reg.c 65.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
100
 *     - reg_num_devs_support_basehint
101
 */
102
static DEFINE_MUTEX(reg_mutex);
103

104 105 106 107 108 109
/*
 * Number of devices that registered to the core
 * that support cellular base station regulatory hints
 */
static int reg_num_devs_support_basehint;

110 111 112 113
static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
114

115
/* Used to queue up regulatory hints */
116 117 118
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

119 120 121 122 123 124 125 126 127 128 129 130
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

131 132 133
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

134 135 136
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

137 138
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
139
	.n_reg_rules = 6,
140 141
	.alpha2 =  "00",
	.reg_rules = {
142 143
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 145 146
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 148
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
149 150 151 152 153 154 155
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
156
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 158
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
159 160 161 162

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
163
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 165
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
166 167 168

		/* IEEE 802.11ad (60gHz), channels 1..3 */
		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 170 171
	}
};

172 173
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
174

175
static char *ieee80211_regdom = "00";
176
static char user_alpha2[2];
177

178 179 180
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

181
static void reset_regdomains(bool full_reset)
182
{
183 184 185 186 187 188 189 190 191 192
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
193

194
	cfg80211_world_regdom = &world_regdom;
195
	cfg80211_regdomain = NULL;
196 197 198 199 200 201 202

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
203 204
}

205 206 207 208
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
209
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210
{
211
	BUG_ON(!last_request);
212

213
	reset_regdomains(false);
214 215 216 217 218

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

219
bool is_world_regdom(const char *alpha2)
220 221 222 223 224 225 226
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
227

228
static bool is_alpha2_set(const char *alpha2)
229 230 231 232 233 234 235
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
236

237
static bool is_unknown_alpha2(const char *alpha2)
238 239 240
{
	if (!alpha2)
		return false;
241 242 243 244
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
245 246 247 248
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
249

250 251 252 253
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
254 255
	/*
	 * Special case where regulatory domain is the
256
	 * result of an intersection between two regulatory domain
257 258
	 * structures
	 */
259 260 261 262 263
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

264
static bool is_an_alpha2(const char *alpha2)
265 266 267
{
	if (!alpha2)
		return false;
268
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 270 271
		return true;
	return false;
}
272

273
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 275 276 277 278 279 280 281 282
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

283
static bool regdom_changes(const char *alpha2)
284
{
285 286
	assert_cfg80211_lock();

287 288 289 290 291 292 293
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
346
static DEFINE_MUTEX(reg_regdb_search_mutex);
347 348 349 350 351 352 353

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

354
	mutex_lock(&reg_regdb_search_mutex);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
377
	mutex_unlock(&reg_regdb_search_mutex);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

395
	mutex_lock(&reg_regdb_search_mutex);
396
	list_add_tail(&request->list, &reg_regdb_search_list);
397
	mutex_unlock(&reg_regdb_search_mutex);
398 399 400

	schedule_work(&reg_regdb_work);
}
401 402 403 404 405 406 407

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
408
#else
409
static inline void reg_regdb_size_check(void) {}
410 411 412
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

413 414
/*
 * This lets us keep regulatory code which is updated on a regulatory
415 416
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
417
 */
418 419 420
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
421
		pr_info("Calling CRDA for country: %c%c\n",
422 423
			alpha2[0], alpha2[1]);
	else
424
		pr_info("Calling CRDA to update world regulatory domain\n");
425

426 427 428
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

429
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
430 431 432
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
433
bool reg_is_valid_request(const char *alpha2)
434
{
435 436
	assert_cfg80211_lock();

437 438 439 440
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
441
}
442

443
/* Sanity check on a regulatory rule */
444
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
445
{
446
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
447 448
	u32 freq_diff;

449
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
450 451 452 453 454 455 456
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

457 458
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
459 460 461 462 463
		return false;

	return true;
}

464
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
465
{
466
	const struct ieee80211_reg_rule *reg_rule = NULL;
467
	unsigned int i;
468

469 470
	if (!rd->n_reg_rules)
		return false;
471

472 473 474
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

475 476 477 478 479 480 481
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
482 483
}

484 485 486
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
487
{
488 489 490 491 492 493 494 495 496 497
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
498
}
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

