reg.c 56.1 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38
#include <linux/list.h>
#include <linux/random.h>
39
#include <linux/ctype.h>
40 41 42
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
43
#include "core.h"
44
#include "reg.h"
45
#include "regdb.h"
46
#include "nl80211.h"
47

48
#ifdef CONFIG_CFG80211_REG_DEBUG
49
#define REG_DBG_PRINT(format, args...) \
50
	do { \
51
		printk(KERN_DEBUG "cfg80211: " format , ## args); \
52 53
	} while (0)
#else
54
#define REG_DBG_PRINT(args...)
55 56
#endif

57
/* Receipt of information from last regulatory request */
58
static struct regulatory_request *last_request;
59

60 61
/* To trigger userspace events */
static struct platform_device *reg_pdev;
62

63 64
/*
 * Central wireless core regulatory domains, we only need two,
65
 * the current one and a world regulatory domain in case we have no
66 67
 * information to give us an alpha2
 */
68
const struct ieee80211_regdomain *cfg80211_regdomain;
69

70 71 72 73 74 75
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
76
static DEFINE_MUTEX(reg_mutex);
77 78 79 80 81

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
82

83
/* Used to queue up regulatory hints */
84 85 86
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

87 88 89 90 91 92 93 94 95 96 97 98
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

99 100
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
101
	.n_reg_rules = 5,
102 103
	.alpha2 =  "00",
	.reg_rules = {
104 105
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 107 108
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 110
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
111 112 113 114 115 116 117
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
118
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 120
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
121 122 123 124

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
125
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 127
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
128 129 130
	}
};

131 132
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
133

134
static char *ieee80211_regdom = "00";
135
static char user_alpha2[2];
136

137 138 139 140 141
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
142 143 144 145 146 147 148 149 150 151
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
152

153
	cfg80211_world_regdom = &world_regdom;
154 155 156
	cfg80211_regdomain = NULL;
}

157 158 159 160
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
161
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162
{
163
	BUG_ON(!last_request);
164 165 166 167 168 169 170

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

171
bool is_world_regdom(const char *alpha2)
172 173 174 175 176 177 178
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
179

180
static bool is_alpha2_set(const char *alpha2)
181 182 183 184 185 186 187
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
188

189
static bool is_unknown_alpha2(const char *alpha2)
190 191 192
{
	if (!alpha2)
		return false;
193 194 195 196
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
197 198 199 200
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
201

202 203 204 205
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
206 207
	/*
	 * Special case where regulatory domain is the
208
	 * result of an intersection between two regulatory domain
209 210
	 * structures
	 */
211 212 213 214 215
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

216
static bool is_an_alpha2(const char *alpha2)
217 218 219
{
	if (!alpha2)
		return false;
220
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 222 223
		return true;
	return false;
}
224

225
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 227 228 229 230 231 232 233 234
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

235
static bool regdom_changes(const char *alpha2)
236
{
237 238
	assert_cfg80211_lock();

239 240 241 242 243 244 245
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
298
static DEFINE_MUTEX(reg_regdb_search_mutex);
299 300 301 302 303 304 305

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

306
	mutex_lock(&reg_regdb_search_mutex);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
329
	mutex_unlock(&reg_regdb_search_mutex);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

347
	mutex_lock(&reg_regdb_search_mutex);
348
	list_add_tail(&request->list, &reg_regdb_search_list);
349
	mutex_unlock(&reg_regdb_search_mutex);
350 351 352 353 354 355 356

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

376 377 378
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

379 380 381 382 383 384 385
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
386
bool reg_is_valid_request(const char *alpha2)
387
{
388 389
	assert_cfg80211_lock();

390 391 392 393
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
394
}
395

396
/* Sanity check on a regulatory rule */
397
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398
{
399
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 401
	u32 freq_diff;

402
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 404 405 406 407 408 409
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

410 411
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
412 413 414 415 416
		return false;

	return true;
}

417
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418
{
419
	const struct ieee80211_reg_rule *reg_rule = NULL;
420
	unsigned int i;
421

