reg.c 56.7 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38
#include <linux/list.h>
#include <linux/random.h>
39
#include <linux/ctype.h>
40 41 42
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
43
#include "core.h"
44
#include "reg.h"
45
#include "regdb.h"
46
#include "nl80211.h"
47

48
#ifdef CONFIG_CFG80211_REG_DEBUG
49
#define REG_DBG_PRINT(format, args...) \
50
	do { \
51
		printk(KERN_DEBUG "cfg80211: " format , ## args); \
52 53
	} while (0)
#else
54
#define REG_DBG_PRINT(args...)
55 56
#endif

57
/* Receipt of information from last regulatory request */
58
static struct regulatory_request *last_request;
59

60 61
/* To trigger userspace events */
static struct platform_device *reg_pdev;
62

63 64
/*
 * Central wireless core regulatory domains, we only need two,
65
 * the current one and a world regulatory domain in case we have no
66 67
 * information to give us an alpha2
 */
68
const struct ieee80211_regdomain *cfg80211_regdomain;
69

70 71 72 73 74 75
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
76
static DEFINE_MUTEX(reg_mutex);
77 78 79 80 81

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
82

83
/* Used to queue up regulatory hints */
84 85 86
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

87 88 89 90 91 92 93 94 95 96 97 98
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

99 100 101
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

102 103
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
104
	.n_reg_rules = 5,
105 106
	.alpha2 =  "00",
	.reg_rules = {
107 108
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109 110 111
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
112 113
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
114 115 116 117 118 119 120
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
121
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
122 123
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
124 125 126 127

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
128
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
129 130
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
131 132 133
	}
};

134 135
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
136

137
static char *ieee80211_regdom = "00";
138
static char user_alpha2[2];
139

140 141 142 143 144
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
145 146 147 148 149 150 151 152 153 154
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
155

156
	cfg80211_world_regdom = &world_regdom;
157 158 159
	cfg80211_regdomain = NULL;
}

160 161 162 163
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
164
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165
{
166
	BUG_ON(!last_request);
167 168 169 170 171 172 173

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

174
bool is_world_regdom(const char *alpha2)
175 176 177 178 179 180 181
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
182

183
static bool is_alpha2_set(const char *alpha2)
184 185 186 187 188 189 190
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
191

192
static bool is_unknown_alpha2(const char *alpha2)
193 194 195
{
	if (!alpha2)
		return false;
196 197 198 199
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
200 201 202 203
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
204

205 206 207 208
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
209 210
	/*
	 * Special case where regulatory domain is the
211
	 * result of an intersection between two regulatory domain
212 213
	 * structures
	 */
214 215 216 217 218
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

219
static bool is_an_alpha2(const char *alpha2)
220 221 222
{
	if (!alpha2)
		return false;
223
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
224 225 226
		return true;
	return false;
}
227

228
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 230 231 232 233 234 235 236 237
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

238
static bool regdom_changes(const char *alpha2)
239
{
240 241
	assert_cfg80211_lock();

242 243 244 245 246 247 248
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
301
static DEFINE_MUTEX(reg_regdb_search_mutex);
302 303 304 305 306 307 308

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

309
	mutex_lock(&reg_regdb_search_mutex);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
332
	mutex_unlock(&reg_regdb_search_mutex);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

350
	mutex_lock(&reg_regdb_search_mutex);
351
	list_add_tail(&request->list, &reg_regdb_search_list);
352
	mutex_unlock(&reg_regdb_search_mutex);
353 354 355 356 357 358 359

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

360 361 362 363
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

379 380 381
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

382 383 384 385 386 387 388
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392
	assert_cfg80211_lock();

393 394 395 396
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
397
}
398

399
/* Sanity check on a regulatory rule */
400
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401
{
402
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 404
	u32 freq_diff;

405
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 407 408 409 410 411 412
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

413 414
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
415 416 417 418 419
		return false;

	return true;
}

420
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421
{
422
	const struct ieee80211_reg_rule *reg_rule = NULL;
423
	unsigned int i;
424

