *) &cache->sets))
		return -1;

	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
	if (sysfs__read_int(file, (int *) &cache->ways))
		return -1;

	scnprintf(file, PATH_MAX, "%s/type", path);
	if (sysfs__read_str(file, &cache->type, &len))
		return -1;

	cache->type[len] = 0;
1094
	cache->type = strim(cache->type);
1095 1096 1097

	scnprintf(file, PATH_MAX, "%s/size", path);
	if (sysfs__read_str(file, &cache->size, &len)) {
1098
		zfree(&cache->type);
1099 1100 1101 1102
		return -1;
	}

	cache->size[len] = 0;
1103
	cache->size = strim(cache->size);
1104 1105 1106

	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
	if (sysfs__read_str(file, &cache->map, &len)) {
1107
		zfree(&cache->size);
1108
		zfree(&cache->type);
1109 1110 1111 1112
		return -1;
	}

	cache->map[len] = 0;
1113
	cache->map = strim(cache->map);
1114 1115 1116 1117 1118 1119 1120 1121
	return 0;
}

static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
{
	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
}

1122 1123 1124
#define MAX_CACHE_LVL 4

static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1125 1126 1127 1128 1129
{
	u32 i, cnt = 0;
	u32 nr, cpu;
	u16 level;

1130
	nr = cpu__max_cpu();
1131 1132

	for (cpu = 0; cpu < nr; cpu++) {
1133
		for (level = 0; level < MAX_CACHE_LVL; level++) {
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
			struct cpu_cache_level c;
			int err;

			err = cpu_cache_level__read(&c, cpu, level);
			if (err < 0)
				return err;

			if (err == 1)
				break;

			for (i = 0; i < cnt; i++) {
				if (cpu_cache_level__cmp(&c, &caches[i]))
					break;
			}

			if (i == cnt)
				caches[cnt++] = c;
			else
				cpu_cache_level__free(&c);
		}
	}
	*cntp = cnt;
	return 0;
}

1159
static int write_cache(struct feat_fd *ff,
1160
		       struct evlist *evlist __maybe_unused)
1161
{
1162 1163
	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
	struct cpu_cache_level caches[max_caches];
1164 1165 1166
	u32 cnt = 0, i, version = 1;
	int ret;

1167
	ret = build_caches(caches, &cnt);
1168 1169 1170 1171 1172
	if (ret)
		goto out;

	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);

1173
	ret = do_write(ff, &version, sizeof(u32));
1174 1175 1176
	if (ret < 0)
		goto out;

1177
	ret = do_write(ff, &cnt, sizeof(u32));
1178 1179 1180 1181 1182 1183 1184
	if (ret < 0)
		goto out;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level *c = &caches[i];

		#define _W(v)					\
1185
			ret = do_write(ff, &c->v, sizeof(u32));	\
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			if (ret < 0)				\
				goto out;

		_W(level)
		_W(line_size)
		_W(sets)
		_W(ways)
		#undef _W

		#define _W(v)						\
1196
			ret = do_write_string(ff, (const char *) c->v);	\
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			if (ret < 0)					\
				goto out;

		_W(type)
		_W(size)
		_W(map)
		#undef _W
	}

out:
	for (i = 0; i < cnt; i++)
		cpu_cache_level__free(&caches[i]);
	return ret;
}

1212
static int write_stat(struct feat_fd *ff __maybe_unused,
1213
		      struct evlist *evlist __maybe_unused)
1214 1215 1216 1217
{
	return 0;
}

1218
static int write_sample_time(struct feat_fd *ff,
1219
			     struct evlist *evlist)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	int ret;

	ret = do_write(ff, &evlist->first_sample_time,
		       sizeof(evlist->first_sample_time));
	if (ret < 0)
		return ret;

	return do_write(ff, &evlist->last_sample_time,
			sizeof(evlist->last_sample_time));
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

static int memory_node__read(struct memory_node *n, unsigned long idx)
{
	unsigned int phys, size = 0;
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;

#define for_each_memory(mem, dir)					\
	while ((ent = readdir(dir)))					\
		if (strcmp(ent->d_name, ".") &&				\
		    strcmp(ent->d_name, "..") &&			\
		    sscanf(ent->d_name, "memory%u", &mem) == 1)

	scnprintf(path, PATH_MAX,
		  "%s/devices/system/node/node%lu",
		  sysfs__mountpoint(), idx);

	dir = opendir(path);
	if (!dir) {
		pr_warning("failed: cant' open memory sysfs data\n");
		return -1;
	}

	for_each_memory(phys, dir) {
		size = max(phys, size);
	}

	size++;

	n->set = bitmap_alloc(size);
	if (!n->set) {
		closedir(dir);
		return -ENOMEM;
	}

	n->node = idx;
	n->size = size;

	rewinddir(dir);

	for_each_memory(phys, dir) {
		set_bit(phys, n->set);
	}

	closedir(dir);
	return 0;
}

static int memory_node__sort(const void *a, const void *b)
{
	const struct memory_node *na = a;
	const struct memory_node *nb = b;

	return na->node - nb->node;
}

static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
{
	char path[PATH_MAX];
	struct dirent *ent;
	DIR *dir;
	u64 cnt = 0;
	int ret = 0;

	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
		  sysfs__mountpoint());

	dir = opendir(path);
	if (!dir) {
1302 1303
		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
			  __func__, path);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		return -1;
	}

	while (!ret && (ent = readdir(dir))) {
		unsigned int idx;
		int r;

		if (!strcmp(ent->d_name, ".") ||
		    !strcmp(ent->d_name, ".."))
			continue;

		r = sscanf(ent->d_name, "node%u", &idx);
		if (r != 1)
			continue;

		if (WARN_ONCE(cnt >= size,
1320 1321
			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
			closedir(dir);
1322
			return -1;
1323
		}
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

		ret = memory_node__read(&nodes[cnt++], idx);
	}

	*cntp = cnt;
	closedir(dir);

	if (!ret)
		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);

	return ret;
}

#define MAX_MEMORY_NODES 2000

/*
 * The MEM_TOPOLOGY holds physical memory map for every
 * node in system. The format of data is as follows:
 *
 *  0 - version          | for future changes
 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
 * 16 - count            | number of nodes
 *
 * For each node we store map of physical indexes for
 * each node:
 *
 * 32 - node id          | node index
 * 40 - size             | size of bitmap
 * 48 - bitmap           | bitmap of memory indexes that belongs to node
 */
static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1355
			      struct evlist *evlist __maybe_unused)
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
{
	static struct memory_node nodes[MAX_MEMORY_NODES];
	u64 bsize, version = 1, i, nr;
	int ret;

	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
			      (unsigned long long *) &bsize);
	if (ret)
		return ret;

	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
	if (ret)
		return ret;

	ret = do_write(ff, &version, sizeof(version));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &bsize, sizeof(bsize));
	if (ret < 0)
		goto out;

	ret = do_write(ff, &nr, sizeof(nr));
	if (ret < 0)
		goto out;

	for (i = 0; i < nr; i++) {
		struct memory_node *n = &nodes[i];

		#define _W(v)						\
			ret = do_write(ff, &n->v, sizeof(n->v));	\
			if (ret < 0)					\
				goto out;

		_W(node)
		_W(size)

		#undef _W

		ret = do_write_bitmap(ff, n->set, n->size);
		if (ret < 0)
			goto out;
	}

out:
	return ret;
}

1404
static int write_compressed(struct feat_fd *ff __maybe_unused,
1405
			    struct evlist *evlist __maybe_unused)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	int ret;

	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
	if (ret)
		return ret;

	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
	if (ret)
		return ret;

	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static int write_cpu_pmu_caps(struct feat_fd *ff,
			      struct evlist *evlist __maybe_unused)
{
	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
	struct perf_pmu_caps *caps = NULL;
	int nr_caps;
	int ret;

	if (!cpu_pmu)
		return -ENOENT;

	nr_caps = perf_pmu__caps_parse(cpu_pmu);
	if (nr_caps < 0)
		return nr_caps;

	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
	if (ret < 0)
		return ret;

	list_for_each_entry(caps, &cpu_pmu->caps, list) {
		ret = do_write_string(ff, caps->name);
		if (ret < 0)
			return ret;

		ret = do_write_string(ff, caps->value);
		if (ret < 0)
			return ret;
	}

	return ret;
}

1460
static void print_hostname(struct feat_fd *ff, FILE *fp)
1461
{
1462
	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1463 1464
}

1465
static void print_osrelease(struct feat_fd *ff, FILE *fp)
1466
{
1467
	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1468 1469
}

1470
static void print_arch(struct feat_fd *ff, FILE *fp)
1471
{
1472
	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1473 1474
}

1475
static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1476
{
1477
	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1478 1479
}

1480
static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1481
{
1482 1483
	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1484 1485
}

1486
static void print_version(struct feat_fd *ff, FILE *fp)
1487
{
1488
	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1489 1490
}

1491
static void print_cmdline(struct feat_fd *ff, FILE *fp)
1492
{
1493
	int nr, i;
1494

1495
	nr = ff->ph->env.nr_cmdline;
1496 1497 1498

	fprintf(fp, "# cmdline : ");

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	for (i = 0; i < nr; i++) {
		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
		if (!argv_i) {
			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
		} else {
			char *mem = argv_i;
			do {
				char *quote = strchr(argv_i, '\'');
				if (!quote)
					break;
				*quote++ = '\0';
				fprintf(fp, "%s\\\'", argv_i);
				argv_i = quote;
			} while (1);
			fprintf(fp, "%s ", argv_i);
			free(mem);
		}
	}
1517 1518 1519
	fputc('\n', fp);
}

1520
static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1521
{
1522 1523
	struct perf_header *ph = ff->ph;
	int cpu_nr = ph->env.nr_cpus_avail;
1524
	int nr, i;
1525 1526
	char *str;