422 423
	if (!rd->n_reg_rules)
		return false;
424

425 426 427
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

428 429 430 431 432 433 434
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
435 436
}

437 438 439
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
440
{
441 442 443 444 445 446 447 448 449 450
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
451
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479 480 481
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

559 560
	/*
	 * First we get a count of the rules we'll need, then we actually
561 562 563
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
564 565
	 * All rules that do check out OK are valid.
	 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
593 594
			/*
			 * This time around instead of using the stack lets
595
			 * write to the target rule directly saving ourselves
596 597
			 * a memcpy()
			 */
598 599 600
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
601 602 603 604
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

623 624 625 626
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
627 628 629 630 631 632 633 634 635 636 637 638
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

639 640
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
641
			      u32 desired_bw_khz,
642 643
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
644 645
{
	int i;
646
	bool band_rule_found = false;
647
	const struct ieee80211_regdomain *regd;
648 649 650 651
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
652

653
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
654

655 656 657 658
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
659 660
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 662 663 664
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
665 666
		return -EINVAL;

667
	for (i = 0; i < regd->n_reg_rules; i++) {
668 669 670 671
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

672
		rr = &regd->reg_rules[i];
673 674
		fr = &rr->freq_range;
		pr = &rr->power_rule;
675

676 677
		/*
		 * We only need to know if one frequency rule was
678
		 * was in center_freq's band, that's enough, so lets
679 680
		 * not overwrite it once found
		 */
681 682 683
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

684 685 686
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
687

688
		if (band_rule_found && bw_fits) {
689
			*reg_rule = rr;
690
			return 0;
691 692 693
		}
	}

694 695 696
	if (!band_rule_found)
		return -ERANGE;

697
	return -EINVAL;
698 699
}

700 701 702 703
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
704
{
705
	assert_cfg80211_lock();
706 707 708 709 710
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
711
}
712
EXPORT_SYMBOL(freq_reg_info);
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

748
	REG_DBG_PRINT("Updating information on frequency %d MHz "
749 750 751 752
		      "for %d a MHz width channel with regulatory rule:\n",
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

753
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
754 755 756 757 758 759 760 761 762 763 764 765
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
766 767
#endif

768 769 770 771 772 773 774 775 776
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
777 778 779
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
780
			   unsigned int chan_idx)
781 782
{
	int r;
783 784
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
785 786
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
787
	const struct ieee80211_freq_range *freq_range = NULL;
788 789
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
790
	struct wiphy *request_wiphy = NULL;
791

792 793
	assert_cfg80211_lock();

794 795
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

796 797 798 799 800
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
801

802 803 804 805
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	if (r) {
		/*
		 * We will disable all channels that do not match our
		 * recieved regulatory rule unless the hint is coming
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

822
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
823
		chan->flags = IEEE80211_CHAN_DISABLED;
824
		return;
825
	}
826

827 828
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

829
	power_rule = &reg_rule->power_rule;
830 831 832 833
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
834

835
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
836
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
837
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
838 839
		/*
		 * This gaurantees the driver's requested regulatory domain
840
		 * will always be used as a base for further regulatory
841 842
		 * settings
		 */
843
		chan->flags = chan->orig_flags =
844
			map_regdom_flags(reg_rule->flags) | bw_flags;
845 846 847 848 849 850 851
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

852
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
853
	chan->max_antenna_gain = min(chan->orig_mag,
854
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
855
	if (chan->orig_mpwr)
856 857
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
858
	else
859
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
860 861
}

862 863 864
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
865
{
866 867 868 869 870
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
871 872

	for (i = 0; i < sband->n_channels; i++)
873
		handle_channel(wiphy, initiator, band, i);
874 875
}

876 877
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
878
{
879
	if (!last_request) {
880
		REG_DBG_PRINT("Ignoring regulatory request %s since "
881 882
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
883
		return true;
884 885
	}

