reg.c 59.1 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52 53
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
54
#else
55
#define REG_DBG_PRINT(args...)
56 57
#endif

58
/* Receipt of information from last regulatory request */
59
static struct regulatory_request *last_request;
60

61 62
/* To trigger userspace events */
static struct platform_device *reg_pdev;
63

64 65 66 67
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

68 69
/*
 * Central wireless core regulatory domains, we only need two,
70
 * the current one and a world regulatory domain in case we have no
71 72
 * information to give us an alpha2
 */
73
const struct ieee80211_regdomain *cfg80211_regdomain;
74

75 76 77 78 79 80
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
81
static DEFINE_MUTEX(reg_mutex);
82 83 84 85 86

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
87

88
/* Used to queue up regulatory hints */
89 90 91
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

92 93 94 95 96 97 98 99 100 101 102 103
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

104 105 106
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator);

107 108 109
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

110 111 112
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

113 114
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
115
	.n_reg_rules = 5,
116 117
	.alpha2 =  "00",
	.reg_rules = {
118 119
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
120 121 122
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
123 124
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
125 126 127 128 129 130 131
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
132
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
133 134
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
135 136 137 138

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
139
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
140 141
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
142 143 144
	}
};

145 146
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
147

148
static char *ieee80211_regdom = "00";
149
static char user_alpha2[2];
150

151 152 153 154 155
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
156 157 158 159 160 161 162 163 164 165
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
166

167
	cfg80211_world_regdom = &world_regdom;
168 169 170
	cfg80211_regdomain = NULL;
}

171 172 173 174
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
175
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
176
{
177
	BUG_ON(!last_request);
178 179 180 181 182 183 184

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

185
bool is_world_regdom(const char *alpha2)
186 187 188 189 190 191 192
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
193

194
static bool is_alpha2_set(const char *alpha2)
195 196 197 198 199 200 201
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
202

203
static bool is_unknown_alpha2(const char *alpha2)
204 205 206
{
	if (!alpha2)
		return false;
207 208 209 210
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
211 212 213 214
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
215

216 217 218 219
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
220 221
	/*
	 * Special case where regulatory domain is the
222
	 * result of an intersection between two regulatory domain
223 224
	 * structures
	 */
225 226 227 228 229
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

230
static bool is_an_alpha2(const char *alpha2)
231 232 233
{
	if (!alpha2)
		return false;
234
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
235 236 237
		return true;
	return false;
}
238

239
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
240 241 242 243 244 245 246 247 248
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

249
static bool regdom_changes(const char *alpha2)
250
{
251 252
	assert_cfg80211_lock();

253 254 255 256 257 258 259
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
312
static DEFINE_MUTEX(reg_regdb_search_mutex);
313 314 315 316 317 318 319

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

320
	mutex_lock(&reg_regdb_search_mutex);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
343
	mutex_unlock(&reg_regdb_search_mutex);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

361
	mutex_lock(&reg_regdb_search_mutex);
362
	list_add_tail(&request->list, &reg_regdb_search_list);
363
	mutex_unlock(&reg_regdb_search_mutex);
364 365 366 367 368 369 370

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

371 372
/*
 * This lets us keep regulatory code which is updated on a regulatory
373 374
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
375
 */
376 377 378
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
379
		pr_info("Calling CRDA for country: %c%c\n",
380 381
			alpha2[0], alpha2[1]);
	else
382
		pr_info("Calling CRDA to update world regulatory domain\n");
383

384 385 386
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

387
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
388 389 390
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
391
bool reg_is_valid_request(const char *alpha2)
392
{
393 394
	assert_cfg80211_lock();

395 396 397 398
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
399
}
400

401
/* Sanity check on a regulatory rule */
402
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403
{
404
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
405 406
	u32 freq_diff;

407
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
408 409 410 411 412 413 414
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

415 416
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
417 418 419 420 421
		return false;

	return true;
}

422
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423
{
424
	const struct ieee80211_reg_rule *reg_rule = NULL;
425
	unsigned int i;
426

427 428
	if (!rd->n_reg_rules)
		return false;
429

430 431 432
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

433 434 435 436 437 438 439
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
440 441
}

442 443 444
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
445
{
446 447 448 449 450 451 452 453 454 455
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
456
}
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

483 484 485 486
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

564 565
	/*
	 * First we get a count of the rules we'll need, then we actually
566 567 568
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
569 570
	 * All rules that do check out OK are valid.
	 */
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
598 599
			/*
			 * This time around instead of using the stack lets
600
			 * write to the target rule directly saving ourselves
601 602
			 * a memcpy()
			 */
603 604 605
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
606 607 608 609
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

628 629 630 631
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
632 633 634 635 636 637 638 639 640 641 642 643
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

644 645
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
646
			      u32 desired_bw_khz,
647 648
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
649 650
{
	int i;
651
	bool band_rule_found = false;
652
	const struct ieee80211_regdomain *regd;
653 654 655 656
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
657

658
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
659

660 661 662 663
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
664 665
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
666
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
667 668 669 670
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
671 672
		return -EINVAL;