425 426
	if (!rd->n_reg_rules)
		return false;
427

428 429 430
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

431 432 433 434 435 436 437
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
438 439
}

440 441 442
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
443
{
444 445 446 447 448 449 450 451 452 453
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
454
}
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

481 482 483 484
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

562 563
	/*
	 * First we get a count of the rules we'll need, then we actually
564 565 566
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
567 568
	 * All rules that do check out OK are valid.
	 */
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
596 597
			/*
			 * This time around instead of using the stack lets
598
			 * write to the target rule directly saving ourselves
599 600
			 * a memcpy()
			 */
601 602 603
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
604 605 606 607
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

626 627 628 629
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
630 631 632 633 634 635 636 637 638 639 640 641
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

642 643
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
644
			      u32 desired_bw_khz,
645 646
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
647 648
{
	int i;
649
	bool band_rule_found = false;
650
	const struct ieee80211_regdomain *regd;
651 652 653 654
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
655

656
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
657

658 659 660 661
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
662 663
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 665 666 667
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
668 669
		return -EINVAL;

670
	for (i = 0; i < regd->n_reg_rules; i++) {
671 672 673 674
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

675
		rr = &regd->reg_rules[i];
676 677
		fr = &rr->freq_range;
		pr = &rr->power_rule;
678

679 680
		/*
		 * We only need to know if one frequency rule was
681
		 * was in center_freq's band, that's enough, so lets
682 683
		 * not overwrite it once found
		 */
684 685 686
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

687 688 689
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
690

691
		if (band_rule_found && bw_fits) {
692
			*reg_rule = rr;
693
			return 0;
694 695 696
		}
	}

697 698 699
	if (!band_rule_found)
		return -ERANGE;

700
	return -EINVAL;
701 702
}

703 704 705 706
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
707
{
708
	assert_cfg80211_lock();
709 710 711 712 713
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
714
}
715
EXPORT_SYMBOL(freq_reg_info);
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

751
	REG_DBG_PRINT("Updating information on frequency %d MHz "
752 753 754 755
		      "for %d a MHz width channel with regulatory rule:\n",
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

756
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757 758 759 760 761 762 763 764 765 766 767 768
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
769 770
#endif

771 772 773 774 775 776 777 778 779
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
780 781 782
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
783
			   unsigned int chan_idx)
784 785
{
	int r;
786 787
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 789
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
790
	const struct ieee80211_freq_range *freq_range = NULL;
791 792
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
793
	struct wiphy *request_wiphy = NULL;
794

795 796
	assert_cfg80211_lock();

797 798
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

799 800 801 802 803
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
804

805 806 807 808
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	if (r) {
		/*
		 * We will disable all channels that do not match our
		 * recieved regulatory rule unless the hint is coming
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

825
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826
		chan->flags = IEEE80211_CHAN_DISABLED;
827
		return;
828
	}
829

830 831
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

832
	power_rule = &reg_rule->power_rule;
833 834 835 836
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
837

838
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
840
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 842
		/*
		 * This gaurantees the driver's requested regulatory domain
843
		 * will always be used as a base for further regulatory
844 845
		 * settings
		 */
846
		chan->flags = chan->orig_flags =
847
			map_regdom_flags(reg_rule->flags) | bw_flags;
848 849 850 851 852 853 854
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

855
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856
	chan->max_antenna_gain = min(chan->orig_mag,
857
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
858
	if (chan->orig_mpwr)
859 860
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
861
	else
862
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 864
}

865 866 867
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
868
{
869 870 871 872 873
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
874 875

	for (i = 0; i < sband->n_channels; i++)
876
		handle_channel(wiphy, initiator, band, i);
877 878
}

879 880
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
881
{
882
	if (!last_request) {
883
		REG_DBG_PRINT("Ignoring regulatory request %s since "
884 885
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
886
		return true;
887 888
	}

889
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891
		REG_DBG_PRINT("Ignoring regulatory request %s "
892 893 894
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
895
		return true;
896 897
	}