886
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
887
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
888
		REG_DBG_PRINT("Ignoring regulatory request %s "
889 890 891
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
892
		return true;
893 894
	}

895 896 897 898
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
899
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
900
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
901
	    !is_world_regdom(last_request->alpha2)) {
902
		REG_DBG_PRINT("Ignoring regulatory request %s "
903 904 905
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
906
		return true;
907 908
	}

909 910 911
	return false;
}

912
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
913
{
914
	struct cfg80211_registered_device *rdev;
915

916 917
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
918 919
}

920 921 922 923 924 925
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
926 927
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
928 929 930 931 932 933 934 935 936

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

937 938 939 940 941
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
942
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
943 944
		return;

945 946 947
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

948
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
949
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
950
		channel_changed = true;
951 952
	}

953
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
954
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
955
		channel_changed = true;
956 957
	}

958 959
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1011 1012
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1013
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1014 1015 1016 1017 1018 1019 1020
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1021 1022 1023 1024 1025 1026
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1027 1028 1029 1030 1031
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1082
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1083
	else
1084
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1085 1086

	if (is_ht40_not_allowed(channel_after))
1087
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1088
	else
1089
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1119 1120
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1121 1122
{
	enum ieee80211_band band;
1123

1124
	if (ignore_reg_update(wiphy, initiator))
1125
		goto out;
1126
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127
		if (wiphy->bands[band])
1128
			handle_band(wiphy, band, initiator);
1129
	}
1130 1131
out:
	reg_process_beacons(wiphy);
1132
	reg_process_ht_flags(wiphy);
1133
	if (wiphy->reg_notifier)
1134
		wiphy->reg_notifier(wiphy, last_request);
1135 1136
}

1137 1138 1139 1140 1141 1142
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1143 1144
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1145 1146
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1147
	const struct ieee80211_freq_range *freq_range = NULL;
1148 1149 1150
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1151
	assert_reg_lock();
1152

1153 1154 1155 1156
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1157 1158 1159 1160 1161
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1162 1163

	if (r) {
1164
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1165 1166 1167 1168
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1169 1170 1171 1172
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1173 1174
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1175
	power_rule = &reg_rule->power_rule;
1176 1177 1178 1179
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1180

1181
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1204
	unsigned int bands_set = 0;
1205

1206
	mutex_lock(&reg_mutex);
1207
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1208 1209 1210 1211
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1212
	}
1213
	mutex_unlock(&reg_mutex);
1214 1215 1216 1217 1218 1219

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1220
}
1221 1222
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1223 1224 1225 1226
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1227 1228
#define REG_INTERSECT	1

1229 1230
/* This has the logic which determines when a new request
 * should be ignored. */
1231 1232
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1233
{
1234
	struct wiphy *last_wiphy = NULL;
1235 1236 1237

	assert_cfg80211_lock();

1238 1239 1240 1241
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1242
	switch (pending_request->initiator) {
1243
	case NL80211_REGDOM_SET_BY_CORE:
1244
		return 0;
1245
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1246 1247 1248

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1249
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1250
			return -EINVAL;
1251 1252
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1253
			if (last_wiphy != wiphy) {
1254 1255
				/*
				 * Two cards with two APs claiming different
1256
				 * Country IE alpha2s. We could
1257 1258 1259
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1260
				if (regdom_changes(pending_request->alpha2))
1261 1262 1263
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1264 1265 1266 1267
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1268
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1269 1270 1271
				return 0;
			return -EALREADY;
		}
1272
		return 0;
1273 1274
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1275
			if (regdom_changes(pending_request->alpha2))
1276
				return 0;
1277
			return -EALREADY;
1278
		}
1279 1280 1281 1282 1283 1284

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1285
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1286
		    !regdom_changes(pending_request->alpha2))
1287 1288
			return -EALREADY;