1527 1528
	nr = ph->env.nr_sibling_cores;
	str = ph->env.sibling_cores;
1529 1530

	for (i = 0; i < nr; i++) {
1531
		fprintf(fp, "# sibling sockets : %s\n", str);
1532
		str += strlen(str) + 1;
1533 1534
	}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	if (ph->env.nr_sibling_dies) {
		nr = ph->env.nr_sibling_dies;
		str = ph->env.sibling_dies;

		for (i = 0; i < nr; i++) {
			fprintf(fp, "# sibling dies    : %s\n", str);
			str += strlen(str) + 1;
		}
	}

1545 1546
	nr = ph->env.nr_sibling_threads;
	str = ph->env.sibling_threads;
1547 1548 1549

	for (i = 0; i < nr; i++) {
		fprintf(fp, "# sibling threads : %s\n", str);
1550
		str += strlen(str) + 1;
1551
	}
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	if (ph->env.nr_sibling_dies) {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Die ID %d, Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].die_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID, Die ID and Socket ID "
				    "information is not available\n");
	} else {
		if (ph->env.cpu != NULL) {
			for (i = 0; i < cpu_nr; i++)
				fprintf(fp, "# CPU %d: Core ID %d, "
					    "Socket ID %d\n",
					    i, ph->env.cpu[i].core_id,
					    ph->env.cpu[i].socket_id);
		} else
			fprintf(fp, "# Core ID and Socket ID "
				    "information is not available\n");
	}
1575 1576
}

1577 1578 1579
static void print_clockid(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1580
		ff->ph->env.clock.clockid_res_ns * 1000);
1581 1582
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static void print_clock_data(struct feat_fd *ff, FILE *fp)
{
	struct timespec clockid_ns;
	char tstr[64], date[64];
	struct timeval tod_ns;
	clockid_t clockid;
	struct tm ltime;
	u64 ref;

	if (!ff->ph->env.clock.enabled) {
		fprintf(fp, "# reference time disabled\n");
		return;
	}

	/* Compute TOD time. */
	ref = ff->ph->env.clock.tod_ns;
	tod_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
	tod_ns.tv_usec = ref / NSEC_PER_USEC;

	/* Compute clockid time. */
	ref = ff->ph->env.clock.clockid_ns;
	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
	clockid_ns.tv_nsec = ref;

	clockid = ff->ph->env.clock.clockid;

	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
		snprintf(tstr, sizeof(tstr), "<error>");
	else {
		strftime(date, sizeof(date), "%F %T", &ltime);
		scnprintf(tstr, sizeof(tstr), "%s.%06d",
			  date, (int) tod_ns.tv_usec);
	}

	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
		    clockid_name(clockid));
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
static void print_dir_format(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
}

1637
#ifdef HAVE_LIBBPF_SUPPORT
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.infos;
	next = rb_first(root);

	while (next) {
		struct bpf_prog_info_node *node;

		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
		next = rb_next(&node->rb_node);
1654 1655 1656

		bpf_event__print_bpf_prog_info(&node->info_linear->info,
					       env, fp);
1657 1658 1659 1660 1661
	}

	up_read(&env->bpf_progs.lock);
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
{
	struct perf_env *env = &ff->ph->env;
	struct rb_root *root;
	struct rb_node *next;

	down_read(&env->bpf_progs.lock);

	root = &env->bpf_progs.btfs;
	next = rb_first(root);

	while (next) {
		struct btf_node *node;

		node = rb_entry(next, struct btf_node, rb_node);
		next = rb_next(&node->rb_node);
		fprintf(fp, "# btf info of id %u\n", node->id);
	}

	up_read(&env->bpf_progs.lock);
}
1683
#endif // HAVE_LIBBPF_SUPPORT
1684

1685
static void free_event_desc(struct evsel *events)
1686
{
1687
	struct evsel *evsel;
1688 1689 1690 1691

	if (!events)
		return;

1692
	for (evsel = events; evsel->core.attr.size; evsel++) {
1693
		zfree(&evsel->name);
1694
		zfree(&evsel->core.id);
1695 1696 1697 1698 1699
	}

	free(events);
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static bool perf_attr_check(struct perf_event_attr *attr)
{
	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
		pr_warning("Reserved bits are set unexpectedly. "
			   "Please update perf tool.\n");
		return false;
	}

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
		pr_warning("Unknown sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->sample_type);
		return false;
	}

	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
		pr_warning("Unknown read format (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->read_format);
		return false;
	}

	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
		pr_warning("Unknown branch sample type (0x%llx) is detected. "
			   "Please update perf tool.\n",
			   attr->branch_sample_type);

		return false;
	}

	return true;
}

1734
static struct evsel *read_event_desc(struct feat_fd *ff)
1735
{
1736
	struct evsel *evsel, *events = NULL;
1737
	u64 *id;
1738
	void *buf = NULL;
1739 1740
	u32 nre, sz, nr, i, j;
	size_t msz;
1741 1742

	/* number of events */
1743
	if (do_read_u32(ff, &nre))
1744 1745
		goto error;

1746
	if (do_read_u32(ff, &sz))
1747 1748
		goto error;

1749
	/* buffer to hold on file attr struct */
1750 1751 1752 1753
	buf = malloc(sz);
	if (!buf)
		goto error;

1754
	/* the last event terminates with evsel->core.attr.size == 0: */
1755 1756 1757 1758
	events = calloc(nre + 1, sizeof(*events));
	if (!events)
		goto error;

1759
	msz = sizeof(evsel->core.attr);
1760
	if (sz < msz)
1761 1762
		msz = sz;

1763 1764
	for (i = 0, evsel = events; i < nre; evsel++, i++) {
		evsel->idx = i;
1765

1766 1767 1768 1769
		/*
		 * must read entire on-file attr struct to
		 * sync up with layout.
		 */
1770
		if (__do_read(ff, buf, sz))
1771 1772
			goto error;

1773
		if (ff->ph->needs_swap)
1774 1775
			perf_event__attr_swap(buf);

1776
		memcpy(&evsel->core.attr, buf, msz);
1777

1778 1779 1780
		if (!perf_attr_check(&evsel->core.attr))
			goto error;

1781
		if (do_read_u32(ff, &nr))
1782 1783
			goto error;

1784
		if (ff->ph->needs_swap)
1785
			evsel->needs_swap = true;
1786

1787
		evsel->name = do_read_string(ff);
1788 1789
		if (!evsel->name)
			goto error;
1790 1791 1792 1793 1794 1795 1796

		if (!nr)
			continue;

		id = calloc(nr, sizeof(*id));
		if (!id)
			goto error;
1797
		evsel->core.ids = nr;
1798
		evsel->core.id = id;
1799 1800

		for (j = 0 ; j < nr; j++) {
1801
			if (do_read_u64(ff, id))
1802 1803 1804 1805 1806
				goto error;
			id++;
		}
	}
out:
1807
	free(buf);
1808 1809
	return events;
error:
1810
	free_event_desc(events);
1811 1812 1813 1814
	events = NULL;
	goto out;
}

1815
static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1816
				void *priv __maybe_unused)
1817 1818 1819 1820
{
	return fprintf(fp, ", %s = %s", name, val);
}

1821
static void print_event_desc(struct feat_fd *ff, FILE *fp)
1822
{
1823
	struct evsel *evsel, *events;
1824 1825 1826
	u32 j;
	u64 *id;

1827 1828 1829 1830 1831
	if (ff->events)
		events = ff->events;
	else
		events = read_event_desc(ff);

1832 1833 1834 1835 1836
	if (!events) {
		fprintf(fp, "# event desc: not available or unable to read\n");
		return;
	}

1837
	for (evsel = events; evsel->core.attr.size; evsel++) {
1838
		fprintf(fp, "# event : name = %s, ", evsel->name);
1839

1840
		if (evsel->core.ids) {
1841
			fprintf(fp, ", id = {");
1842
			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1843 1844 1845 1846
				if (j)
					fputc(',', fp);
				fprintf(fp, " %"PRIu64, *id);
			}
1847
			fprintf(fp, " }");
1848
		}
1849

1850
		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1851

1852 1853
		fputc('\n', fp);
	}
1854 1855

	free_event_desc(events);
1856
	ff->events = NULL;
1857 1858
}

1859
static void print_total_mem(struct feat_fd *ff, FILE *fp)
1860
{
1861
	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1862 1863
}

1864
static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1865
{
1866 1867
	int i;
	struct numa_node *n;
1868

1869 1870
	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
		n = &ff->ph->env.numa_nodes[i];
1871 1872 1873

		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
			    " free = %"PRIu64" kB\n",
1874
			n->node, n->mem_total, n->mem_free);
1875

1876 1877
		fprintf(fp, "# node%u cpu list : ", n->node);
		cpu_map__fprintf(n->map, fp);
1878 1879 1880
	}
}

1881
static void print_cpuid(struct feat_fd *ff, FILE *fp)
1882
{
1883
	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1884 1885
}

1886
static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1887 1888 1889 1890
{
	fprintf(fp, "# contains samples with branch stack\n");
}

1891
static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1892 1893 1894 1895
{
	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
}

1896
static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1897 1898 1899 1900
{
	fprintf(fp, "# contains stat data\n");
}

1901
static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1902 1903 1904 1905
{
	int i;

	fprintf(fp, "# CPU cache info:\n");
1906
	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1907
		fprintf(fp, "#  ");
1908
		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1909 1910 1911
	}
}

1912 1913 1914 1915 1916 1917 1918
static void print_compressed(struct feat_fd *ff, FILE *fp)
{
	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
{
	const char *delimiter = "# cpu pmu capabilities: ";
	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
	char *str;

	if (!nr_caps) {
		fprintf(fp, "# cpu pmu capabilities: not available\n");
		return;
	}

	str = ff->ph->env.cpu_pmu_caps;
	while (nr_caps--) {
		fprintf(fp, "%s%s", delimiter, str);
		delimiter = ", ";
		str += strlen(str) + 1;
	}

	fprintf(fp, "\n");
}

1940
static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1941 1942
{
	const char *delimiter = "# pmu mappings: ";
1943
	char *str, *tmp;
1944 1945 1946
	u32 pmu_num;
	u32 type;

