reg.c 57.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44
#include "nl80211.h"
45

46
/* Receipt of information from last regulatory request */
47
static struct regulatory_request *last_request;
48

49 50
/* To trigger userspace events */
static struct platform_device *reg_pdev;
51

52 53 54 55
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
56 57
};

58 59
/*
 * Central wireless core regulatory domains, we only need two,
60
 * the current one and a world regulatory domain in case we have no
61 62
 * information to give us an alpha2
 */
63
const struct ieee80211_regdomain *cfg80211_regdomain;
64

65 66
/*
 * We use this as a place for the rd structure built from the
67
 * last parsed country IE to rest until CRDA gets back to us with
68 69
 * what it thinks should apply for the same country
 */
70 71
static const struct ieee80211_regdomain *country_ie_regdomain;

72
/* Used to queue up regulatory hints */
73 74 75
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

76 77 78 79 80 81 82 83 84 85 86 87
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

88 89
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
90
	.n_reg_rules = 5,
91 92
	.alpha2 =  "00",
	.reg_rules = {
93 94
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
95 96 97
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
98 99
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
100 101 102 103 104 105 106
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
107
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
108 109
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
110 111 112 113

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
114
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
115 116
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
117 118 119
	}
};

120 121
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
122 123 124

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
125 126 127 128
#else
static char *ieee80211_regdom = "00";
#endif

129 130 131
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

132
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
133 134
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
135
 * We make emphasis we are using the exact same frequencies
136 137
 * as before
 */
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
176 177 178 179
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

216
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217 218 219 220 221
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
222 223
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
224
{
225
	return false;
226
}
227 228
#endif

229 230
static void reset_regdomains(void)
{
231 232 233 234 235 236 237 238 239 240 241 242
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
243

244
	cfg80211_world_regdom = &world_regdom;
245 246 247
	cfg80211_regdomain = NULL;
}

248 249 250 251
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
252
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
253
{
254
	BUG_ON(!last_request);
255 256 257 258 259 260 261

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

262
bool is_world_regdom(const char *alpha2)
263 264 265 266 267 268 269
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
270

271
static bool is_alpha2_set(const char *alpha2)
272 273 274 275 276 277 278
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
279

280 281 282 283 284 285 286
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
287

288
static bool is_unknown_alpha2(const char *alpha2)
289 290 291
{
	if (!alpha2)
		return false;
292 293 294 295
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
296 297 298 299
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
300

301 302 303 304
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
305 306
	/*
	 * Special case where regulatory domain is the
307
	 * result of an intersection between two regulatory domain
308 309
	 * structures
	 */
310 311 312 313 314
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

315
static bool is_an_alpha2(const char *alpha2)
316 317 318 319 320 321 322
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
323

324
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
325 326 327 328 329 330 331 332 333
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

334
static bool regdom_changes(const char *alpha2)
335
{
336 337
	assert_cfg80211_lock();

338 339 340 341 342 343 344
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

364 365 366 367
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
390
bool reg_is_valid_request(const char *alpha2)
391
{
392 393 394 395
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
396
}
397

398
/* Sanity check on a regulatory rule */
399
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400
{
401
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402 403
	u32 freq_diff;

404
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405 406 407 408 409 410 411
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

412 413
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
414 415 416 417 418
		return false;

	return true;
}

419
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420
{
421
	const struct ieee80211_reg_rule *reg_rule = NULL;
422
	unsigned int i;
423

424 425
	if (!rd->n_reg_rules)
		return false;
426

427 428 429
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

430 431 432 433 434 435 436
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
437 438
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

479 480
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
481 482
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
483 484
 * with our userspace regulatory agent to get lower bounds.
 */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

529 530
	/*
	 * We need to build a reg rule for each triplet, but first we must
531
	 * calculate the number of reg rules we will need. We will need one
532 533
	 * for each channel subband
	 */
534
	while (country_ie_len >= 3) {
535
		int end_channel = 0;
536 537 538 539 540 541 542 543 544 545 546
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

564
		cur_channel = triplet->chans.first_channel;
565
		cur_sub_max_channel = end_channel;
566 567 568 569 570

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

571 572
		/*
		 * Do not allow overlapping channels. Also channels
573
		 * passed in each subband must be monotonically
574 575
		 * increasing
		 */
576 577 578 579 580 581 582
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