525 526 527 528
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

606 607
	/*
	 * First we get a count of the rules we'll need, then we actually
608 609 610
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
611 612
	 * All rules that do check out OK are valid.
	 */
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
640 641
			/*
			 * This time around instead of using the stack lets
642
			 * write to the target rule directly saving ourselves
643 644
			 * a memcpy()
			 */
645 646 647
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
648 649 650 651
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

670 671 672 673
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
674 675 676 677 678 679 680 681 682
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
683 684
	if (rd_flags & NL80211_RRF_NO_OFDM)
		channel_flags |= IEEE80211_CHAN_NO_OFDM;
685 686 687
	return channel_flags;
}

688 689
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
690
			      u32 desired_bw_khz,
691 692
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
693 694
{
	int i;
695
	bool band_rule_found = false;
696
	const struct ieee80211_regdomain *regd;
697 698 699 700
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
701

702
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
703

704 705 706 707
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
708 709
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
710
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
711 712 713 714
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
715 716
		return -EINVAL;

717
	for (i = 0; i < regd->n_reg_rules; i++) {
718 719 720
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

721
		rr = &regd->reg_rules[i];
722
		fr = &rr->freq_range;
723

724 725
		/*
		 * We only need to know if one frequency rule was
726
		 * was in center_freq's band, that's enough, so lets
727 728
		 * not overwrite it once found
		 */
729 730 731
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

732 733 734
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
735

736
		if (band_rule_found && bw_fits) {
737
			*reg_rule = rr;
738
			return 0;
739 740 741
		}
	}

742 743 744
	if (!band_rule_found)
		return -ERANGE;

745
	return -EINVAL;
746 747
}

748 749 750 751
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
752
{
753
	assert_cfg80211_lock();
754 755 756 757 758
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
759
}
760
EXPORT_SYMBOL(freq_reg_info);
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

796
	REG_DBG_PRINT("Updating information on frequency %d MHz "
797
		      "for a %d MHz width channel with regulatory rule:\n",
798 799 800
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

801
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
802 803
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
804
		      freq_range->max_bandwidth_khz,
805 806 807 808 809 810 811 812 813 814
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
815 816
#endif

817 818 819 820 821 822 823 824 825
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
826 827 828
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
829
			   unsigned int chan_idx)
830 831
{
	int r;
832 833
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
834 835
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
836
	const struct ieee80211_freq_range *freq_range = NULL;
837 838
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
839
	struct wiphy *request_wiphy = NULL;
840

841 842
	assert_cfg80211_lock();

843 844
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

845 846 847 848 849
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
850

851 852 853 854
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
855

856 857 858
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
859
		 * received regulatory rule unless the hint is coming
860 861 862 863 864 865 866 867 868 869 870
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

871
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
872
		chan->flags = IEEE80211_CHAN_DISABLED;
873
		return;
874
	}
875

876 877
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

878
	power_rule = &reg_rule->power_rule;
879 880 881 882
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
883

884
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
885
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
886
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
887
		/*
L
Lucas De Marchi 已提交
888
		 * This guarantees the driver's requested regulatory domain
889
		 * will always be used as a base for further regulatory
890 891
		 * settings
		 */
892
		chan->flags = chan->orig_flags =
893
			map_regdom_flags(reg_rule->flags) | bw_flags;
894 895 896 897 898 899 900
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

901
	chan->beacon_found = false;
902
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
903
	chan->max_antenna_gain = min(chan->orig_mag,
904
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
905
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
			chan->max_power = chan->max_reg_power;
		else
			chan->max_power = min(chan->orig_mpwr,
					      chan->max_reg_power);
	} else
		chan->max_power = chan->max_reg_power;
921 922
}

923 924 925
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
926
{
927 928 929 930 931
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
932 933

	for (i = 0; i < sband->n_channels; i++)
934
		handle_channel(wiphy, initiator, band, i);
935 936
}

937 938 939 940 941 942 943 944 945 946 947
static bool reg_request_cell_base(struct regulatory_request *request)
{
	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
		return false;
	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
		return false;
	return true;
}

bool reg_last_request_cell_base(void)
{
948
	bool val;
949 950 951
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);
952
	val = reg_request_cell_base(last_request);
953
	mutex_unlock(&reg_mutex);
954
	return val;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
}