1947
	pmu_num = ff->ph->env.nr_pmu_mappings;
1948 1949 1950 1951 1952
	if (!pmu_num) {
		fprintf(fp, "# pmu mappings: not available\n");
		return;
	}

1953
	str = ff->ph->env.pmu_mappings;
1954

1955
	while (pmu_num) {
1956 1957 1958 1959 1960 1961
		type = strtoul(str, &tmp, 0);
		if (*tmp != ':')
			goto error;

		str = tmp + 1;
		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1962

1963
		delimiter = ", ";
1964 1965
		str += strlen(str) + 1;
		pmu_num--;
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	}

	fprintf(fp, "\n");

	if (!pmu_num)
		return;
error:
	fprintf(fp, "# pmu mappings: unable to read\n");
}

1976
static void print_group_desc(struct feat_fd *ff, FILE *fp)
1977 1978
{
	struct perf_session *session;
1979
	struct evsel *evsel;
1980 1981
	u32 nr = 0;

1982
	session = container_of(ff->ph, struct perf_session, header);
1983

1984
	evlist__for_each_entry(session->evlist, evsel) {
1985
		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1986
			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1987

1988
			nr = evsel->core.nr_members - 1;
1989
		} else if (nr) {
1990
			fprintf(fp, ",%s", evsel__name(evsel));
1991 1992 1993 1994 1995 1996 1997

			if (--nr == 0)
				fprintf(fp, "}\n");
		}
	}
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static void print_sample_time(struct feat_fd *ff, FILE *fp)
{
	struct perf_session *session;
	char time_buf[32];
	double d;

	session = container_of(ff->ph, struct perf_session, header);

	timestamp__scnprintf_usec(session->evlist->first_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of first sample : %s\n", time_buf);

	timestamp__scnprintf_usec(session->evlist->last_sample_time,
				  time_buf, sizeof(time_buf));
	fprintf(fp, "# time of last sample : %s\n", time_buf);

	d = (double)(session->evlist->last_sample_time -
		session->evlist->first_sample_time) / NSEC_PER_MSEC;

	fprintf(fp, "# sample duration : %10.3f ms\n", d);
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static void memory_node__fprintf(struct memory_node *n,
				 unsigned long long bsize, FILE *fp)
{
	char buf_map[100], buf_size[50];
	unsigned long long size;

	size = bsize * bitmap_weight(n->set, n->size);
	unit_number__scnprintf(buf_size, 50, size);

	bitmap_scnprintf(n->set, n->size, buf_map, 100);
	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
}

static void print_mem_topology(struct feat_fd *ff, FILE *fp)
{
	struct memory_node *nodes;
	int i, nr;

	nodes = ff->ph->env.memory_nodes;
	nr    = ff->ph->env.nr_memory_nodes;

	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
		nr, ff->ph->env.memory_bsize);

	for (i = 0; i < nr; i++) {
		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
	}
}

2049
static int __event_process_build_id(struct perf_record_header_build_id *bev,
2050 2051 2052 2053 2054
				    char *filename,
				    struct perf_session *session)
{
	int err = -1;
	struct machine *machine;
2055
	u16 cpumode;
2056
	struct dso *dso;
2057
	enum dso_space_type dso_space;
2058 2059 2060 2061 2062

	machine = perf_session__findnew_machine(session, bev->pid);
	if (!machine)
		goto out;

2063
	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2064

2065
	switch (cpumode) {
2066
	case PERF_RECORD_MISC_KERNEL:
2067
		dso_space = DSO_SPACE__KERNEL;
2068 2069
		break;
	case PERF_RECORD_MISC_GUEST_KERNEL:
2070
		dso_space = DSO_SPACE__KERNEL_GUEST;
2071 2072 2073
		break;
	case PERF_RECORD_MISC_USER:
	case PERF_RECORD_MISC_GUEST_USER:
2074
		dso_space = DSO_SPACE__USER;
2075 2076 2077 2078 2079
		break;
	default:
		goto out;
	}

2080
	dso = machine__findnew_dso(machine, filename);
2081
	if (dso != NULL) {
2082
		char sbuild_id[SBUILD_ID_SIZE];
2083
		struct build_id bid;
2084
		size_t size = BUILD_ID_SIZE;
2085

2086 2087 2088 2089
		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
			size = bev->size;

		build_id__init(&bid, bev->data, size);
2090
		dso__set_build_id(dso, &bid);
2091

2092
		if (dso_space != DSO_SPACE__USER) {
2093 2094 2095
			struct kmod_path m = { .name = NULL, };

			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2096
				dso__set_module_info(dso, &m, machine);
2097

2098
			dso->kernel = dso_space;
2099 2100
			free(m.name);
		}
2101

2102
		build_id__sprintf(&dso->bid, sbuild_id);
2103 2104
		pr_debug("build id event received for %s: %s [%zu]\n",
			 dso->long_name, sbuild_id, size);
2105
		dso__put(dso);
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	}

	err = 0;
out:
	return err;
}

static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
						 int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
	struct {
		struct perf_event_header   header;
2119
		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2120 2121
		char			   filename[0];
	} old_bev;
2122
	struct perf_record_header_build_id bev;
2123 2124 2125 2126 2127 2128
	char filename[PATH_MAX];
	u64 limit = offset + size;

	while (offset < limit) {
		ssize_t len;

2129
		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2130 2131 2132 2133 2134 2135
			return -1;

		if (header->needs_swap)
			perf_event_header__bswap(&old_bev.header);

		len = old_bev.header.size - sizeof(old_bev);
2136
		if (readn(input, filename, len) != len)
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
			return -1;

		bev.header = old_bev.header;

		/*
		 * As the pid is the missing value, we need to fill
		 * it properly. The header.misc value give us nice hint.
		 */
		bev.pid	= HOST_KERNEL_ID;
		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
			bev.pid	= DEFAULT_GUEST_KERNEL_ID;

		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}

	return 0;
}

static int perf_header__read_build_ids(struct perf_header *header,
				       int input, u64 offset, u64 size)
{
	struct perf_session *session = container_of(header, struct perf_session, header);
2163
	struct perf_record_header_build_id bev;
2164 2165 2166 2167 2168 2169 2170
	char filename[PATH_MAX];
	u64 limit = offset + size, orig_offset = offset;
	int err = -1;

	while (offset < limit) {
		ssize_t len;

2171
		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2172 2173 2174 2175 2176 2177
			goto out;

		if (header->needs_swap)
			perf_event_header__bswap(&bev.header);

		len = bev.header.size - sizeof(bev);
2178
		if (readn(input, filename, len) != len)
2179 2180 2181 2182 2183 2184
			goto out;
		/*
		 * The a1645ce1 changeset:
		 *
		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
		 *
2185
		 * Added a field to struct perf_record_header_build_id that broke the file
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		 * format.
		 *
		 * Since the kernel build-id is the first entry, process the
		 * table using the old format if the well known
		 * '[kernel.kallsyms]' string for the kernel build-id has the
		 * first 4 characters chopped off (where the pid_t sits).
		 */
		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
				return -1;
			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
		}

		__event_process_build_id(&bev, filename, session);

		offset += bev.header.size;
	}
	err = 0;
out:
	return err;
}

2208 2209
/* Macro for features that simply need to read and store a string. */
#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2210
static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2211
{\
2212
	ff->ph->env.__feat_env = do_read_string(ff); \
2213
	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2214 2215 2216 2217 2218 2219 2220 2221 2222
}

FEAT_PROCESS_STR_FUN(hostname, hostname);
FEAT_PROCESS_STR_FUN(osrelease, os_release);
FEAT_PROCESS_STR_FUN(version, version);
FEAT_PROCESS_STR_FUN(arch, arch);
FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
FEAT_PROCESS_STR_FUN(cpuid, cpuid);

2223
static int process_tracing_data(struct feat_fd *ff, void *data)
2224
{
2225 2226
	ssize_t ret = trace_report(ff->fd, data, false);

2227
	return ret < 0 ? -1 : 0;
2228 2229
}

2230
static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2231
{
2232
	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2233 2234 2235 2236
		pr_debug("Failed to read buildids, continuing...\n");
	return 0;
}

2237
static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2238
{
2239 2240
	int ret;
	u32 nr_cpus_avail, nr_cpus_online;
2241

2242
	ret = do_read_u32(ff, &nr_cpus_avail);
2243 2244
	if (ret)
		return ret;
2245

2246
	ret = do_read_u32(ff, &nr_cpus_online);
2247 2248
	if (ret)
		return ret;
2249 2250
	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2251 2252 2253
	return 0;
}

2254
static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2255
{
2256 2257
	u64 total_mem;
	int ret;
2258

2259
	ret = do_read_u64(ff, &total_mem);
2260
	if (ret)
2261
		return -1;
2262
	ff->ph->env.total_mem = (unsigned long long)total_mem;
2263 2264 2265
	return 0;
}

2266
static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2267
{
2268
	struct evsel *evsel;
2269

2270
	evlist__for_each_entry(evlist, evsel) {
2271 2272 2273 2274 2275 2276 2277
		if (evsel->idx == idx)
			return evsel;
	}

	return NULL;
}

2278
static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2279
{
2280
	struct evsel *evsel;
2281 2282 2283 2284

	if (!event->name)
		return;

2285
	evsel = evlist__find_by_index(evlist, event->idx);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (!evsel)
		return;

	if (evsel->name)
		return;

	evsel->name = strdup(event->name);
}

static int
2296
process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2297
{
2298
	struct perf_session *session;
2299
	struct evsel *evsel, *events = read_event_desc(ff);
2300 2301 2302 2303

	if (!events)
		return 0;

2304
	session = container_of(ff->ph, struct perf_session, header);
2305

2306
	if (session->data->is_pipe) {
2307 2308 2309 2310 2311
		/* Save events for reading later by print_event_desc,
		 * since they can't be read again in pipe mode. */
		ff->events = events;
	}

2312
	for (evsel = events; evsel->core.attr.size; evsel++)
2313
		evlist__set_event_name(session->evlist, evsel);
2314