583 584
		/*
		 * When dot11RegulatoryClassesRequired is supported
585 586
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
587 588
		 * don't support them
		 */
589 590 591 592 593 594 595 596 597 598
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

599 600 601 602
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
623
		int end_channel = 0;
624 625 626 627 628 629
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

630 631 632 633
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
634 635 636 637 638 639 640 641 642 643 644 645 646
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

647 648 649 650 651 652 653 654
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

655 656
		/*
		 * The +10 is since the regulatory domain expects
657 658
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
659 660
		 * the channels passed
		 */
661 662 663 664 665
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
666
				end_channel) + 10);
667

668 669 670 671 672
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


688 689 690 691
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

769 770
	/*
	 * First we get a count of the rules we'll need, then we actually
771 772 773
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
774 775
	 * All rules that do check out OK are valid.
	 */
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
803 804
			/*
			 * This time around instead of using the stack lets
805
			 * write to the target rule directly saving ourselves
806 807
			 * a memcpy()
			 */
808 809 810
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
811 812 813 814
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

833 834 835 836
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
837 838 839 840 841 842 843 844 845 846 847 848
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

849 850 851 852 853
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
854 855
{
	int i;
856
	bool band_rule_found = false;
857
	const struct ieee80211_regdomain *regd;
858
	u32 max_bandwidth = 0;
859

860
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
861

862 863 864 865
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
866 867
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
868 869 870 871
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
872 873
		return -EINVAL;

874
	for (i = 0; i < regd->n_reg_rules; i++) {
875 876 877 878
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

879
		rr = &regd->reg_rules[i];
880 881
		fr = &rr->freq_range;
		pr = &rr->power_rule;
882

883 884
		/*
		 * We only need to know if one frequency rule was
885
		 * was in center_freq's band, that's enough, so lets
886 887
		 * not overwrite it once found
		 */
888 889 890
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

891
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
892

893 894 895
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
896 897 898 899
			break;
		}
	}

900 901 902
	if (!band_rule_found)
		return -ERANGE;

903 904
	return !max_bandwidth;
}
905
EXPORT_SYMBOL(freq_reg_info);
906

907
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
908 909 910 911 912
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
913

914 915
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
916 917
{
	int r;
918
	u32 flags;
919 920 921
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
922 923
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
924
	struct wiphy *request_wiphy = NULL;
925

926 927
	assert_cfg80211_lock();

928 929
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

930 931 932 933 934
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
935

936
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
937 938 939
		&max_bandwidth, &reg_rule);

	if (r) {
940 941
		/*
		 * This means no regulatory rule was found in the country IE
942 943 944 945 946 947 948 949 950 951
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
952 953
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
954 955 956 957 958 959 960
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
961 962 963 964
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
965
#ifdef CONFIG_CFG80211_REG_DEBUG
966 967
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
968 969 970 971 972 973 974 975
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
976 977 978
		return;
	}

979 980
	power_rule = &reg_rule->power_rule;

981
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
982 983
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
984 985
		/*
		 * This gaurantees the driver's requested regulatory domain
986
		 * will always be used as a base for further regulatory
987 988
		 * settings
		 */
989 990 991 992 993 994 995 996 997 998
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

999
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
1000
	chan->max_antenna_gain = min(chan->orig_mag,
1001 1002
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1003
	if (chan->orig_mpwr)
1004 1005
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1006
	else
1007
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1008 1009
}

1010
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1011
{
1012 1013 1014 1015 1016
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1017 1018

	for (i = 0; i < sband->n_channels; i++)
1019
		handle_channel(wiphy, band, i);
1020 1021
}

1022 1023
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1024 1025 1026
{
	if (!last_request)
		return true;
1027
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1028
		  wiphy->custom_regulatory)
1029
		return true;
1030 1031 1032 1033
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1034 1035
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1036 1037 1038 1039
		return true;
	return false;
}

1040
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1041
{
1042
	struct cfg80211_registered_device *drv;
1043

1044
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1045
		wiphy_update_regulatory(&drv->wiphy, initiator);
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DEBUG_BEACON_FLAG(desc) \
	printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
		"frequency: %d MHz (Ch %d) on %s\n", \
		reg_beacon->chan.center_freq, \
		ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
		wiphy_name(wiphy));
#else
#define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
#endif
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
		REG_DEBUG_BEACON_FLAG("active scanning");
	}

	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
		REG_DEBUG_BEACON_FLAG("beaconing");
	}

	chan->beacon_found = true;
#undef REG_DEBUG_BEACON_FLAG
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1136
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1150 1151
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1152 1153
{
	enum ieee80211_band band;
1154