#ifdef CONFIG_CFG80211_CERTIFICATION_ONUS

/* Core specific check */
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	if (!reg_num_devs_support_basehint)
		return -EOPNOTSUPP;

	if (reg_request_cell_base(last_request)) {
		if (!regdom_changes(pending_request->alpha2))
			return -EALREADY;
		return 0;
	}
	return 0;
}

/* Device specific check */
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
		return true;
	return false;
}
#else
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	return -EOPNOTSUPP;
}
static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	return true;
}
#endif


992 993
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
994
{
995
	if (!last_request) {
996
		REG_DBG_PRINT("Ignoring regulatory request %s since "
997 998
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
999
		return true;
1000 1001
	}

1002
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1003
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1004
		REG_DBG_PRINT("Ignoring regulatory request %s "
1005
			      "since the driver uses its own custom "
1006
			      "regulatory domain\n",
1007
			      reg_initiator_name(initiator));
1008
		return true;
1009 1010
	}

1011 1012 1013 1014
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1015
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1016
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1017
	    !is_world_regdom(last_request->alpha2)) {
1018
		REG_DBG_PRINT("Ignoring regulatory request %s "
1019
			      "since the driver requires its own regulatory "
1020
			      "domain to be set first\n",
1021
			      reg_initiator_name(initiator));
1022
		return true;
1023 1024
	}

1025 1026 1027
	if (reg_request_cell_base(last_request))
		return reg_dev_ignore_cell_hint(wiphy);

1028 1029 1030
	return false;
}

1031 1032 1033 1034 1035 1036
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1037 1038
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1039 1040 1041 1042 1043 1044 1045 1046 1047

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1048 1049 1050 1051 1052
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1053
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1054 1055
		return;

1056 1057 1058
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1059
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1060
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1061
		channel_changed = true;
1062 1063
	}

1064
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1065
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1066
		channel_changed = true;
1067 1068
	}

1069 1070
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1122 1123
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1124
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1125 1126 1127 1128 1129 1130 1131
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1132 1133 1134 1135 1136 1137
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1138 1139 1140 1141 1142
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1193
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1194
	else
1195
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1196 1197

	if (is_ht40_not_allowed(channel_after))
1198
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1199
	else
1200
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1230 1231
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1232 1233
{
	enum ieee80211_band band;
1234

1235 1236
	assert_reg_lock();

1237
	if (ignore_reg_update(wiphy, initiator))
1238 1239
		return;

1240 1241
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1242
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1243
		if (wiphy->bands[band])
1244
			handle_band(wiphy, band, initiator);
1245
	}
1246

1247
	reg_process_beacons(wiphy);
1248
	reg_process_ht_flags(wiphy);
1249
	if (wiphy->reg_notifier)
1250
		wiphy->reg_notifier(wiphy, last_request);
1251 1252
}

1253 1254 1255
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1256
	struct wiphy *wiphy;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1271 1272
}

1273 1274 1275 1276 1277 1278
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1279 1280
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1281 1282
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1283
	const struct ieee80211_freq_range *freq_range = NULL;
1284 1285 1286
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1287
	assert_reg_lock();
1288

1289 1290 1291 1292
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1293 1294 1295 1296 1297
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1298 1299

	if (r) {
1300
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1301 1302 1303 1304
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1305 1306 1307 1308
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1309 1310
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1311
	power_rule = &reg_rule->power_rule;
1312 1313 1314 1315
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1316

1317
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1340
	unsigned int bands_set = 0;
1341

1342
	mutex_lock(&reg_mutex);
1343
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1344 1345 1346 1347
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1348
	}
1349
	mutex_unlock(&reg_mutex);
1350 1351 1352 1353 1354 1355

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1356
}
1357 1358
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1359 1360 1361 1362
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1363 1364
#define REG_INTERSECT	1

1365 1366
/* This has the logic which determines when a new request
 * should be ignored. */
1367 1368
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1369
{
1370
	struct wiphy *last_wiphy = NULL;
1371 1372 1373

	assert_cfg80211_lock();

1374 1375 1376 1377
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1378
	switch (pending_request->initiator) {
1379
	case NL80211_REGDOM_SET_BY_CORE:
1380
		return 0;
1381
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1382