2315
	if (!session->data->is_pipe)
2316
		free_event_desc(events);
2317 2318 2319 2320

	return 0;
}

2321
static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2322
{
2323 2324
	char *str, *cmdline = NULL, **argv = NULL;
	u32 nr, i, len = 0;
2325

2326
	if (do_read_u32(ff, &nr))
2327 2328
		return -1;

2329
	ff->ph->env.nr_cmdline = nr;
2330

2331
	cmdline = zalloc(ff->size + nr + 1);
2332 2333 2334 2335 2336 2337
	if (!cmdline)
		return -1;

	argv = zalloc(sizeof(char *) * (nr + 1));
	if (!argv)
		goto error;
2338 2339

	for (i = 0; i < nr; i++) {
2340
		str = do_read_string(ff);
2341 2342 2343
		if (!str)
			goto error;

2344 2345 2346
		argv[i] = cmdline + len;
		memcpy(argv[i], str, strlen(str) + 1);
		len += strlen(str) + 1;
2347 2348
		free(str);
	}
2349 2350
	ff->ph->env.cmdline = cmdline;
	ff->ph->env.cmdline_argv = (const char **) argv;
2351 2352 2353
	return 0;

error:
2354 2355
	free(argv);
	free(cmdline);
2356 2357 2358
	return -1;
}

2359
static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2360 2361 2362 2363
{
	u32 nr, i;
	char *str;
	struct strbuf sb;
2364
	int cpu_nr = ff->ph->env.nr_cpus_avail;
2365
	u64 size = 0;
2366
	struct perf_header *ph = ff->ph;
2367
	bool do_core_id_test = true;
2368 2369 2370 2371

	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
	if (!ph->env.cpu)
		return -1;
2372

2373
	if (do_read_u32(ff, &nr))
2374
		goto free_cpu;
2375 2376

	ph->env.nr_sibling_cores = nr;
2377
	size += sizeof(u32);
2378 2379
	if (strbuf_init(&sb, 128) < 0)
		goto free_cpu;
2380 2381

	for (i = 0; i < nr; i++) {
2382
		str = do_read_string(ff);
2383 2384 2385 2386
		if (!str)
			goto error;

		/* include a NULL character at the end */
2387 2388
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2389
		size += string_size(str);
2390 2391 2392 2393
		free(str);
	}
	ph->env.sibling_cores = strbuf_detach(&sb, NULL);

2394
	if (do_read_u32(ff, &nr))
2395 2396 2397
		return -1;

	ph->env.nr_sibling_threads = nr;
2398
	size += sizeof(u32);
2399 2400

	for (i = 0; i < nr; i++) {
2401
		str = do_read_string(ff);
2402 2403 2404 2405
		if (!str)
			goto error;

		/* include a NULL character at the end */
2406 2407
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
2408
		size += string_size(str);
2409 2410 2411
		free(str);
	}
	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2412 2413 2414 2415 2416

	/*
	 * The header may be from old perf,
	 * which doesn't include core id and socket id information.
	 */
2417
	if (ff->size <= size) {
2418 2419 2420 2421
		zfree(&ph->env.cpu);
		return 0;
	}

2422 2423 2424
	/* On s390 the socket_id number is not related to the numbers of cpus.
	 * The socket_id number might be higher than the numbers of cpus.
	 * This depends on the configuration.
2425
	 * AArch64 is the same.
2426
	 */
2427 2428
	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
			  || !strncmp(ph->env.arch, "aarch64", 7)))
2429 2430
		do_core_id_test = false;

2431
	for (i = 0; i < (u32)cpu_nr; i++) {
2432
		if (do_read_u32(ff, &nr))
2433 2434 2435
			goto free_cpu;

		ph->env.cpu[i].core_id = nr;
2436
		size += sizeof(u32);
2437

2438
		if (do_read_u32(ff, &nr))
2439 2440
			goto free_cpu;

2441
		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442 2443 2444 2445 2446 2447
			pr_debug("socket_id number is too big."
				 "You may need to upgrade the perf tool.\n");
			goto free_cpu;
		}

		ph->env.cpu[i].socket_id = nr;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		size += sizeof(u32);
	}

	/*
	 * The header may be from old perf,
	 * which doesn't include die information.
	 */
	if (ff->size <= size)
		return 0;

	if (do_read_u32(ff, &nr))
		return -1;

	ph->env.nr_sibling_dies = nr;
	size += sizeof(u32);

	for (i = 0; i < nr; i++) {
		str = do_read_string(ff);
		if (!str)
			goto error;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
			goto error;
		size += string_size(str);
		free(str);
	}
	ph->env.sibling_dies = strbuf_detach(&sb, NULL);

	for (i = 0; i < (u32)cpu_nr; i++) {
		if (do_read_u32(ff, &nr))
			goto free_cpu;

		ph->env.cpu[i].die_id = nr;
2482 2483
	}

2484 2485 2486 2487
	return 0;

error:
	strbuf_release(&sb);
2488 2489
free_cpu:
	zfree(&ph->env.cpu);
2490 2491 2492
	return -1;
}

2493
static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2494
{
2495 2496
	struct numa_node *nodes, *n;
	u32 nr, i;
2497 2498 2499
	char *str;

	/* nr nodes */
2500
	if (do_read_u32(ff, &nr))
2501
		return -1;
2502

2503 2504 2505
	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -ENOMEM;
2506 2507

	for (i = 0; i < nr; i++) {
2508 2509
		n = &nodes[i];

2510
		/* node number */
2511
		if (do_read_u32(ff, &n->node))
2512 2513
			goto error;

2514
		if (do_read_u64(ff, &n->mem_total))
2515 2516
			goto error;

2517
		if (do_read_u64(ff, &n->mem_free))
2518 2519
			goto error;

2520
		str = do_read_string(ff);
2521 2522 2523
		if (!str)
			goto error;

2524
		n->map = perf_cpu_map__new(str);
2525
		if (!n->map)
2526
			goto error;
2527

2528 2529
		free(str);
	}
2530 2531
	ff->ph->env.nr_numa_nodes = nr;
	ff->ph->env.numa_nodes = nodes;
2532 2533 2534
	return 0;

error:
2535
	free(nodes);
2536 2537 2538
	return -1;
}

2539
static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2540 2541 2542 2543 2544 2545
{
	char *name;
	u32 pmu_num;
	u32 type;
	struct strbuf sb;

2546
	if (do_read_u32(ff, &pmu_num))
2547 2548 2549 2550 2551 2552 2553
		return -1;

	if (!pmu_num) {
		pr_debug("pmu mappings not available\n");
		return 0;
	}

2554
	ff->ph->env.nr_pmu_mappings = pmu_num;
2555 2556
	if (strbuf_init(&sb, 128) < 0)
		return -1;
2557 2558

	while (pmu_num) {
2559
		if (do_read_u32(ff, &type))
2560 2561
			goto error;

2562
		name = do_read_string(ff);
2563 2564 2565
		if (!name)
			goto error;

2566 2567
		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
			goto error;
2568
		/* include a NULL character at the end */
2569 2570
		if (strbuf_add(&sb, "", 1) < 0)
			goto error;
2571

2572
		if (!strcmp(name, "msr"))
2573
			ff->ph->env.msr_pmu_type = type;
2574

2575 2576 2577
		free(name);
		pmu_num--;
	}
2578
	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579 2580 2581 2582 2583 2584 2585
	return 0;

error:
	strbuf_release(&sb);
	return -1;
}

2586
static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2587 2588 2589 2590
{
	size_t ret = -1;
	u32 i, nr, nr_groups;
	struct perf_session *session;
2591
	struct evsel *evsel, *leader = NULL;
2592 2593 2594 2595 2596 2597
	struct group_desc {
		char *name;
		u32 leader_idx;
		u32 nr_members;
	} *desc;

2598
	if (do_read_u32(ff, &nr_groups))
2599 2600
		return -1;

2601
	ff->ph->env.nr_groups = nr_groups;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	if (!nr_groups) {
		pr_debug("group desc not available\n");
		return 0;
	}

	desc = calloc(nr_groups, sizeof(*desc));
	if (!desc)
		return -1;

	for (i = 0; i < nr_groups; i++) {
2612
		desc[i].name = do_read_string(ff);
2613 2614 2615
		if (!desc[i].name)
			goto out_free;

2616
		if (do_read_u32(ff, &desc[i].leader_idx))
2617 2618
			goto out_free;

2619
		if (do_read_u32(ff, &desc[i].nr_members))
2620 2621 2622 2623 2624 2625
			goto out_free;
	}

	/*
	 * Rebuild group relationship based on the group_desc
	 */
2626
	session = container_of(ff->ph, struct perf_session, header);
2627 2628 2629
	session->evlist->nr_groups = nr_groups;

	i = nr = 0;
2630
	evlist__for_each_entry(session->evlist, evsel) {
2631 2632 2633
		if (evsel->idx == (int) desc[i].leader_idx) {
			evsel->leader = evsel;
			/* {anon_group} is a dummy name */
N
Namhyung Kim 已提交
2634
			if (strcmp(desc[i].name, "{anon_group}")) {
2635
				evsel->group_name = desc[i].name;
N
Namhyung Kim 已提交
2636 2637
				desc[i].name = NULL;
			}
2638
			evsel->core.nr_members = desc[i].nr_members;
2639 2640 2641 2642 2643 2644 2645

			if (i >= nr_groups || nr > 0) {
				pr_debug("invalid group desc\n");
				goto out_free;
			}

			leader = evsel;
2646
			nr = evsel->core.nr_members - 1;
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
			i++;
		} else if (nr) {
			/* This is a group member */
			evsel->leader = leader;

			nr--;
		}
	}

	if (i != nr_groups || nr != 0) {
		pr_debug("invalid group desc\n");
		goto out_free;
	}

	ret = 0;
out_free:
2663
	for (i = 0; i < nr_groups; i++)
2664
		zfree(&desc[i].name);
2665 2666 2667 2668 2669
	free(desc);

	return ret;
}

2670
static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2671 2672 2673 2674
{
	struct perf_session *session;
	int err;