1155
	if (ignore_reg_update(wiphy, initiator))
1156
		goto out;
1157
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1158
		if (wiphy->bands[band])
1159
			handle_band(wiphy, band);
1160
	}
1161 1162
out:
	reg_process_beacons(wiphy);
1163
	if (wiphy->reg_notifier)
1164
		wiphy->reg_notifier(wiphy, last_request);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1220 1221
	}
}
1222 1223
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1247

1248 1249 1250 1251
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1252 1253
#define REG_INTERSECT	1

1254 1255
/* This has the logic which determines when a new request
 * should be ignored. */
1256 1257
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1258
{
1259
	struct wiphy *last_wiphy = NULL;
1260 1261 1262

	assert_cfg80211_lock();

1263 1264 1265 1266
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1267
	switch (pending_request->initiator) {
1268
	case NL80211_REGDOM_SET_BY_CORE:
1269
		return -EINVAL;
1270
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1271 1272 1273

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1274
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1275
			return -EINVAL;
1276 1277
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1278
			if (last_wiphy != wiphy) {
1279 1280 1281 1282 1283 1284
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1285
				if (regdom_changes(pending_request->alpha2))
1286 1287 1288
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1289 1290 1291 1292
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1293
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1294 1295 1296
				return 0;
			return -EALREADY;
		}
1297
		return REG_INTERSECT;
1298 1299
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1300 1301
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1302
			if (regdom_changes(pending_request->alpha2))
1303
				return 0;
1304
			return -EALREADY;
1305
		}
1306 1307 1308 1309 1310 1311

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1312
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1313
		    !regdom_changes(pending_request->alpha2))
1314 1315
			return -EALREADY;

1316
		return REG_INTERSECT;
1317 1318
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1319
			return REG_INTERSECT;
1320 1321 1322 1323
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1324
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1325 1326
			  last_request->intersect)
			return -EOPNOTSUPP;
1327 1328 1329 1330
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1331 1332 1333
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1334
			if (regdom_changes(last_request->alpha2))
1335 1336 1337
				return -EAGAIN;
		}

1338
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1339
		    !regdom_changes(pending_request->alpha2))
1340 1341
			return -EALREADY;

1342 1343 1344 1345 1346 1347
		return 0;
	}

	return -EINVAL;
}

1348 1349 1350 1351
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1352
 * @pending_request: the regulatory request currently being processed
1353 1354
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1355
 * what it believes should be the current regulatory domain.
1356 1357 1358 1359 1360 1361
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1362 1363
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1364
{
1365
	bool intersect = false;
1366 1367
	int r = 0;

1368 1369
	assert_cfg80211_lock();

1370
	r = ignore_request(wiphy, pending_request);
1371

1372
	if (r == REG_INTERSECT) {
1373 1374
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1375
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1376 1377
			if (r) {
				kfree(pending_request);
1378
				return r;
1379
			}
1380
		}
1381
		intersect = true;
1382
	} else if (r) {
1383 1384
		/*
		 * If the regulatory domain being requested by the
1385
		 * driver has already been set just copy it to the
1386 1387
		 * wiphy
		 */
1388
		if (r == -EALREADY &&
1389 1390
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1391
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1392 1393
			if (r) {
				kfree(pending_request);
1394
				return r;
1395
			}
1396 1397 1398
			r = -EALREADY;
			goto new_request;
		}
1399
		kfree(pending_request);
1400
		return r;
1401
	}
1402

1403
new_request:
1404
	kfree(last_request);
1405

1406 1407
	last_request = pending_request;
	last_request->intersect = intersect;
1408

1409
	pending_request = NULL;
1410 1411

	/* When r == REG_INTERSECT we do need to call CRDA */
1412 1413 1414 1415 1416 1417 1418 1419
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1420
		return r;
1421
	}
1422

1423
	return call_crda(last_request->alpha2);
1424 1425
}

1426
/* This currently only processes user and driver regulatory hints */
1427
static void reg_process_hint(struct regulatory_request *reg_request)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1439
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1440
	    !wiphy) {
1441
		kfree(reg_request);
1442 1443 1444
		goto out;
	}

1445
	r = __regulatory_hint(wiphy, reg_request);
1446 1447 1448 1449 1450 1451 1452
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1453
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1465 1466
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1467 1468 1469 1470 1471
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1506 1507 1508
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1509
	reg_process_pending_beacon_hints();
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1537
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1538