1383 1384 1385 1386 1387 1388 1389
		if (reg_request_cell_base(last_request)) {
			/* Trust a Cell base station over the AP's country IE */
			if (regdom_changes(pending_request->alpha2))
				return -EOPNOTSUPP;
			return -EALREADY;
		}

1390 1391
		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1392
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1393
			return -EINVAL;
1394 1395
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1396
			if (last_wiphy != wiphy) {
1397 1398
				/*
				 * Two cards with two APs claiming different
1399
				 * Country IE alpha2s. We could
1400 1401 1402
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1403
				if (regdom_changes(pending_request->alpha2))
1404 1405 1406
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1407 1408 1409 1410
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1411
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1412 1413 1414
				return 0;
			return -EALREADY;
		}
1415
		return 0;
1416 1417
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1418
			if (regdom_changes(pending_request->alpha2))
1419
				return 0;
1420
			return -EALREADY;
1421
		}
1422 1423 1424 1425 1426 1427

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1428
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1429
		    !regdom_changes(pending_request->alpha2))
1430 1431
			return -EALREADY;

1432
		return REG_INTERSECT;
1433
	case NL80211_REGDOM_SET_BY_USER:
1434 1435 1436 1437 1438 1439
		if (reg_request_cell_base(pending_request))
			return reg_ignore_cell_hint(pending_request);

		if (reg_request_cell_base(last_request))
			return -EOPNOTSUPP;

1440
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441
			return REG_INTERSECT;
1442 1443 1444 1445
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1446
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447 1448
			  last_request->intersect)
			return -EOPNOTSUPP;
1449 1450 1451 1452
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1453 1454 1455
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456
			if (regdom_changes(last_request->alpha2))
1457 1458 1459
				return -EAGAIN;
		}

1460
		if (!regdom_changes(pending_request->alpha2))
1461 1462
			return -EALREADY;

1463 1464 1465 1466 1467 1468
		return 0;
	}

	return -EINVAL;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1480
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1481
		cancel_delayed_work(&reg_timeout);
1482

1483 1484 1485 1486
	if (need_more_processing)
		schedule_work(&reg_work);
}

1487 1488 1489 1490
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1491
 * @pending_request: the regulatory request currently being processed
1492 1493
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1494
 * what it believes should be the current regulatory domain.
1495 1496 1497 1498
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1499
 * Caller must hold &cfg80211_mutex and &reg_mutex
1500
 */
1501 1502
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1503
{
1504
	bool intersect = false;
1505 1506
	int r = 0;

1507 1508
	assert_cfg80211_lock();

1509
	r = ignore_request(wiphy, pending_request);
1510

1511
	if (r == REG_INTERSECT) {
1512 1513
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1514
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1515 1516
			if (r) {
				kfree(pending_request);
1517
				return r;
1518
			}
1519
		}
1520
		intersect = true;
1521
	} else if (r) {
1522 1523
		/*
		 * If the regulatory domain being requested by the
1524
		 * driver has already been set just copy it to the
1525 1526
		 * wiphy
		 */
1527
		if (r == -EALREADY &&
1528 1529
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1530
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1531 1532
			if (r) {
				kfree(pending_request);
1533
				return r;
1534
			}
1535 1536 1537
			r = -EALREADY;
			goto new_request;
		}
1538
		kfree(pending_request);
1539
		return r;
1540
	}
1541

1542
new_request:
1543 1544
	if (last_request != &core_request_world)
		kfree(last_request);
1545

1546 1547
	last_request = pending_request;
	last_request->intersect = intersect;
1548

1549
	pending_request = NULL;
1550

1551 1552 1553 1554 1555
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1556
	/* When r == REG_INTERSECT we do need to call CRDA */
1557 1558 1559 1560 1561 1562
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1563
		if (r == -EALREADY) {
1564
			nl80211_send_reg_change_event(last_request);
1565 1566
			reg_set_request_processed();
		}
1567
		return r;
1568
	}
1569

1570
	return call_crda(last_request->alpha2);
1571 1572
}

1573
/* This processes *all* regulatory hints */
1574 1575
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1576 1577 1578 1579 1580 1581 1582 1583 1584
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1585
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1586
	    !wiphy) {
1587
		kfree(reg_request);
1588
		return;
1589 1590
	}