673
	for (i = 0; i < regd->n_reg_rules; i++) {
674 675 676
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

677
		rr = &regd->reg_rules[i];
678
		fr = &rr->freq_range;
679

680 681
		/*
		 * We only need to know if one frequency rule was
682
		 * was in center_freq's band, that's enough, so lets
683 684
		 * not overwrite it once found
		 */
685 686 687
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

688 689 690
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
691

692
		if (band_rule_found && bw_fits) {
693
			*reg_rule = rr;
694
			return 0;
695 696 697
		}
	}

698 699 700
	if (!band_rule_found)
		return -ERANGE;

701
	return -EINVAL;
702 703
}

704 705 706 707
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
708
{
709
	assert_cfg80211_lock();
710 711 712 713 714
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
715
}
716
EXPORT_SYMBOL(freq_reg_info);
717

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

752
	REG_DBG_PRINT("Updating information on frequency %d MHz "
753
		      "for a %d MHz width channel with regulatory rule:\n",
754 755 756
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

757
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
758 759
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
760
		      freq_range->max_bandwidth_khz,
761 762 763 764 765 766 767 768 769 770
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
771 772
#endif

773 774 775 776 777 778 779 780 781
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
782 783 784
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
785
			   unsigned int chan_idx)
786 787
{
	int r;
788 789
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
790 791
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
792
	const struct ieee80211_freq_range *freq_range = NULL;
793 794
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
795
	struct wiphy *request_wiphy = NULL;
796

797 798
	assert_cfg80211_lock();

799 800
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

801 802 803 804 805
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
806

807 808 809 810
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
811

812 813 814
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
815
		 * received regulatory rule unless the hint is coming
816 817 818 819 820 821 822 823 824 825 826
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

827
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
828
		chan->flags = IEEE80211_CHAN_DISABLED;
829
		return;
830
	}
831

832 833
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

834
	power_rule = &reg_rule->power_rule;
835 836 837 838
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
839

840
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
841
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
842
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
843
		/*
L
Lucas De Marchi 已提交
844
		 * This guarantees the driver's requested regulatory domain
845
		 * will always be used as a base for further regulatory
846 847
		 * settings
		 */
848
		chan->flags = chan->orig_flags =
849
			map_regdom_flags(reg_rule->flags) | bw_flags;
850 851 852 853 854 855 856
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

857
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858
	chan->max_antenna_gain = min(chan->orig_mag,
859
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
860
	if (chan->orig_mpwr)
861 862
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
863
	else
864
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 866
}

867 868 869
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
870
{
871 872 873 874 875
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
876 877

	for (i = 0; i < sband->n_channels; i++)
878
		handle_channel(wiphy, initiator, band, i);
879 880
}

881 882
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
883
{
884
	if (!last_request) {
885
		REG_DBG_PRINT("Ignoring regulatory request %s since "
886 887
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
888
		return true;
889 890
	}

891
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893
		REG_DBG_PRINT("Ignoring regulatory request %s "
894
			      "since the driver uses its own custom "
895
			      "regulatory domain\n",
896
			      reg_initiator_name(initiator));
897
		return true;
898 899
	}

900 901 902 903
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
904
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906
	    !is_world_regdom(last_request->alpha2)) {
907
		REG_DBG_PRINT("Ignoring regulatory request %s "
908
			      "since the driver requires its own regulatory "
909
			      "domain to be set first\n",
910
			      reg_initiator_name(initiator));
911
		return true;
912 913
	}

914 915 916
	return false;
}

917
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
918
{
919
	struct cfg80211_registered_device *rdev;
920

921 922
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
923 924
}

925 926 927 928 929 930
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
931 932
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
933 934 935 936 937 938 939 940 941

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

942 943 944 945 946
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
947
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
948 949
		return;

950 951 952
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

953
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
954
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
955
		channel_changed = true;
956 957
	}

958
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
959
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
960
		channel_changed = true;
961 962
	}

963 964
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1016 1017
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1018
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1019 1020 1021 1022 1023 1024 1025
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1026 1027 1028 1029 1030 1031
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1032 1033 1034 1035 1036
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1087
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1088
	else
1089
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1090 1091

	if (is_ht40_not_allowed(channel_after))
1092
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1093
	else
1094
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1124 1125
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1126 1127
{
	enum ieee80211_band band;
1128

1129 1130
	assert_reg_lock();

1131
	if (ignore_reg_update(wiphy, initiator))
1132 1133
		return;

1134
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1135
		if (wiphy->bands[band])
1136
			handle_band(wiphy, band, initiator);
1137
	}
1138

1139
	reg_process_beacons(wiphy);
1140
	reg_process_ht_flags(wiphy);
1141
	if (wiphy->reg_notifier)
1142
		wiphy->reg_notifier(wiphy, last_request);
1143 1144
}

1145 1146 1147 1148 1149 1150 1151 1152
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1153 1154 1155 1156 1157 1158
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1159 1160
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1161 1162
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1163
	const struct ieee80211_freq_range *freq_range = NULL;
1164 1165 1166
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1167
	assert_reg_lock();
1168