2675
	session = container_of(ff->ph, struct perf_session, header);
2676

2677
	err = auxtrace_index__process(ff->fd, ff->size, session,
2678
				      ff->ph->needs_swap);
2679 2680 2681 2682 2683
	if (err < 0)
		pr_err("Failed to process auxtrace index\n");
	return err;
}

2684
static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2685 2686 2687 2688
{
	struct cpu_cache_level *caches;
	u32 cnt, i, version;

2689
	if (do_read_u32(ff, &version))
2690 2691 2692 2693 2694
		return -1;

	if (version != 1)
		return -1;

2695
	if (do_read_u32(ff, &cnt))
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
		return -1;

	caches = zalloc(sizeof(*caches) * cnt);
	if (!caches)
		return -1;

	for (i = 0; i < cnt; i++) {
		struct cpu_cache_level c;

		#define _R(v)						\
2706
			if (do_read_u32(ff, &c.v))\
2707 2708 2709 2710 2711 2712 2713 2714
				goto out_free_caches;			\

		_R(level)
		_R(line_size)
		_R(sets)
		_R(ways)
		#undef _R

2715
		#define _R(v)					\
2716
			c.v = do_read_string(ff);		\
2717
			if (!c.v)				\
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
				goto out_free_caches;

		_R(type)
		_R(size)
		_R(map)
		#undef _R

		caches[i] = c;
	}

2728 2729
	ff->ph->env.caches = caches;
	ff->ph->env.caches_cnt = cnt;
2730 2731 2732 2733 2734 2735
	return 0;
out_free_caches:
	free(caches);
	return -1;
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_session *session;
	u64 first_sample_time, last_sample_time;
	int ret;

	session = container_of(ff->ph, struct perf_session, header);

	ret = do_read_u64(ff, &first_sample_time);
	if (ret)
		return -1;

	ret = do_read_u64(ff, &last_sample_time);
	if (ret)
		return -1;

	session->evlist->first_sample_time = first_sample_time;
	session->evlist->last_sample_time = last_sample_time;
	return 0;
}

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
static int process_mem_topology(struct feat_fd *ff,
				void *data __maybe_unused)
{
	struct memory_node *nodes;
	u64 version, i, nr, bsize;
	int ret = -1;

	if (do_read_u64(ff, &version))
		return -1;

	if (version != 1)
		return -1;

	if (do_read_u64(ff, &bsize))
		return -1;

	if (do_read_u64(ff, &nr))
		return -1;

	nodes = zalloc(sizeof(*nodes) * nr);
	if (!nodes)
		return -1;

	for (i = 0; i < nr; i++) {
		struct memory_node n;

		#define _R(v)				\
			if (do_read_u64(ff, &n.v))	\
				goto out;		\

		_R(node)
		_R(size)

		#undef _R

		if (do_read_bitmap(ff, &n.set, &n.size))
			goto out;

		nodes[i] = n;
	}

	ff->ph->env.memory_bsize    = bsize;
	ff->ph->env.memory_nodes    = nodes;
	ff->ph->env.nr_memory_nodes = nr;
	ret = 0;

out:
	if (ret)
		free(nodes);
	return ret;
}

2809 2810 2811
static int process_clockid(struct feat_fd *ff,
			   void *data __maybe_unused)
{
2812
	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813 2814 2815 2816 2817
		return -1;

	return 0;
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int process_clock_data(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	u32 data32;
	u64 data64;

	/* version */
	if (do_read_u32(ff, &data32))
		return -1;

	if (data32 != 1)
		return -1;

	/* clockid */
	if (do_read_u32(ff, &data32))
		return -1;

	ff->ph->env.clock.clockid = data32;

	/* TOD ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.tod_ns = data64;

	/* clockid ref time */
	if (do_read_u64(ff, &data64))
		return -1;

	ff->ph->env.clock.clockid_ns = data64;
	ff->ph->env.clock.enabled = true;
	return 0;
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
static int process_dir_format(struct feat_fd *ff,
			      void *_data __maybe_unused)
{
	struct perf_session *session;
	struct perf_data *data;

	session = container_of(ff->ph, struct perf_session, header);
	data = session->data;

	if (WARN_ON(!perf_data__is_dir(data)))
		return -1;

	return do_read_u64(ff, &data->dir.version);
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
#ifdef HAVE_LIBBPF_SUPPORT
static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
{
	struct bpf_prog_info_linear *info_linear;
	struct bpf_prog_info_node *info_node;
	struct perf_env *env = &ff->ph->env;
	u32 count, i;
	int err = -1;

	if (ff->ph->needs_swap) {
		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 info_len, data_len;

		info_linear = NULL;
		info_node = NULL;
		if (do_read_u32(ff, &info_len))
			goto out;
		if (do_read_u32(ff, &data_len))
			goto out;

		if (info_len > sizeof(struct bpf_prog_info)) {
			pr_warning("detected invalid bpf_prog_info\n");
			goto out;
		}

		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
				     data_len);
		if (!info_linear)
			goto out;
		info_linear->info_len = sizeof(struct bpf_prog_info);
		info_linear->data_len = data_len;
		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
			goto out;
		if (__do_read(ff, &info_linear->info, info_len))
			goto out;
		if (info_len < sizeof(struct bpf_prog_info))
			memset(((void *)(&info_linear->info)) + info_len, 0,
			       sizeof(struct bpf_prog_info) - info_len);

		if (__do_read(ff, info_linear->data, data_len))
			goto out;

		info_node = malloc(sizeof(struct bpf_prog_info_node));
		if (!info_node)
			goto out;

		/* after reading from file, translate offset to address */
		bpf_program__bpil_offs_to_addr(info_linear);
		info_node->info_linear = info_linear;
		perf_env__insert_bpf_prog_info(env, info_node);
	}

2928
	up_write(&env->bpf_progs.lock);
2929 2930 2931 2932 2933 2934 2935 2936
	return 0;
out:
	free(info_linear);
	free(info_node);
	up_write(&env->bpf_progs.lock);
	return err;
}

2937 2938 2939
static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
{
	struct perf_env *env = &ff->ph->env;
2940
	struct btf_node *node = NULL;
2941
	u32 count, i;
2942
	int err = -1;
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

	if (ff->ph->needs_swap) {
		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
		return 0;
	}

	if (do_read_u32(ff, &count))
		return -1;

	down_write(&env->bpf_progs.lock);

	for (i = 0; i < count; ++i) {
		u32 id, data_size;

		if (do_read_u32(ff, &id))
2958
			goto out;
2959
		if (do_read_u32(ff, &data_size))
2960
			goto out;
2961 2962 2963

		node = malloc(sizeof(struct btf_node) + data_size);
		if (!node)
2964
			goto out;
2965 2966 2967 2968

		node->id = id;
		node->data_size = data_size;

2969 2970
		if (__do_read(ff, node->data, data_size))
			goto out;
2971 2972

		perf_env__insert_btf(env, node);
2973
		node = NULL;
2974 2975
	}

2976 2977
	err = 0;
out:
2978
	up_write(&env->bpf_progs.lock);
2979 2980
	free(node);
	return err;
2981
}
2982
#endif // HAVE_LIBBPF_SUPPORT
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
static int process_compressed(struct feat_fd *ff,
			      void *data __maybe_unused)
{
	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
		return -1;

	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
		return -1;

	return 0;
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
static int process_cpu_pmu_caps(struct feat_fd *ff,
				void *data __maybe_unused)
{
	char *name, *value;
	struct strbuf sb;
	u32 nr_caps;

	if (do_read_u32(ff, &nr_caps))
		return -1;

	if (!nr_caps) {
		pr_debug("cpu pmu capabilities not available\n");
		return 0;
	}

	ff->ph->env.nr_cpu_pmu_caps = nr_caps;

	if (strbuf_init(&sb, 128) < 0)
		return -1;

	while (nr_caps--) {
		name = do_read_string(ff);
		if (!name)
			goto error;

		value = do_read_string(ff);
		if (!value)
			goto free_name;

		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
			goto free_value;

		/* include a NULL character at the end */
		if (strbuf_add(&sb, "", 1) < 0)
			goto free_value;

		if (!strcmp(name, "branches"))
			ff->ph->env.max_branches = atoi(value);

		free(value);
		free(name);
	}
	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
	return 0;

free_value:
	free(value);
free_name:
	free(name);
error:
	strbuf_release(&sb);
	return -1;
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
#define FEAT_OPR(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func,			\
		.synthesize = true				\
	}

#define FEAT_OPN(n, func, __full_only) \
	[HEADER_##n] = {					\
		.name	    = __stringify(n),			\
		.write	    = write_##func,			\
		.print	    = print_##func,			\
		.full_only  = __full_only,			\
		.process    = process_##func			\
	}
3077 3078

/* feature_ops not implemented: */
3079 3080
#define print_tracing_data	NULL
#define print_build_id		NULL
3081

3082 3083 3084
#define process_branch_stack	NULL
#define process_stat		NULL

3085 3086
// Only used in util/synthetic-events.c
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3087

3088
const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
	FEAT_OPN(BUILD_ID,	build_id,	false),
	FEAT_OPR(HOSTNAME,	hostname,	false),
	FEAT_OPR(OSRELEASE,	osrelease,	false),
	FEAT_OPR(VERSION,	version,	false),
	FEAT_OPR(ARCH,		arch,		false),
	FEAT_OPR(NRCPUS,	nrcpus,		false),
	FEAT_OPR(CPUDESC,	cpudesc,	false),
	FEAT_OPR(CPUID,		cpuid,		false),
	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
	FEAT_OPR(EVENT_DESC,	event_desc,	false),
	FEAT_OPR(CMDLINE,	cmdline,	false),
	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3105
	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3106 3107 3108
	FEAT_OPN(AUXTRACE,	auxtrace,	false),
	FEAT_OPN(STAT,		stat,		false),
	FEAT_OPN(CACHE,		cache,		true),
3109
	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3110
	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3111
	FEAT_OPR(CLOCKID,	clockid,	false),
3112
	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3113
#ifdef HAVE_LIBBPF_SUPPORT
3114 3115
	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3116
#endif
3117
	FEAT_OPR(COMPRESSED,	compressed,	false),
3118
	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3119
	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
};

struct header_print_data {
	FILE *fp;
	bool full; /* extended list of headers */
};

static int perf_file_section__fprintf_info(struct perf_file_section *section,
					   struct perf_header *ph,
					   int feat, int fd, void *data)
{
	struct header_print_data *hd = data;
3132
	struct feat_fd ff;
3133 3134 3135 3136 3137 3138