1591
	r = __regulatory_hint(wiphy, reg_request);
1592
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1593
	if (r == -EALREADY && wiphy &&
1594
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1595
		wiphy_update_regulatory(wiphy, reg_initiator);
1596 1597 1598 1599 1600 1601 1602
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1603
	if (r != -EALREADY &&
1604
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1605
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1606 1607
}

1608 1609 1610 1611 1612
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1613
static void reg_process_pending_hints(void)
1614
{
1615 1616
	struct regulatory_request *reg_request;

1617 1618 1619
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1620 1621 1622
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1623
			      "for it to be processed...\n");
1624 1625 1626
		goto out;
	}

1627 1628
	spin_lock(&reg_requests_lock);

1629
	if (list_empty(&reg_requests_list)) {
1630
		spin_unlock(&reg_requests_lock);
1631
		goto out;
1632
	}
1633 1634 1635 1636 1637 1638

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1639
	spin_unlock(&reg_requests_lock);
1640

1641
	reg_process_hint(reg_request, reg_request->initiator);
1642 1643

out:
1644 1645
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1646 1647
}

1648 1649 1650
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1651
	struct cfg80211_registered_device *rdev;
1652 1653
	struct reg_beacon *pending_beacon, *tmp;

1654 1655 1656 1657
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1674 1675
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1686 1687 1688
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1689
	reg_process_pending_beacon_hints();
1690 1691 1692 1693
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1694 1695 1696 1697 1698
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1699 1700 1701 1702 1703 1704 1705
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1706 1707 1708 1709
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1721
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1722

1723
	queue_regulatory_request(request);
1724

1725
	return 0;
1726 1727
}

1728
/* User hints */
1729 1730
int regulatory_hint_user(const char *alpha2,
			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1731
{
1732 1733
	struct regulatory_request *request;

1734
	BUG_ON(!alpha2);
1735

1736 1737 1738 1739 1740 1741 1742
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1743
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1744
	request->user_reg_hint_type = user_reg_hint_type;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1770
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1771 1772 1773 1774

	queue_regulatory_request(request);

	return 0;
1775 1776 1777
}
EXPORT_SYMBOL(regulatory_hint);

1778 1779 1780 1781
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1782
void regulatory_hint_11d(struct wiphy *wiphy,
1783 1784 1785
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1786 1787 1788
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1789
	struct regulatory_request *request;
1790

1791
	mutex_lock(&reg_mutex);
1792

1793 1794
	if (unlikely(!last_request))
		goto out;
1795

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1811
	/*
1812
	 * We will run this only upon a successful connection on cfg80211.
1813 1814
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1815
	 */
1816 1817
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1818 1819
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1820

1821 1822
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1823
		goto out;
1824 1825

	request->wiphy_idx = get_wiphy_idx(wiphy);
1826 1827
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1828
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1829 1830
	request->country_ie_env = env;

1831
	mutex_unlock(&reg_mutex);
1832

1833 1834 1835
	queue_regulatory_request(request);

	return;
1836

1837
out:
1838
	mutex_unlock(&reg_mutex);
1839
}
1840

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1851
			REG_DBG_PRINT("Restoring regulatory settings "
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1862
				REG_DBG_PRINT("Keeping preference on "
1863 1864 1865 1866 1867 1868 1869
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1870
			REG_DBG_PRINT("Restoring regulatory settings "
1871 1872 1873 1874 1875 1876 1877
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1878
		REG_DBG_PRINT("Keeping preference on "
1879 1880 1881 1882 1883 1884
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1885
		REG_DBG_PRINT("Restoring regulatory settings\n");
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1926
	char world_alpha2[2];
1927
	struct reg_beacon *reg_beacon, *btmp;
1928 1929
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1930
	struct cfg80211_registered_device *rdev;
1931 1932 1933 1934

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1935
	reset_regdomains(true);
1936 1937
	restore_alpha2(alpha2, reset_user);

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1978 1979
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1980

1981 1982 1983 1984 1985
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1986 1987 1988
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1989
	regulatory_hint_core(world_alpha2);
1990 1991 1992 1993 1994 1995 1996