898 899 900 901
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
902
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904
	    !is_world_regdom(last_request->alpha2)) {
905
		REG_DBG_PRINT("Ignoring regulatory request %s "
906 907 908
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
909
		return true;
910 911
	}

912 913 914
	return false;
}

915
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916
{
917
	struct cfg80211_registered_device *rdev;
918

919 920
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
921 922
}

923 924 925 926 927 928
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
929 930
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
931 932 933 934 935 936 937 938 939

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

940 941 942 943 944
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
945
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 947
		return;

948 949 950
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

951
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953
		channel_changed = true;
954 955
	}

956
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958
		channel_changed = true;
959 960
	}

961 962
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1014 1015
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1016
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 1018 1019 1020 1021 1022 1023
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1024 1025 1026 1027 1028 1029
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1030 1031 1032 1033 1034
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1085
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086
	else
1087
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088 1089

	if (is_ht40_not_allowed(channel_after))
1090
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091
	else
1092
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1122 1123
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1124 1125
{
	enum ieee80211_band band;
1126

1127
	if (ignore_reg_update(wiphy, initiator))
1128
		goto out;
1129
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130
		if (wiphy->bands[band])
1131
			handle_band(wiphy, band, initiator);
1132
	}
1133 1134
out:
	reg_process_beacons(wiphy);
1135
	reg_process_ht_flags(wiphy);
1136
	if (wiphy->reg_notifier)
1137
		wiphy->reg_notifier(wiphy, last_request);
1138 1139
}

1140 1141 1142 1143 1144 1145
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1146 1147
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1148 1149
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1150
	const struct ieee80211_freq_range *freq_range = NULL;
1151 1152 1153
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1154
	assert_reg_lock();
1155

1156 1157 1158 1159
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1160 1161 1162 1163 1164
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1165 1166

	if (r) {
1167
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 1169 1170 1171
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1172 1173 1174 1175
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1176 1177
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1178
	power_rule = &reg_rule->power_rule;
1179 1180 1181 1182
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1183

1184
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1207
	unsigned int bands_set = 0;
1208

1209
	mutex_lock(&reg_mutex);
1210
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 1212 1213 1214
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1215
	}
1216
	mutex_unlock(&reg_mutex);
1217 1218 1219 1220 1221 1222

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1223
}
1224 1225
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1226 1227 1228 1229
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1230 1231
#define REG_INTERSECT	1

1232 1233
/* This has the logic which determines when a new request
 * should be ignored. */
1234 1235
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1236
{
1237
	struct wiphy *last_wiphy = NULL;
1238 1239 1240

	assert_cfg80211_lock();

1241 1242 1243 1244
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1245
	switch (pending_request->initiator) {
1246
	case NL80211_REGDOM_SET_BY_CORE:
1247
		return 0;
1248
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249 1250 1251

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1252
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253
			return -EINVAL;
1254 1255
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256
			if (last_wiphy != wiphy) {
1257 1258
				/*
				 * Two cards with two APs claiming different
1259
				 * Country IE alpha2s. We could
1260 1261 1262
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1263
				if (regdom_changes(pending_request->alpha2))
1264 1265 1266
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1267 1268 1269 1270
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1271
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 1273 1274
				return 0;
			return -EALREADY;
		}
1275
		return 0;
1276 1277
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278
			if (regdom_changes(pending_request->alpha2))
1279
				return 0;
1280
			return -EALREADY;
1281
		}
1282 1283 1284 1285 1286 1287

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1288
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289
		    !regdom_changes(pending_request->alpha2))
1290 1291
			return -EALREADY;

1292
		return REG_INTERSECT;
1293 1294
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295
			return REG_INTERSECT;
1296 1297 1298 1299
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1300
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 1302
			  last_request->intersect)
			return -EOPNOTSUPP;
1303 1304 1305 1306
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1307 1308 1309
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310
			if (regdom_changes(last_request->alpha2))
1311 1312 1313
				return -EAGAIN;
		}

1314
		if (!regdom_changes(pending_request->alpha2))
1315 1316
			return -EALREADY;