1289
		return REG_INTERSECT;
1290 1291
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1292
			return REG_INTERSECT;
1293 1294 1295 1296
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1297
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1298 1299
			  last_request->intersect)
			return -EOPNOTSUPP;
1300 1301 1302 1303
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1304 1305 1306
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1307
			if (regdom_changes(last_request->alpha2))
1308 1309 1310
				return -EAGAIN;
		}

1311
		if (!regdom_changes(pending_request->alpha2))
1312 1313
			return -EALREADY;

1314 1315 1316 1317 1318 1319
		return 0;
	}

	return -EINVAL;
}

1320 1321 1322 1323
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1324
 * @pending_request: the regulatory request currently being processed
1325 1326
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1327
 * what it believes should be the current regulatory domain.
1328 1329 1330 1331
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1332
 * Caller must hold &cfg80211_mutex and &reg_mutex
1333
 */
1334 1335
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1336
{
1337
	bool intersect = false;
1338 1339
	int r = 0;

1340 1341
	assert_cfg80211_lock();

1342
	r = ignore_request(wiphy, pending_request);
1343

1344
	if (r == REG_INTERSECT) {
1345 1346
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1347
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1348 1349
			if (r) {
				kfree(pending_request);
1350
				return r;
1351
			}
1352
		}
1353
		intersect = true;
1354
	} else if (r) {
1355 1356
		/*
		 * If the regulatory domain being requested by the
1357
		 * driver has already been set just copy it to the
1358 1359
		 * wiphy
		 */
1360
		if (r == -EALREADY &&
1361 1362
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1363
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1364 1365
			if (r) {
				kfree(pending_request);
1366
				return r;
1367
			}
1368 1369 1370
			r = -EALREADY;
			goto new_request;
		}
1371
		kfree(pending_request);
1372
		return r;
1373
	}
1374

1375
new_request:
1376
	kfree(last_request);
1377

1378 1379
	last_request = pending_request;
	last_request->intersect = intersect;
1380

1381
	pending_request = NULL;
1382

1383 1384 1385 1386 1387
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1388
	/* When r == REG_INTERSECT we do need to call CRDA */
1389 1390 1391 1392 1393 1394 1395 1396
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1397
		return r;
1398
	}
1399

1400
	return call_crda(last_request->alpha2);
1401 1402
}

1403
/* This processes *all* regulatory hints */
1404
static void reg_process_hint(struct regulatory_request *reg_request)
1405 1406 1407
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1408
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1409 1410 1411 1412

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1413
	mutex_lock(&reg_mutex);
1414 1415 1416 1417

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1418
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1419
	    !wiphy) {
1420
		kfree(reg_request);
1421 1422 1423
		goto out;
	}

1424
	r = __regulatory_hint(wiphy, reg_request);
1425
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1426 1427
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1428
		wiphy_update_regulatory(wiphy, initiator);
1429
out:
1430
	mutex_unlock(&reg_mutex);
1431 1432 1433
	mutex_unlock(&cfg80211_mutex);
}

1434
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1446 1447
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1448 1449 1450 1451 1452
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1453 1454 1455
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1456
	struct cfg80211_registered_device *rdev;
1457 1458
	struct reg_beacon *pending_beacon, *tmp;

1459 1460 1461 1462
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1479 1480
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1491 1492 1493
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1494
	reg_process_pending_beacon_hints();
1495 1496 1497 1498 1499 1500
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
1501 1502 1503 1504 1505
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1506 1507 1508 1509 1510 1511 1512
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1513 1514 1515 1516
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1517 1518 1519 1520
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1521 1522
	kfree(last_request);
	last_request = NULL;
1523 1524 1525 1526 1527 1528 1529 1530

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1531
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1532

1533 1534 1535 1536 1537
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1538
	reg_process_hint(request);
1539

1540
	return 0;
1541 1542
}

1543 1544
/* User hints */
int regulatory_hint_user(const char *alpha2)
1545
{
1546 1547
	struct regulatory_request *request;