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
1997
		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
2023 2024 2025

void regulatory_hint_disconnect(void)
{
2026
	REG_DBG_PRINT("All devices are disconnected, going to "
2027 2028 2029 2030
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2031 2032
static bool freq_is_chan_12_13_14(u16 freq)
{
2033 2034 2035
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2056
	REG_DBG_PRINT("Found new beacon on "
2057 2058 2059 2060 2061
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2079
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2080 2081
{
	unsigned int i;
2082 2083 2084
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2085

2086
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2087 2088 2089 2090 2091 2092

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2093 2094 2095 2096
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2097
		if (power_rule->max_antenna_gain)
2098
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2099 2100 2101 2102 2103 2104
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2105
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2106 2107 2108 2109 2110 2111 2112
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2149
static void print_regdomain(const struct ieee80211_regdomain *rd)
2150 2151
{

2152 2153
	if (is_intersected_alpha2(rd->alpha2)) {

2154 2155
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2156 2157
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2158
				last_request->wiphy_idx);
2159
			if (rdev) {
2160
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2161 2162
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2163
			} else
2164
				pr_info("Current regulatory domain intersected:\n");
2165
		} else
2166
			pr_info("Current regulatory domain intersected:\n");
2167
	} else if (is_world_regdom(rd->alpha2))
2168
		pr_info("World regulatory domain updated:\n");
2169 2170
	else {
		if (is_unknown_alpha2(rd->alpha2))
2171
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
		else {
			if (reg_request_cell_base(last_request))
				pr_info("Regulatory domain changed "
					"to country: %c%c by Cell Station\n",
					rd->alpha2[0], rd->alpha2[1]);
			else
				pr_info("Regulatory domain changed "
					"to country: %c%c\n",
					rd->alpha2[0], rd->alpha2[1]);
		}
2182
	}
2183
	print_dfs_region(rd->dfs_region);
2184 2185 2186
	print_rd_rules(rd);
}

2187
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2188
{
2189
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2190 2191 2192
	print_rd_rules(rd);
}

2193
/* Takes ownership of rd only if it doesn't fail */
2194
static int __set_regdom(const struct ieee80211_regdomain *rd)
2195
{
2196
	const struct ieee80211_regdomain *intersected_rd = NULL;
2197
	struct cfg80211_registered_device *rdev = NULL;
2198
	struct wiphy *request_wiphy;
2199 2200 2201
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2202
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2203 2204 2205 2206 2207 2208 2209 2210 2211
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2212
	if (!last_request)
2213 2214
		return -EINVAL;

2215 2216
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2217
	 * rd is non static (it means CRDA was present and was used last)
2218 2219
	 * and the pending request came in from a country IE
	 */
2220
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2221 2222 2223 2224
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2225
		if (!regdom_changes(rd->alpha2))
2226
			return -EALREADY;
2227 2228
	}

2229 2230
	/*
	 * Now lets set the regulatory domain, update all driver channels
2231 2232
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2233 2234
	 * internal EEPROM data
	 */
2235

2236
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2237 2238
		return -EINVAL;

2239
	if (!is_valid_rd(rd)) {
2240
		pr_err("Invalid regulatory domain detected:\n");
2241 2242
		print_regdomain_info(rd);
		return -EINVAL;
2243 2244
	}

2245
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2246 2247 2248 2249
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2250 2251
		return -ENODEV;
	}
2252

2253
	if (!last_request->intersect) {
2254 2255
		int r;

2256
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2257
			reset_regdomains(false);
2258 2259 2260 2261
			cfg80211_regdomain = rd;
			return 0;
		}

2262 2263 2264 2265
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2266

2267 2268 2269 2270 2271 2272
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2273

2274
		r = reg_copy_regd(&request_wiphy->regd, rd);
2275 2276 2277
		if (r)
			return r;

2278
		reset_regdomains(false);
2279 2280 2281 2282 2283 2284
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2285
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2286

2287 2288 2289
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2290

2291 2292
		/*
		 * We can trash what CRDA provided now.
2293
		 * However if a driver requested this specific regulatory
2294 2295
		 * domain we keep it for its private use
		 */
2296
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2297
			request_wiphy->regd = rd;
2298 2299 2300
		else
			kfree(rd);

2301 2302
		rd = NULL;