1317 1318 1319 1320 1321 1322
		return 0;
	}

	return -EINVAL;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

	if (need_more_processing)
		schedule_work(&reg_work);
}

1338 1339 1340 1341
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1342
 * @pending_request: the regulatory request currently being processed
1343 1344
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1345
 * what it believes should be the current regulatory domain.
1346 1347 1348 1349
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1350
 * Caller must hold &cfg80211_mutex and &reg_mutex
1351
 */
1352 1353
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1354
{
1355
	bool intersect = false;
1356 1357
	int r = 0;

1358 1359
	assert_cfg80211_lock();

1360
	r = ignore_request(wiphy, pending_request);
1361

1362
	if (r == REG_INTERSECT) {
1363 1364
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1365
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1366 1367
			if (r) {
				kfree(pending_request);
1368
				return r;
1369
			}
1370
		}
1371
		intersect = true;
1372
	} else if (r) {
1373 1374
		/*
		 * If the regulatory domain being requested by the
1375
		 * driver has already been set just copy it to the
1376 1377
		 * wiphy
		 */
1378
		if (r == -EALREADY &&
1379 1380
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1381
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 1383
			if (r) {
				kfree(pending_request);
1384
				return r;
1385
			}
1386 1387 1388
			r = -EALREADY;
			goto new_request;
		}
1389
		kfree(pending_request);
1390
		return r;
1391
	}
1392

1393
new_request:
1394
	kfree(last_request);
1395

1396 1397
	last_request = pending_request;
	last_request->intersect = intersect;
1398

1399
	pending_request = NULL;
1400

1401 1402 1403 1404 1405
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1406
	/* When r == REG_INTERSECT we do need to call CRDA */
1407 1408 1409 1410 1411 1412
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1413
		if (r == -EALREADY) {
1414
			nl80211_send_reg_change_event(last_request);
1415 1416
			reg_set_request_processed();
		}
1417
		return r;
1418
	}
1419

1420
	return call_crda(last_request->alpha2);
1421 1422
}

1423
/* This processes *all* regulatory hints */
1424
static void reg_process_hint(struct regulatory_request *reg_request)
1425 1426 1427
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1428
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1429 1430 1431 1432 1433 1434

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1435
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1436
	    !wiphy) {
1437
		kfree(reg_request);
1438
		return;
1439 1440
	}

1441
	r = __regulatory_hint(wiphy, reg_request);
1442
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1443 1444
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1445
		wiphy_update_regulatory(wiphy, initiator);
1446 1447
}

1448 1449 1450 1451 1452
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1453
static void reg_process_pending_hints(void)
1454
{
1455 1456
	struct regulatory_request *reg_request;

1457 1458 1459
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1460 1461 1462 1463 1464 1465 1466
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
			      "for it to be processed...");
		goto out;
	}

1467 1468
	spin_lock(&reg_requests_lock);

1469
	if (list_empty(&reg_requests_list)) {
1470
		spin_unlock(&reg_requests_lock);
1471
		goto out;
1472
	}
1473 1474 1475 1476 1477 1478

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1479
	spin_unlock(&reg_requests_lock);
1480

1481 1482 1483
	reg_process_hint(reg_request);

out:
1484 1485
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1486 1487
}

1488 1489 1490
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1491
	struct cfg80211_registered_device *rdev;
1492 1493
	struct reg_beacon *pending_beacon, *tmp;

1494 1495 1496 1497
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1514 1515
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1526 1527 1528
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1529
	reg_process_pending_beacon_hints();
1530 1531 1532 1533
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1534 1535 1536 1537 1538
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1539 1540 1541 1542 1543 1544 1545
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1546 1547 1548 1549
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1550 1551 1552 1553
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1554 1555
	kfree(last_request);
	last_request = NULL;
1556 1557 1558 1559 1560 1561 1562 1563

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1564
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1565

1566
	queue_regulatory_request(request);
1567

1568
	return 0;
1569 1570
}

1571 1572
/* User hints */
int regulatory_hint_user(const char *alpha2)
1573
{
1574 1575
	struct regulatory_request *request;