	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
				"%d, continuing...\n", section->offset, feat);
		return 0;
	}
3139
	if (feat >= HEADER_LAST_FEATURE) {
3140
		pr_warning("unknown feature %d\n", feat);
3141
		return 0;
3142 3143 3144 3145
	}
	if (!feat_ops[feat].print)
		return 0;

3146 3147 3148 3149 3150
	ff = (struct  feat_fd) {
		.fd = fd,
		.ph = ph,
	};

3151
	if (!feat_ops[feat].full_only || hd->full)
3152
		feat_ops[feat].print(&ff, hd->fp);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	else
		fprintf(hd->fp, "# %s info available, use -I to display\n",
			feat_ops[feat].name);

	return 0;
}

int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
{
	struct header_print_data hd;
	struct perf_header *header = &session->header;
3164
	int fd = perf_data__fd(session->data);
3165
	struct stat st;
3166
	time_t stctime;
J
Jiri Olsa 已提交
3167
	int ret, bit;
3168

3169 3170 3171
	hd.fp = fp;
	hd.full = full;

3172 3173 3174 3175
	ret = fstat(fd, &st);
	if (ret == -1)
		return -1;

3176
	stctime = st.st_mtime;
3177
	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3178 3179 3180 3181 3182

	fprintf(fp, "# header version : %u\n", header->version);
	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3183

3184 3185
	perf_header__process_sections(header, fd, &hd,
				      perf_file_section__fprintf_info);
J
Jiri Olsa 已提交
3186

3187
	if (session->data->is_pipe)
3188 3189
		return 0;

J
Jiri Olsa 已提交
3190 3191 3192 3193 3194 3195 3196
	fprintf(fp, "# missing features: ");
	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
		if (bit)
			fprintf(fp, "%s ", feat_ops[bit].name);
	}

	fprintf(fp, "\n");
3197 3198 3199
	return 0;
}

3200
static int do_write_feat(struct feat_fd *ff, int type,
3201
			 struct perf_file_section **p,
3202
			 struct evlist *evlist)
3203 3204 3205 3206
{
	int err;
	int ret = 0;

3207
	if (perf_header__has_feat(ff->ph, type)) {
3208 3209
		if (!feat_ops[type].write)
			return -1;
3210

3211 3212 3213
		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
			return -1;

3214
		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3215

3216
		err = feat_ops[type].write(ff, evlist);
3217
		if (err < 0) {
3218
			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3219 3220

			/* undo anything written */
3221
			lseek(ff->fd, (*p)->offset, SEEK_SET);
3222 3223 3224

			return -1;
		}
3225
		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3226 3227 3228 3229 3230
		(*p)++;
	}
	return ret;
}

3231
static int perf_header__adds_write(struct perf_header *header,
3232
				   struct evlist *evlist, int fd)
3233
{
3234
	int nr_sections;
3235
	struct feat_fd ff;
3236
	struct perf_file_section *feat_sec, *p;
3237 3238
	int sec_size;
	u64 sec_start;
3239
	int feat;
3240
	int err;
3241

3242 3243 3244 3245 3246
	ff = (struct feat_fd){
		.fd  = fd,
		.ph = header,
	};

3247
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3248
	if (!nr_sections)
3249
		return 0;
3250

3251
	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3252 3253
	if (feat_sec == NULL)
		return -ENOMEM;
3254 3255 3256

	sec_size = sizeof(*feat_sec) * nr_sections;

3257
	sec_start = header->feat_offset;
3258
	lseek(fd, sec_start + sec_size, SEEK_SET);
3259

3260
	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3261
		if (do_write_feat(&ff, feat, &p, evlist))
3262 3263
			perf_header__clear_feat(header, feat);
	}
3264

3265
	lseek(fd, sec_start, SEEK_SET);
3266 3267
	/*
	 * may write more than needed due to dropped feature, but
3268
	 * this is okay, reader will skip the missing entries
3269
	 */
3270
	err = do_write(&ff, feat_sec, sec_size);
3271 3272
	if (err < 0)
		pr_debug("failed to write feature section\n");
3273
	free(feat_sec);
3274
	return err;
3275
}
3276

3277 3278 3279
int perf_header__write_pipe(int fd)
{
	struct perf_pipe_file_header f_header;
3280
	struct feat_fd ff;
3281 3282
	int err;

3283 3284
	ff = (struct feat_fd){ .fd = fd };

3285 3286 3287 3288 3289
	f_header = (struct perf_pipe_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
	};

3290
	err = do_write(&ff, &f_header, sizeof(f_header));
3291 3292 3293 3294 3295 3296 3297 3298
	if (err < 0) {
		pr_debug("failed to write perf pipe header\n");
		return err;
	}

	return 0;
}

3299
int perf_session__write_header(struct perf_session *session,
3300
			       struct evlist *evlist,
3301
			       int fd, bool at_exit)
3302 3303 3304
{
	struct perf_file_header f_header;
	struct perf_file_attr   f_attr;
3305
	struct perf_header *header = &session->header;
3306
	struct evsel *evsel;
3307
	struct feat_fd ff;
3308
	u64 attr_offset;
3309
	int err;
3310

3311
	ff = (struct feat_fd){ .fd = fd};
3312 3313
	lseek(fd, sizeof(f_header), SEEK_SET);

3314
	evlist__for_each_entry(session->evlist, evsel) {
3315
		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3316
		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3317 3318 3319 3320
		if (err < 0) {
			pr_debug("failed to write perf header\n");
			return err;
		}
3321 3322
	}

3323
	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3324

3325
	evlist__for_each_entry(evlist, evsel) {
3326
		f_attr = (struct perf_file_attr){
3327
			.attr = evsel->core.attr,
3328
			.ids  = {
3329
				.offset = evsel->id_offset,
3330
				.size   = evsel->core.ids * sizeof(u64),
3331 3332
			}
		};
3333
		err = do_write(&ff, &f_attr, sizeof(f_attr));
3334 3335 3336 3337
		if (err < 0) {
			pr_debug("failed to write perf header attribute\n");
			return err;
		}
3338 3339
	}

3340 3341
	if (!header->data_offset)
		header->data_offset = lseek(fd, 0, SEEK_CUR);
3342
	header->feat_offset = header->data_offset + header->data_size;
3343

3344
	if (at_exit) {
3345
		err = perf_header__adds_write(header, evlist, fd);
3346 3347 3348
		if (err < 0)
			return err;
	}
3349

3350 3351 3352 3353 3354
	f_header = (struct perf_file_header){
		.magic	   = PERF_MAGIC,
		.size	   = sizeof(f_header),
		.attr_size = sizeof(f_attr),
		.attrs = {
3355
			.offset = attr_offset,
3356
			.size   = evlist->core.nr_entries * sizeof(f_attr),
3357 3358
		},
		.data = {
3359 3360
			.offset = header->data_offset,
			.size	= header->data_size,
3361
		},
3362
		/* event_types is ignored, store zeros */
3363 3364
	};

3365
	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3366

3367
	lseek(fd, 0, SEEK_SET);
3368
	err = do_write(&ff, &f_header, sizeof(f_header));
3369 3370 3371 3372
	if (err < 0) {
		pr_debug("failed to write perf header\n");
		return err;
	}
3373
	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3374

3375
	return 0;
3376 3377
}

3378
static int perf_header__getbuffer64(struct perf_header *header,
3379 3380
				    int fd, void *buf, size_t size)
{
3381
	if (readn(fd, buf, size) <= 0)
3382 3383
		return -1;

3384
	if (header->needs_swap)
3385 3386 3387 3388 3389
		mem_bswap_64(buf, size);

	return 0;
}

3390
int perf_header__process_sections(struct perf_header *header, int fd,
3391
				  void *data,
3392
				  int (*process)(struct perf_file_section *section,
3393 3394
						 struct perf_header *ph,
						 int feat, int fd, void *data))
3395
{
3396
	struct perf_file_section *feat_sec, *sec;
3397 3398
	int nr_sections;
	int sec_size;
3399 3400
	int feat;
	int err;
3401

3402
	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3403
	if (!nr_sections)
3404
		return 0;
3405

3406
	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3407
	if (!feat_sec)
3408
		return -1;
3409 3410 3411

	sec_size = sizeof(*feat_sec) * nr_sections;

3412
	lseek(fd, header->feat_offset, SEEK_SET);
3413

3414 3415
	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
	if (err < 0)
3416
		goto out_free;
3417

3418 3419 3420 3421
	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
		err = process(sec++, header, feat, fd, data);
		if (err < 0)
			goto out_free;
3422
	}
3423
	err = 0;
3424
out_free:
3425 3426
	free(feat_sec);
	return err;
3427
}
3428

3429 3430 3431
static const int attr_file_abi_sizes[] = {
	[0] = PERF_ATTR_SIZE_VER0,
	[1] = PERF_ATTR_SIZE_VER1,
3432
	[2] = PERF_ATTR_SIZE_VER2,
3433
	[3] = PERF_ATTR_SIZE_VER3,
3434
	[4] = PERF_ATTR_SIZE_VER4,
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	0,
};

/*
 * In the legacy file format, the magic number is not used to encode endianness.
 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
 * on ABI revisions, we need to try all combinations for all endianness to
 * detect the endianness.
 */
static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3445
{
3446 3447
	uint64_t ref_size, attr_size;
	int i;
3448