1539
	queue_regulatory_request(request);
1540

1541
	return 0;
1542 1543
}

1544 1545
/* User hints */
int regulatory_hint_user(const char *alpha2)
1546
{
1547 1548
	struct regulatory_request *request;

1549
	BUG_ON(!alpha2);
1550

1551 1552 1553 1554 1555 1556 1557
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1558
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1584
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1585 1586 1587 1588

	queue_regulatory_request(request);

	return 0;
1589 1590 1591
}
EXPORT_SYMBOL(regulatory_hint);

1592 1593 1594
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1595 1596
	struct wiphy *request_wiphy;

1597 1598
	assert_cfg80211_lock();

1599 1600 1601 1602
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1603 1604 1605
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1606
		return false;
1607 1608

	if (likely(request_wiphy != wiphy))
1609
		return !country_ie_integrity_changes(country_ie_checksum);
1610 1611
	/*
	 * We should not have let these through at this point, they
1612
	 * should have been picked up earlier by the first alpha2 check
1613 1614
	 * on the device
	 */
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1628
	struct regulatory_request *request;
1629

1630
	mutex_lock(&cfg80211_mutex);
1631

1632 1633 1634 1635 1636
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1637 1638 1639 1640 1641 1642 1643
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1644 1645
	/*
	 * Pending country IE processing, this can happen after we
1646
	 * call CRDA and wait for a response if a beacon was received before
1647 1648
	 * we were able to process the last regulatory_hint_11d() call
	 */
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1660 1661
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1662
	 * we optimize an early check to exit out early if we don't have to
1663 1664
	 * do anything
	 */
1665 1666 1667
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1668 1669
		struct cfg80211_registered_device *drv_last_ie;

1670 1671
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1672

1673 1674 1675 1676
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1677
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1678 1679 1680 1681
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1682 1683 1684 1685 1686
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1687 1688
			/*
			 * the wiphy moved on to another BSSID or the AP
1689 1690 1691
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1692 1693
			 * AP with different settings
			 */
1694 1695
			goto out;
		} else {
1696 1697 1698 1699
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1714 1715
	/*
	 * This will not happen right now but we leave it here for the
1716 1717
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1718 1719 1720 1721 1722 1723
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1724
		goto free_rd_out;
1725

1726 1727 1728 1729
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1730 1731 1732 1733
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1734 1735
	country_ie_regdomain = rd;

1736 1737 1738
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1739
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1740 1741 1742 1743
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1744

1745 1746 1747
	queue_regulatory_request(request);

	return;
1748 1749 1750

free_rd_out:
	kfree(rd);
1751
out:
1752
	mutex_unlock(&cfg80211_mutex);
1753 1754
}
EXPORT_SYMBOL(regulatory_hint_11d);
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1805
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1806 1807
{
	unsigned int i;
1808 1809 1810
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1811 1812 1813 1814 1815 1816 1817 1818 1819

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1820 1821 1822 1823
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1842
static void print_regdomain(const struct ieee80211_regdomain *rd)
1843 1844
{

1845 1846
	if (is_intersected_alpha2(rd->alpha2)) {

1847 1848
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1849 1850 1851 1852
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1853 1854 1855 1856 1857 1858 1859 1860 1861
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1862
					"domain intersected: \n");
1863
	} else if (is_world_regdom(rd->alpha2))
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1879
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1880 1881 1882 1883 1884 1885
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1899
		print_regdomain_info(intersected_rd);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1913
/* Takes ownership of rd only if it doesn't fail */
1914
static int __set_regdom(const struct ieee80211_regdomain *rd)
1915
{
1916
	const struct ieee80211_regdomain *intersected_rd = NULL;
1917
	struct cfg80211_registered_device *drv = NULL;
1918
	struct wiphy *request_wiphy;
1919 1920 1921
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1922
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1923 1924 1925 1926 1927 1928 1929 1930 1931
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1932
	if (!last_request)
1933 1934
		return -EINVAL;

1935 1936
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1937
	 * rd is non static (it means CRDA was present and was used last)
1938 1939
	 * and the pending request came in from a country IE
	 */
1940
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1941 1942 1943 1944
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1945
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1946
		    !regdom_changes(rd->alpha2))
1947 1948 1949
			return -EINVAL;
	}