1576
	BUG_ON(!alpha2);
1577

1578 1579 1580 1581 1582 1583 1584
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1585
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1611
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1612 1613 1614 1615

	queue_regulatory_request(request);

	return 0;
1616 1617 1618
}
EXPORT_SYMBOL(regulatory_hint);

1619 1620 1621 1622
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1623
void regulatory_hint_11d(struct wiphy *wiphy,
1624 1625 1626
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1627 1628 1629
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1630
	struct regulatory_request *request;
1631

1632
	mutex_lock(&reg_mutex);
1633

1634 1635
	if (unlikely(!last_request))
		goto out;
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1652
	/*
1653
	 * We will run this only upon a successful connection on cfg80211.
1654 1655
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1656
	 */
1657 1658
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1659 1660
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1661

1662 1663
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1664
		goto out;
1665 1666

	request->wiphy_idx = get_wiphy_idx(wiphy);
1667 1668
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1669
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1670 1671
	request->country_ie_env = env;

1672
	mutex_unlock(&reg_mutex);
1673

1674 1675 1676
	queue_regulatory_request(request);

	return;
1677

1678
out:
1679
	mutex_unlock(&reg_mutex);
1680
}
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1692
			REG_DBG_PRINT("Restoring regulatory settings "
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1703
				REG_DBG_PRINT("Keeping preference on "
1704 1705 1706 1707 1708 1709 1710
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1711
			REG_DBG_PRINT("Restoring regulatory settings "
1712 1713 1714 1715 1716 1717 1718
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1719
		REG_DBG_PRINT("Keeping preference on "
1720 1721 1722 1723 1724 1725
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1726
		REG_DBG_PRINT("Restoring regulatory settings\n");
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
1794
	REG_DBG_PRINT("All devices are disconnected, going to "
1795 1796 1797 1798
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1824
	REG_DBG_PRINT("Found new beacon on "
1825 1826 1827 1828 1829
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1847
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1848 1849
{
	unsigned int i;
1850 1851 1852
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1853

1854
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1855 1856 1857 1858 1859 1860 1861
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1862 1863 1864 1865
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1866
		if (power_rule->max_antenna_gain)
1867
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1868 1869 1870 1871 1872 1873 1874
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1875
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1876 1877 1878 1879 1880 1881 1882 1883
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1884
static void print_regdomain(const struct ieee80211_regdomain *rd)
1885 1886
{

1887 1888
	if (is_intersected_alpha2(rd->alpha2)) {

1889 1890
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891 1892
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1893
				last_request->wiphy_idx);
1894
			if (rdev) {
1895 1896
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1897 1898
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1899 1900
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1901
					"domain intersected:\n");
1902
		} else
1903 1904
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
1905
	} else if (is_world_regdom(rd->alpha2))
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1921
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1922 1923 1924 1925 1926 1927
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1928
/* Takes ownership of rd only if it doesn't fail */
1929
static int __set_regdom(const struct ieee80211_regdomain *rd)
1930
{
1931
	const struct ieee80211_regdomain *intersected_rd = NULL;
1932
	struct cfg80211_registered_device *rdev = NULL;
1933
	struct wiphy *request_wiphy;
1934 1935 1936
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1937
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1938 1939 1940 1941 1942 1943 1944 1945 1946
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1947
	if (!last_request)
1948 1949
		return -EINVAL;

1950 1951
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1952
	 * rd is non static (it means CRDA was present and was used last)
1953 1954
	 * and the pending request came in from a country IE
	 */
1955
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1956 1957 1958 1959
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1960
		if (!regdom_changes(rd->alpha2))
1961 1962 1963
			return -EINVAL;
	}

1964 1965
	/*
	 * Now lets set the regulatory domain, update all driver channels
1966 1967
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1968 1969
	 * internal EEPROM data
	 */
1970

1971
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1972 1973
		return -EINVAL;

1974 1975 1976 1977 1978
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1979 1980
	}

1981 1982
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1983
	if (!last_request->intersect) {
1984 1985
		int r;