1548
	BUG_ON(!alpha2);
1549

1550 1551 1552 1553 1554 1555 1556
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1557
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1583
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1584 1585 1586 1587

	queue_regulatory_request(request);

	return 0;
1588 1589 1590
}
EXPORT_SYMBOL(regulatory_hint);

1591 1592 1593 1594
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1595
void regulatory_hint_11d(struct wiphy *wiphy,
1596 1597 1598
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1599 1600 1601
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1602
	struct regulatory_request *request;
1603

1604
	mutex_lock(&reg_mutex);
1605

1606 1607
	if (unlikely(!last_request))
		goto out;
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1624
	/*
1625
	 * We will run this only upon a successful connection on cfg80211.
1626 1627
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1628
	 */
1629 1630
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1631 1632
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1633

1634 1635
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1636
		goto out;
1637 1638

	request->wiphy_idx = get_wiphy_idx(wiphy);
1639 1640
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1641
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1642 1643
	request->country_ie_env = env;

1644
	mutex_unlock(&reg_mutex);
1645

1646 1647 1648
	queue_regulatory_request(request);

	return;
1649

1650
out:
1651
	mutex_unlock(&reg_mutex);
1652
}
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1664
			REG_DBG_PRINT("Restoring regulatory settings "
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1675
				REG_DBG_PRINT("Keeping preference on "
1676 1677 1678 1679 1680 1681 1682
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1683
			REG_DBG_PRINT("Restoring regulatory settings "
1684 1685 1686 1687 1688 1689 1690
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1691
		REG_DBG_PRINT("Keeping preference on "
1692 1693 1694 1695 1696 1697
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1698
		REG_DBG_PRINT("Restoring regulatory settings\n");
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
1766
	REG_DBG_PRINT("All devices are disconnected, going to "
1767 1768 1769 1770
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1796
	REG_DBG_PRINT("Found new beacon on "
1797 1798 1799 1800 1801
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1819
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1820 1821
{
	unsigned int i;
1822 1823 1824
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1825

1826
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1827 1828 1829 1830 1831 1832 1833
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1834 1835 1836 1837
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1838
		if (power_rule->max_antenna_gain)
1839
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1840 1841 1842 1843 1844 1845 1846
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1847
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1848 1849 1850 1851 1852 1853 1854 1855
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1856
static void print_regdomain(const struct ieee80211_regdomain *rd)
1857 1858
{

1859 1860
	if (is_intersected_alpha2(rd->alpha2)) {

1861 1862
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1863 1864
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1865
				last_request->wiphy_idx);
1866
			if (rdev) {
1867 1868
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1869 1870
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1871 1872
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1873
					"domain intersected:\n");
1874
		} else
1875 1876
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
1877
	} else if (is_world_regdom(rd->alpha2))
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1893
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1894 1895 1896 1897 1898 1899
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1900
/* Takes ownership of rd only if it doesn't fail */
1901
static int __set_regdom(const struct ieee80211_regdomain *rd)
1902
{
1903
	const struct ieee80211_regdomain *intersected_rd = NULL;
1904
	struct cfg80211_registered_device *rdev = NULL;
1905
	struct wiphy *request_wiphy;
1906 1907 1908
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1909
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1910 1911 1912 1913 1914 1915 1916 1917 1918
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1919
	if (!last_request)
1920 1921
		return -EINVAL;

1922 1923
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1924
	 * rd is non static (it means CRDA was present and was used last)
1925 1926
	 * and the pending request came in from a country IE
	 */
1927
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1928 1929 1930 1931
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1932
		if (!regdom_changes(rd->alpha2))
1933 1934 1935
			return -EINVAL;
	}

1936 1937
	/*
	 * Now lets set the regulatory domain, update all driver channels
1938 1939
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1940 1941
	 * internal EEPROM data
	 */
1942

1943
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1944 1945
		return -EINVAL;

1946 1947 1948 1949 1950
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1951 1952
	}

1953 1954
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1955
	if (!last_request->intersect) {
1956 1957
		int r;