3449 3450 3451 3452 3453 3454 3455
	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
		ref_size = attr_file_abi_sizes[i]
			 + sizeof(struct perf_file_section);
		if (hdr_sz != ref_size) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != ref_size)
				continue;
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
			ph->needs_swap = true;
		}
		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
			 i,
			 ph->needs_swap);
		return 0;
	}
	/* could not determine endianness */
	return -1;
}
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
#define PERF_PIPE_HDR_VER0	16

static const size_t attr_pipe_abi_sizes[] = {
	[0] = PERF_PIPE_HDR_VER0,
	0,
};

/*
 * In the legacy pipe format, there is an implicit assumption that endiannesss
 * between host recording the samples, and host parsing the samples is the
 * same. This is not always the case given that the pipe output may always be
 * redirected into a file and analyzed on a different machine with possibly a
 * different endianness and perf_event ABI revsions in the perf tool itself.
 */
static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
{
	u64 attr_size;
	int i;

	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
		if (hdr_sz != attr_pipe_abi_sizes[i]) {
			attr_size = bswap_64(hdr_sz);
			if (attr_size != hdr_sz)
				continue;
3492 3493 3494

			ph->needs_swap = true;
		}
3495
		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3496 3497
		return 0;
	}
3498 3499 3500
	return -1;
}

F
Feng Tang 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
bool is_perf_magic(u64 magic)
{
	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
		|| magic == __perf_magic2
		|| magic == __perf_magic2_sw)
		return true;

	return false;
}

3511 3512 3513 3514 3515 3516 3517 3518
static int check_magic_endian(u64 magic, uint64_t hdr_sz,
			      bool is_pipe, struct perf_header *ph)
{
	int ret;

	/* check for legacy format */
	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
	if (ret == 0) {
3519
		ph->version = PERF_HEADER_VERSION_1;
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
		pr_debug("legacy perf.data format\n");
		if (is_pipe)
			return try_all_pipe_abis(hdr_sz, ph);

		return try_all_file_abis(hdr_sz, ph);
	}
	/*
	 * the new magic number serves two purposes:
	 * - unique number to identify actual perf.data files
	 * - encode endianness of file
	 */
3531
	ph->version = PERF_HEADER_VERSION_2;
3532

3533 3534
	/* check magic number with one endianness */
	if (magic == __perf_magic2)
3535 3536
		return 0;

3537 3538
	/* check magic number with opposite endianness */
	if (magic != __perf_magic2_sw)
3539 3540 3541 3542 3543 3544 3545
		return -1;

	ph->needs_swap = true;

	return 0;
}

3546
int perf_file_header__read(struct perf_file_header *header,
3547 3548
			   struct perf_header *ph, int fd)
{
3549
	ssize_t ret;
3550

3551 3552
	lseek(fd, 0, SEEK_SET);

3553 3554
	ret = readn(fd, header, sizeof(*header));
	if (ret <= 0)
3555 3556
		return -1;

3557 3558 3559
	if (check_magic_endian(header->magic,
			       header->attr_size, false, ph) < 0) {
		pr_debug("magic/endian check failed\n");
3560
		return -1;
3561
	}
3562

3563
	if (ph->needs_swap) {
3564
		mem_bswap_64(header, offsetof(struct perf_file_header,
3565
			     adds_features));
3566 3567
	}

3568
	if (header->size != sizeof(*header)) {
3569
		/* Support the previous format */
3570 3571
		if (header->size == offsetof(typeof(*header), adds_features))
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3572 3573
		else
			return -1;
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	} else if (ph->needs_swap) {
		/*
		 * feature bitmap is declared as an array of unsigned longs --
		 * not good since its size can differ between the host that
		 * generated the data file and the host analyzing the file.
		 *
		 * We need to handle endianness, but we don't know the size of
		 * the unsigned long where the file was generated. Take a best
		 * guess at determining it: try 64-bit swap first (ie., file
		 * created on a 64-bit host), and check if the hostname feature
		 * bit is set (this feature bit is forced on as of fbe96f2).
		 * If the bit is not, undo the 64-bit swap and try a 32-bit
		 * swap. If the hostname bit is still not set (e.g., older data
		 * file), punt and fallback to the original behavior --
		 * clearing all feature bits and setting buildid.
		 */
3590 3591
		mem_bswap_64(&header->adds_features,
			    BITS_TO_U64(HEADER_FEAT_BITS));
3592 3593

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3594 3595 3596 3597 3598 3599 3600
			/* unswap as u64 */
			mem_bswap_64(&header->adds_features,
				    BITS_TO_U64(HEADER_FEAT_BITS));

			/* unswap as u32 */
			mem_bswap_32(&header->adds_features,
				    BITS_TO_U32(HEADER_FEAT_BITS));
3601 3602 3603 3604 3605 3606
		}

		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
			set_bit(HEADER_BUILD_ID, header->adds_features);
		}
3607
	}
3608

3609
	memcpy(&ph->adds_features, &header->adds_features,
3610
	       sizeof(ph->adds_features));
3611

3612 3613
	ph->data_offset  = header->data.offset;
	ph->data_size	 = header->data.size;
3614
	ph->feat_offset  = header->data.offset + header->data.size;
3615 3616 3617
	return 0;
}

3618
static int perf_file_section__process(struct perf_file_section *section,
3619
				      struct perf_header *ph,
3620
				      int feat, int fd, void *data)
3621
{
3622
	struct feat_fd fdd = {
3623 3624
		.fd	= fd,
		.ph	= ph,
3625 3626
		.size	= section->size,
		.offset	= section->offset,
3627 3628
	};

3629
	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3630
		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3631
			  "%d, continuing...\n", section->offset, feat);
3632 3633 3634
		return 0;
	}

3635 3636 3637 3638 3639
	if (feat >= HEADER_LAST_FEATURE) {
		pr_debug("unknown feature %d, continuing...\n", feat);
		return 0;
	}

3640 3641
	if (!feat_ops[feat].process)
		return 0;
3642

3643
	return feat_ops[feat].process(&fdd, data);
3644
}
3645

3646
static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3647 3648
				       struct perf_header *ph,
				       struct perf_data* data,
T
Tom Zanussi 已提交
3649
				       bool repipe)
3650
{
3651 3652 3653 3654
	struct feat_fd ff = {
		.fd = STDOUT_FILENO,
		.ph = ph,
	};
3655
	ssize_t ret;
3656

3657
	ret = perf_data__read(data, header, sizeof(*header));
3658 3659 3660
	if (ret <= 0)
		return -1;

3661 3662
	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
		pr_debug("endian/magic failed\n");
3663
		return -1;
3664 3665 3666 3667
	}

	if (ph->needs_swap)
		header->size = bswap_64(header->size);
3668

3669
	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
T
Tom Zanussi 已提交
3670 3671
		return -1;

3672 3673 3674
	return 0;
}

3675
static int perf_header__read_pipe(struct perf_session *session)
3676
{
3677
	struct perf_header *header = &session->header;
3678 3679
	struct perf_pipe_file_header f_header;

3680
	if (perf_file_header__read_pipe(&f_header, header, session->data,
T
Tom Zanussi 已提交
3681
					session->repipe) < 0) {
3682 3683 3684 3685
		pr_debug("incompatible file format\n");
		return -EINVAL;
	}

3686
	return f_header.size == sizeof(f_header) ? 0 : -1;
3687 3688
}

3689 3690 3691 3692 3693 3694
static int read_attr(int fd, struct perf_header *ph,
		     struct perf_file_attr *f_attr)
{
	struct perf_event_attr *attr = &f_attr->attr;
	size_t sz, left;
	size_t our_sz = sizeof(f_attr->attr);
3695
	ssize_t ret;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

	memset(f_attr, 0, sizeof(*f_attr));

	/* read minimal guaranteed structure */
	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
	if (ret <= 0) {
		pr_debug("cannot read %d bytes of header attr\n",
			 PERF_ATTR_SIZE_VER0);
		return -1;
	}

	/* on file perf_event_attr size */
	sz = attr->size;
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	if (ph->needs_swap)
		sz = bswap_32(sz);

	if (sz == 0) {
		/* assume ABI0 */
		sz =  PERF_ATTR_SIZE_VER0;
	} else if (sz > our_sz) {
		pr_debug("file uses a more recent and unsupported ABI"
			 " (%zu bytes extra)\n", sz - our_sz);
		return -1;
	}
	/* what we have not yet read and that we know about */
	left = sz - PERF_ATTR_SIZE_VER0;
	if (left) {
		void *ptr = attr;
		ptr += PERF_ATTR_SIZE_VER0;

		ret = readn(fd, ptr, left);
	}
	/* read perf_file_section, ids are read in caller */
	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));

	return ret <= 0 ? -1 : 0;
}

3735
static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
3736
{
3737
	struct tep_event *event;
3738 3739
	char bf[128];

3740 3741 3742 3743
	/* already prepared */
	if (evsel->tp_format)
		return 0;

3744 3745 3746 3747 3748
	if (pevent == NULL) {
		pr_debug("broken or missing trace data\n");
		return -1;
	}

3749
	event = tep_find_event(pevent, evsel->core.attr.config);
3750
	if (event == NULL) {
3751
		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3752
		return -1;
3753
	}
3754

3755 3756 3757 3758 3759 3760
	if (!evsel->name) {
		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
		evsel->name = strdup(bf);
		if (evsel->name == NULL)
			return -1;
	}
3761

3762
	evsel->tp_format = event;
3763 3764 3765
	return 0;
}

3766
static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
3767
{
3768
	struct evsel *pos;
3769

3770
	evlist__for_each_entry(evlist, pos) {
3771
		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3772
		    evsel__prepare_tracepoint_event(pos, pevent))
3773 3774 3775 3776 3777 3778
			return -1;
	}

	return 0;
}

3779
int perf_session__read_header(struct perf_session *session)
3780
{
3781
	struct perf_data *data = session->data;
3782
	struct perf_header *header = &session->header;
3783
	struct perf_file_header	f_header;
3784 3785
	struct perf_file_attr	f_attr;
	u64			f_id;
3786
	int nr_attrs, nr_ids, i, j, err;
3787
	int fd = perf_data__fd(data);
3788

3789
	session->evlist = evlist__new();
3790 3791 3792
	if (session->evlist == NULL)
		return -ENOMEM;