1986
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1987 1988 1989 1990 1991
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1992 1993 1994 1995
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1996

1997 1998 1999 2000 2001 2002
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2003

2004
		r = reg_copy_regd(&request_wiphy->regd, rd);
2005 2006 2007
		if (r)
			return r;

2008 2009 2010 2011 2012 2013 2014
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2015
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2016

2017 2018 2019
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2020

2021 2022
		/*
		 * We can trash what CRDA provided now.
2023
		 * However if a driver requested this specific regulatory
2024 2025
		 * domain we keep it for its private use
		 */
2026
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2027
			request_wiphy->regd = rd;
2028 2029 2030
		else
			kfree(rd);

2031 2032 2033 2034 2035 2036
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2037 2038
	}

2039 2040 2041
	if (!intersected_rd)
		return -EINVAL;

2042
	rdev = wiphy_to_dev(request_wiphy);
2043

2044 2045 2046
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2047 2048 2049 2050 2051 2052

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2053
	reset_regdomains();
2054
	cfg80211_regdomain = intersected_rd;
2055 2056 2057 2058 2059

	return 0;
}


2060 2061
/*
 * Use this call to set the current regulatory domain. Conflicts with
2062
 * multiple drivers can be ironed out later. Caller must've already
2063 2064
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2065
int set_regdom(const struct ieee80211_regdomain *rd)
2066 2067 2068
{
	int r;

2069 2070
	assert_cfg80211_lock();

2071 2072
	mutex_lock(&reg_mutex);

2073 2074
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2075 2076
	if (r) {
		kfree(rd);
2077
		mutex_unlock(&reg_mutex);
2078
		return r;
2079
	}
2080 2081

	/* This would make this whole thing pointless */
2082 2083
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2084 2085

	/* update all wiphys now with the new established regulatory domain */
2086
	update_all_wiphy_regulatory(last_request->initiator);
2087

2088
	print_regdomain(cfg80211_regdomain);
2089

2090 2091
	nl80211_send_reg_change_event(last_request);

2092 2093
	reg_set_request_processed();

2094 2095
	mutex_unlock(&reg_mutex);

2096 2097 2098
	return r;
}

2099
/* Caller must hold cfg80211_mutex */
2100 2101
void reg_device_remove(struct wiphy *wiphy)
{
2102
	struct wiphy *request_wiphy = NULL;
2103

2104 2105
	assert_cfg80211_lock();

2106 2107
	mutex_lock(&reg_mutex);

2108 2109
	kfree(wiphy->regd);

2110 2111
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2112

2113
	if (!request_wiphy || request_wiphy != wiphy)
2114
		goto out;
2115

2116
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2117
	last_request->country_ie_env = ENVIRON_ANY;
2118 2119
out:
	mutex_unlock(&reg_mutex);
2120 2121
}

2122
int __init regulatory_init(void)
2123
{
2124
	int err = 0;
2125

2126 2127 2128
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2129

2130
	spin_lock_init(&reg_requests_lock);
2131
	spin_lock_init(&reg_pending_beacons_lock);
2132

2133
	cfg80211_regdomain = cfg80211_world_regdom;
2134

2135 2136 2137
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2138 2139
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2140
	if (err) {
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2155
#endif
2156
	}
2157

2158 2159 2160 2161 2162 2163 2164
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2165 2166 2167
	return 0;
}

2168
void /* __init_or_exit */ regulatory_exit(void)
2169
{
2170
	struct regulatory_request *reg_request, *tmp;
2171
	struct reg_beacon *reg_beacon, *btmp;
2172 2173 2174

	cancel_work_sync(&reg_work);

2175
	mutex_lock(&cfg80211_mutex);
2176
	mutex_lock(&reg_mutex);
2177

2178
	reset_regdomains();
2179

2180 2181
	kfree(last_request);

2182
	platform_device_unregister(reg_pdev);
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2212
	mutex_unlock(&reg_mutex);
2213
	mutex_unlock(&cfg80211_mutex);
2214
}