1958
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1959 1960 1961 1962 1963
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1964 1965 1966 1967
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1968

1969 1970 1971 1972 1973 1974
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1975

1976
		r = reg_copy_regd(&request_wiphy->regd, rd);
1977 1978 1979
		if (r)
			return r;

1980 1981 1982 1983 1984 1985 1986
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1987
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1988

1989 1990 1991
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1992

1993 1994
		/*
		 * We can trash what CRDA provided now.
1995
		 * However if a driver requested this specific regulatory
1996 1997
		 * domain we keep it for its private use
		 */
1998
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1999
			request_wiphy->regd = rd;
2000 2001 2002
		else
			kfree(rd);

2003 2004 2005 2006 2007 2008
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2009 2010
	}

2011 2012 2013
	if (!intersected_rd)
		return -EINVAL;

2014
	rdev = wiphy_to_dev(request_wiphy);
2015

2016 2017 2018
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2019 2020 2021 2022 2023 2024

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2025
	reset_regdomains();
2026
	cfg80211_regdomain = intersected_rd;
2027 2028 2029 2030 2031

	return 0;
}


2032 2033
/*
 * Use this call to set the current regulatory domain. Conflicts with
2034
 * multiple drivers can be ironed out later. Caller must've already
2035 2036
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2037
int set_regdom(const struct ieee80211_regdomain *rd)
2038 2039 2040
{
	int r;

2041 2042
	assert_cfg80211_lock();

2043 2044
	mutex_lock(&reg_mutex);

2045 2046
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2047 2048
	if (r) {
		kfree(rd);
2049
		mutex_unlock(&reg_mutex);
2050
		return r;
2051
	}
2052 2053

	/* This would make this whole thing pointless */
2054 2055
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2056 2057

	/* update all wiphys now with the new established regulatory domain */
2058
	update_all_wiphy_regulatory(last_request->initiator);
2059

2060
	print_regdomain(cfg80211_regdomain);
2061

2062 2063
	nl80211_send_reg_change_event(last_request);

2064 2065
	mutex_unlock(&reg_mutex);

2066 2067 2068
	return r;
}

2069
/* Caller must hold cfg80211_mutex */
2070 2071
void reg_device_remove(struct wiphy *wiphy)
{
2072
	struct wiphy *request_wiphy = NULL;
2073

2074 2075
	assert_cfg80211_lock();

2076 2077
	mutex_lock(&reg_mutex);

2078 2079
	kfree(wiphy->regd);

2080 2081
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2082

2083
	if (!request_wiphy || request_wiphy != wiphy)
2084
		goto out;
2085

2086
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2087
	last_request->country_ie_env = ENVIRON_ANY;
2088 2089
out:
	mutex_unlock(&reg_mutex);
2090 2091
}

2092
int __init regulatory_init(void)
2093
{
2094
	int err = 0;
2095

2096 2097 2098
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2099

2100
	spin_lock_init(&reg_requests_lock);
2101
	spin_lock_init(&reg_pending_beacons_lock);
2102

2103
	cfg80211_regdomain = cfg80211_world_regdom;
2104

2105 2106 2107
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2108 2109
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2110
	if (err) {
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2125
#endif
2126
	}
2127

2128 2129 2130 2131 2132 2133 2134
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2135 2136 2137
	return 0;
}

2138
void /* __init_or_exit */ regulatory_exit(void)
2139
{
2140
	struct regulatory_request *reg_request, *tmp;
2141
	struct reg_beacon *reg_beacon, *btmp;
2142 2143 2144

	cancel_work_sync(&reg_work);

2145
	mutex_lock(&cfg80211_mutex);
2146
	mutex_lock(&reg_mutex);
2147

2148
	reset_regdomains();
2149

2150 2151
	kfree(last_request);

2152
	platform_device_unregister(reg_pdev);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2182
	mutex_unlock(&reg_mutex);
2183
	mutex_unlock(&cfg80211_mutex);
2184
}