2303
		reset_regdomains(false);
2304 2305 2306
		cfg80211_regdomain = intersected_rd;

		return 0;
2307 2308
	}

2309 2310 2311
	if (!intersected_rd)
		return -EINVAL;

2312
	rdev = wiphy_to_dev(request_wiphy);
2313

2314 2315 2316
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2317 2318 2319 2320 2321 2322

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2323
	reset_regdomains(false);
2324
	cfg80211_regdomain = intersected_rd;
2325 2326 2327 2328 2329

	return 0;
}


2330 2331
/*
 * Use this call to set the current regulatory domain. Conflicts with
2332
 * multiple drivers can be ironed out later. Caller must've already
2333 2334
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2335
int set_regdom(const struct ieee80211_regdomain *rd)
2336 2337 2338
{
	int r;

2339 2340
	assert_cfg80211_lock();

2341 2342
	mutex_lock(&reg_mutex);

2343 2344
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2345
	if (r) {
2346 2347 2348
		if (r == -EALREADY)
			reg_set_request_processed();

2349
		kfree(rd);
2350
		mutex_unlock(&reg_mutex);
2351
		return r;
2352
	}
2353 2354

	/* This would make this whole thing pointless */
2355 2356
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2357 2358

	/* update all wiphys now with the new established regulatory domain */
2359
	update_all_wiphy_regulatory(last_request->initiator);
2360

2361
	print_regdomain(cfg80211_regdomain);
2362

2363 2364
	nl80211_send_reg_change_event(last_request);

2365 2366
	reg_set_request_processed();

2367 2368
	mutex_unlock(&reg_mutex);

2369 2370 2371
	return r;
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2391 2392 2393 2394 2395 2396 2397 2398 2399
void wiphy_regulatory_register(struct wiphy *wiphy)
{
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);

	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint++;

2400
	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2401

2402
	mutex_unlock(&reg_mutex);
2403 2404
}

2405
/* Caller must hold cfg80211_mutex */
2406
void wiphy_regulatory_deregister(struct wiphy *wiphy)
2407
{
2408
	struct wiphy *request_wiphy = NULL;
2409

2410 2411
	assert_cfg80211_lock();

2412 2413
	mutex_lock(&reg_mutex);

2414 2415 2416
	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint--;

2417 2418
	kfree(wiphy->regd);

2419 2420
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2421

2422
	if (!request_wiphy || request_wiphy != wiphy)
2423
		goto out;
2424

2425
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2426
	last_request->country_ie_env = ENVIRON_ANY;
2427 2428
out:
	mutex_unlock(&reg_mutex);
2429 2430
}

2431 2432 2433
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2434
		      "restoring regulatory settings\n");
2435 2436 2437
	restore_regulatory_settings(true);
}

2438
int __init regulatory_init(void)
2439
{
2440
	int err = 0;
2441

2442 2443 2444
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2445

2446 2447
	reg_pdev->dev.type = &reg_device_type;

2448
	spin_lock_init(&reg_requests_lock);
2449
	spin_lock_init(&reg_pending_beacons_lock);
2450

2451 2452
	reg_regdb_size_check();

2453
	cfg80211_regdomain = cfg80211_world_regdom;
2454

2455 2456 2457
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2458 2459
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2460
	if (err) {
2461 2462 2463 2464 2465 2466 2467 2468 2469
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2470
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2471 2472 2473
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2474
#endif
2475
	}
2476

2477 2478 2479 2480 2481
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
2482 2483
		regulatory_hint_user(ieee80211_regdom,
				     NL80211_USER_REG_HINT_USER);
2484

2485 2486 2487
	return 0;
}

2488
void /* __init_or_exit */ regulatory_exit(void)
2489
{
2490
	struct regulatory_request *reg_request, *tmp;
2491
	struct reg_beacon *reg_beacon, *btmp;
2492 2493

	cancel_work_sync(&reg_work);
2494
	cancel_delayed_work_sync(&reg_timeout);
2495

2496
	mutex_lock(&cfg80211_mutex);
2497
	mutex_lock(&reg_mutex);
2498

2499
	reset_regdomains(true);
2500

2501
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2502

2503
	platform_device_unregister(reg_pdev);
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2533
	mutex_unlock(&reg_mutex);
2534
	mutex_unlock(&cfg80211_mutex);
2535
}