3793
	session->evlist->env = &header->env;
3794
	session->machines.host.env = &header->env;
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

	/*
	 * We can read 'pipe' data event from regular file,
	 * check for the pipe header regardless of source.
	 */
	err = perf_header__read_pipe(session);
	if (!err || (err && perf_data__is_pipe(data))) {
		data->is_pipe = true;
		return err;
	}
3805

3806
	if (perf_file_header__read(&f_header, header, fd) < 0)
3807
		return -EINVAL;
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817
	/*
	 * Sanity check that perf.data was written cleanly; data size is
	 * initialized to 0 and updated only if the on_exit function is run.
	 * If data size is still 0 then the file contains only partial
	 * information.  Just warn user and process it as much as it can.
	 */
	if (f_header.data.size == 0) {
		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
			   "Was the 'perf record' command properly terminated?\n",
J
Jiri Olsa 已提交
3818
			   data->file.path);
3819 3820
	}

3821 3822 3823 3824 3825 3826 3827
	if (f_header.attr_size == 0) {
		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
		       "Was the 'perf record' command properly terminated?\n",
		       data->file.path);
		return -EINVAL;
	}

3828
	nr_attrs = f_header.attrs.size / f_header.attr_size;
3829 3830 3831
	lseek(fd, f_header.attrs.offset, SEEK_SET);

	for (i = 0; i < nr_attrs; i++) {
3832
		struct evsel *evsel;
3833
		off_t tmp;
3834

3835
		if (read_attr(fd, header, &f_attr) < 0)
3836
			goto out_errno;
3837

3838 3839 3840
		if (header->needs_swap) {
			f_attr.ids.size   = bswap_64(f_attr.ids.size);
			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3841
			perf_event__attr_swap(&f_attr.attr);
3842
		}
3843

3844
		tmp = lseek(fd, 0, SEEK_CUR);
3845
		evsel = evsel__new(&f_attr.attr);
3846

3847 3848
		if (evsel == NULL)
			goto out_delete_evlist;
3849 3850

		evsel->needs_swap = header->needs_swap;
3851 3852
		/*
		 * Do it before so that if perf_evsel__alloc_id fails, this
3853
		 * entry gets purged too at evlist__delete().
3854
		 */
3855
		evlist__add(session->evlist, evsel);
3856 3857

		nr_ids = f_attr.ids.size / sizeof(u64);
3858 3859 3860 3861 3862
		/*
		 * We don't have the cpu and thread maps on the header, so
		 * for allocating the perf_sample_id table we fake 1 cpu and
		 * hattr->ids threads.
		 */
3863
		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3864 3865
			goto out_delete_evlist;

3866 3867 3868
		lseek(fd, f_attr.ids.offset, SEEK_SET);

		for (j = 0; j < nr_ids; j++) {
3869
			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3870
				goto out_errno;
3871

3872
			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3873
		}
3874

3875 3876 3877
		lseek(fd, tmp, SEEK_SET);
	}

J
Jiri Olsa 已提交
3878
	perf_header__process_sections(header, fd, &session->tevent,
3879
				      perf_file_section__process);
3880

3881
	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
3882 3883
		goto out_delete_evlist;

3884
	return 0;
3885 3886
out_errno:
	return -errno;
3887 3888

out_delete_evlist:
3889
	evlist__delete(session->evlist);
3890 3891
	session->evlist = NULL;
	return -ENOMEM;
3892
}
3893

3894 3895
int perf_event__process_feature(struct perf_session *session,
				union perf_event *event)
3896
{
3897
	struct perf_tool *tool = session->tool;
3898
	struct feat_fd ff = { .fd = 0 };
3899
	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3900 3901 3902 3903 3904 3905 3906
	int type = fe->header.type;
	u64 feat = fe->feat_id;

	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return 0;
	}
3907
	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3908 3909 3910 3911 3912 3913 3914 3915
		pr_warning("invalid record type %d in pipe-mode\n", type);
		return -1;
	}

	if (!feat_ops[feat].process)
		return 0;

	ff.buf  = (void *)fe->data;
3916
	ff.size = event->header.size - sizeof(*fe);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	ff.ph = &session->header;

	if (feat_ops[feat].process(&ff, NULL))
		return -1;

	if (!feat_ops[feat].print || !tool->show_feat_hdr)
		return 0;

	if (!feat_ops[feat].full_only ||
	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
		feat_ops[feat].print(&ff, stdout);
	} else {
		fprintf(stdout, "# %s info available, use -I to display\n",
			feat_ops[feat].name);
	}

	return 0;
}

3936 3937
size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
{
3938 3939 3940
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
3941
	struct perf_cpu_map *map;
3942 3943
	size_t ret;

3944
	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3945 3946 3947

	switch (ev->type) {
	case PERF_EVENT_UPDATE__SCALE:
3948
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3949 3950 3951 3952 3953 3954 3955 3956 3957
		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
		break;
	case PERF_EVENT_UPDATE__UNIT:
		ret += fprintf(fp, "... unit:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__NAME:
		ret += fprintf(fp, "... name:  %s\n", ev->data);
		break;
	case PERF_EVENT_UPDATE__CPUS:
3958
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
		ret += fprintf(fp, "... ");

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
			ret += cpu_map__fprintf(map, fp);
		else
			ret += fprintf(fp, "failed to get cpus\n");
		break;
	default:
		ret += fprintf(fp, "... unknown type\n");
		break;
	}

	return ret;
}
3974

3975 3976
int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
			     union perf_event *event,
3977
			     struct evlist **pevlist)
3978
{
3979
	u32 i, ids, n_ids;
3980
	struct evsel *evsel;
3981
	struct evlist *evlist = *pevlist;
3982

3983
	if (evlist == NULL) {
3984
		*pevlist = evlist = evlist__new();
3985
		if (evlist == NULL)
3986 3987 3988
			return -ENOMEM;
	}

3989
	evsel = evsel__new(&event->attr.attr);
3990
	if (evsel == NULL)
3991 3992
		return -ENOMEM;

3993
	evlist__add(evlist, evsel);
3994

3995 3996
	ids = event->header.size;
	ids -= (void *)&event->attr.id - (void *)event;
3997
	n_ids = ids / sizeof(u64);
3998 3999 4000 4001 4002
	/*
	 * We don't have the cpu and thread maps on the header, so
	 * for allocating the perf_sample_id table we fake 1 cpu and
	 * hattr->ids threads.
	 */
4003
	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4004
		return -ENOMEM;
4005 4006

	for (i = 0; i < n_ids; i++) {
4007
		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4008 4009 4010 4011
	}

	return 0;
}
4012

4013 4014
int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
				     union perf_event *event,
4015
				     struct evlist **pevlist)
4016
{
4017 4018 4019
	struct perf_record_event_update *ev = &event->event_update;
	struct perf_record_event_update_scale *ev_scale;
	struct perf_record_event_update_cpus *ev_cpus;
4020
	struct evlist *evlist;
4021
	struct evsel *evsel;
4022
	struct perf_cpu_map *map;
4023 4024 4025 4026 4027 4028

	if (!pevlist || *pevlist == NULL)
		return -EINVAL;

	evlist = *pevlist;

4029
	evsel = evlist__id2evsel(evlist, ev->id);
4030 4031 4032
	if (evsel == NULL)
		return -EINVAL;

4033 4034 4035
	switch (ev->type) {
	case PERF_EVENT_UPDATE__UNIT:
		evsel->unit = strdup(ev->data);
4036
		break;
4037 4038 4039
	case PERF_EVENT_UPDATE__NAME:
		evsel->name = strdup(ev->data);
		break;
4040
	case PERF_EVENT_UPDATE__SCALE:
4041
		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4042
		evsel->scale = ev_scale->scale;
4043
		break;
4044
	case PERF_EVENT_UPDATE__CPUS:
4045
		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4046 4047 4048

		map = cpu_map__new_data(&ev_cpus->cpus);
		if (map)
4049
			evsel->core.own_cpus = map;
4050 4051
		else
			pr_err("failed to get event_update cpus\n");
4052 4053 4054 4055
	default:
		break;
	}

4056 4057 4058
	return 0;
}

4059 4060
int perf_event__process_tracing_data(struct perf_session *session,
				     union perf_event *event)
4061
{
4062
	ssize_t size_read, padding, size = event->tracing_data.size;
4063
	int fd = perf_data__fd(session->data);
4064 4065
	char buf[BUFSIZ];

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	/*
	 * The pipe fd is already in proper place and in any case
	 * we can't move it, and we'd screw the case where we read
	 * 'pipe' data from regular file. The trace_report reads
	 * data from 'fd' so we need to set it directly behind the
	 * event, where the tracing data starts.
	 */
	if (!perf_data__is_pipe(session->data)) {
		off_t offset = lseek(fd, 0, SEEK_CUR);

		/* setup for reading amidst mmap */
		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
		      SEEK_SET);
	}
4080

J
Jiri Olsa 已提交
4081
	size_read = trace_report(fd, &session->tevent,
4082
				 session->repipe);
4083
	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4084

4085
	if (readn(fd, buf, padding) < 0) {
4086 4087 4088
		pr_err("%s: reading input file", __func__);
		return -1;
	}
T
Tom Zanussi 已提交
4089 4090
	if (session->repipe) {
		int retw = write(STDOUT_FILENO, buf, padding);
4091 4092 4093 4094
		if (retw <= 0 || retw != padding) {
			pr_err("%s: repiping tracing data padding", __func__);
			return -1;
		}
T
Tom Zanussi 已提交
4095
	}
4096

4097 4098 4099 4100
	if (size_read + padding != size) {
		pr_err("%s: tracing data size mismatch", __func__);
		return -1;
	}
4101

4102
	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4103

4104 4105
	return size_read + padding;
}
4106

4107 4108
int perf_event__process_build_id(struct perf_session *session,
				 union perf_event *event)
4109
{
4110 4111
	__event_process_build_id(&event->build_id,
				 event->build_id.filename,
4112
				 session);
4113 4114
	return 0;
}