1950 1951
	/*
	 * Now lets set the regulatory domain, update all driver channels
1952 1953
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1954 1955
	 * internal EEPROM data
	 */
1956

1957
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1958 1959
		return -EINVAL;

1960 1961 1962 1963 1964
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1965 1966
	}

1967 1968
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1969
	if (!last_request->intersect) {
1970 1971
		int r;

1972
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1973 1974 1975 1976 1977
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1978 1979 1980 1981
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1982

1983
		BUG_ON(request_wiphy->regd);
1984

1985
		r = reg_copy_regd(&request_wiphy->regd, rd);
1986 1987 1988
		if (r)
			return r;

1989 1990 1991 1992 1993 1994 1995
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1996
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1997

1998 1999 2000
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2001

2002 2003
		/*
		 * We can trash what CRDA provided now.
2004
		 * However if a driver requested this specific regulatory
2005 2006
		 * domain we keep it for its private use
		 */
2007
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2008
			request_wiphy->regd = rd;
2009 2010 2011
		else
			kfree(rd);

2012 2013 2014 2015 2016 2017
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2018 2019
	}

2020 2021 2022 2023 2024 2025
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);
2026
	BUG_ON(rd == country_ie_regdomain);
2027

2028 2029 2030 2031
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2032

2033
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2034

2035 2036 2037
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2038

2039 2040
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2041 2042 2043 2044

	if (!intersected_rd)
		return -EINVAL;

2045
	drv = wiphy_to_dev(request_wiphy);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2056
	reset_regdomains();
2057
	cfg80211_regdomain = intersected_rd;
2058 2059 2060 2061 2062

	return 0;
}


2063 2064
/*
 * Use this call to set the current regulatory domain. Conflicts with
2065
 * multiple drivers can be ironed out later. Caller must've already
2066 2067
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2068
int set_regdom(const struct ieee80211_regdomain *rd)
2069 2070 2071
{
	int r;

2072 2073
	assert_cfg80211_lock();

2074 2075
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2076 2077
	if (r) {
		kfree(rd);
2078
		return r;
2079
	}
2080 2081

	/* This would make this whole thing pointless */
2082 2083
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2084 2085

	/* update all wiphys now with the new established regulatory domain */
2086
	update_all_wiphy_regulatory(last_request->initiator);
2087

2088
	print_regdomain(cfg80211_regdomain);
2089

2090 2091
	nl80211_send_reg_change_event(last_request);

2092 2093 2094
	return r;
}

2095
/* Caller must hold cfg80211_mutex */
2096 2097
void reg_device_remove(struct wiphy *wiphy)
{
2098 2099
	struct wiphy *request_wiphy;

2100 2101
	assert_cfg80211_lock();

2102 2103
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2104
	kfree(wiphy->regd);
2105
	if (!last_request || !request_wiphy)
2106
		return;
2107
	if (request_wiphy != wiphy)
2108
		return;
2109
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2110 2111 2112
	last_request->country_ie_env = ENVIRON_ANY;
}

2113 2114
int regulatory_init(void)
{
2115
	int err = 0;
2116

2117 2118 2119
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2120

2121
	spin_lock_init(&reg_requests_lock);
2122
	spin_lock_init(&reg_pending_beacons_lock);
2123

2124
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2125
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2126

2127
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2128
	print_regdomain_info(cfg80211_regdomain);
2129 2130
	/*
	 * The old code still requests for a new regdomain and if
2131
	 * you have CRDA you get it updated, otherwise you get
2132 2133 2134 2135 2136 2137
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2138
	 */
2139
	err = regulatory_hint_core(ieee80211_regdom);
2140
#else
2141
	cfg80211_regdomain = cfg80211_world_regdom;
2142

2143
	err = regulatory_hint_core(ieee80211_regdom);
2144
#endif
2145
	if (err) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2160
#endif
2161
	}
2162

2163 2164 2165 2166 2167
	return 0;
}

void regulatory_exit(void)
{
2168
	struct regulatory_request *reg_request, *tmp;
2169
	struct reg_beacon *reg_beacon, *btmp;
2170 2171 2172

	cancel_work_sync(&reg_work);

2173
	mutex_lock(&cfg80211_mutex);
2174

2175
	reset_regdomains();
2176

2177 2178 2179
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2180 2181
	kfree(last_request);

2182
	platform_device_unregister(reg_pdev);
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2212
	mutex_unlock(&cfg80211_mutex);
2213
}