1169 1170 1171 1172
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1173 1174 1175 1176 1177
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1178 1179

	if (r) {
1180
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181 1182 1183 1184
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1185 1186 1187 1188
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1189 1190
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1191
	power_rule = &reg_rule->power_rule;
1192 1193 1194 1195
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1196

1197
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1220
	unsigned int bands_set = 0;
1221

1222
	mutex_lock(&reg_mutex);
1223
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 1225 1226 1227
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1228
	}
1229
	mutex_unlock(&reg_mutex);
1230 1231 1232 1233 1234 1235

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1236
}
1237 1238
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1239 1240 1241 1242
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1243 1244
#define REG_INTERSECT	1

1245 1246
/* This has the logic which determines when a new request
 * should be ignored. */
1247 1248
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1249
{
1250
	struct wiphy *last_wiphy = NULL;
1251 1252 1253

	assert_cfg80211_lock();

1254 1255 1256 1257
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1258
	switch (pending_request->initiator) {
1259
	case NL80211_REGDOM_SET_BY_CORE:
1260
		return 0;
1261
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1262 1263 1264

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1265
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1266
			return -EINVAL;
1267 1268
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269
			if (last_wiphy != wiphy) {
1270 1271
				/*
				 * Two cards with two APs claiming different
1272
				 * Country IE alpha2s. We could
1273 1274 1275
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1276
				if (regdom_changes(pending_request->alpha2))
1277 1278 1279
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1280 1281 1282 1283
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1284
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1285 1286 1287
				return 0;
			return -EALREADY;
		}
1288
		return 0;
1289 1290
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291
			if (regdom_changes(pending_request->alpha2))
1292
				return 0;
1293
			return -EALREADY;
1294
		}
1295 1296 1297 1298 1299 1300

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1301
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302
		    !regdom_changes(pending_request->alpha2))
1303 1304
			return -EALREADY;

1305
		return REG_INTERSECT;
1306 1307
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308
			return REG_INTERSECT;
1309 1310 1311 1312
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1313
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314 1315
			  last_request->intersect)
			return -EOPNOTSUPP;
1316 1317 1318 1319
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1320 1321 1322
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323
			if (regdom_changes(last_request->alpha2))
1324 1325 1326
				return -EAGAIN;
		}

1327
		if (!regdom_changes(pending_request->alpha2))
1328 1329
			return -EALREADY;

1330 1331 1332 1333 1334 1335
		return 0;
	}

	return -EINVAL;
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1347 1348 1349
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1350 1351 1352 1353
	if (need_more_processing)
		schedule_work(&reg_work);
}

1354 1355 1356 1357
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1358
 * @pending_request: the regulatory request currently being processed
1359 1360
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1361
 * what it believes should be the current regulatory domain.
1362 1363 1364 1365
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1366
 * Caller must hold &cfg80211_mutex and &reg_mutex
1367
 */
1368 1369
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1370
{
1371
	bool intersect = false;
1372 1373
	int r = 0;

1374 1375
	assert_cfg80211_lock();

1376
	r = ignore_request(wiphy, pending_request);
1377

1378
	if (r == REG_INTERSECT) {
1379 1380
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1381
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 1383
			if (r) {
				kfree(pending_request);
1384
				return r;
1385
			}
1386
		}
1387
		intersect = true;
1388
	} else if (r) {
1389 1390
		/*
		 * If the regulatory domain being requested by the
1391
		 * driver has already been set just copy it to the
1392 1393
		 * wiphy
		 */
1394
		if (r == -EALREADY &&
1395 1396
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1397
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398 1399
			if (r) {
				kfree(pending_request);
1400
				return r;
1401
			}
1402 1403 1404
			r = -EALREADY;
			goto new_request;
		}
1405
		kfree(pending_request);
1406
		return r;
1407
	}
1408

1409
new_request:
1410
	kfree(last_request);
1411

1412 1413
	last_request = pending_request;
	last_request->intersect = intersect;
1414

1415
	pending_request = NULL;
1416

1417 1418 1419 1420 1421
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1422
	/* When r == REG_INTERSECT we do need to call CRDA */
1423 1424 1425 1426 1427 1428
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1429
		if (r == -EALREADY) {
1430
			nl80211_send_reg_change_event(last_request);
1431 1432
			reg_set_request_processed();
		}
1433
		return r;
1434
	}
1435

1436
	return call_crda(last_request->alpha2);
1437 1438
}

1439
/* This processes *all* regulatory hints */
1440
static void reg_process_hint(struct regulatory_request *reg_request)
1441 1442 1443
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1444
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1445 1446 1447 1448 1449 1450

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1451
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1452
	    !wiphy) {
1453
		kfree(reg_request);
1454
		return;
1455 1456
	}

1457
	r = __regulatory_hint(wiphy, reg_request);
1458
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1459
	if (r == -EALREADY && wiphy &&
1460
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461
		wiphy_update_regulatory(wiphy, initiator);
1462 1463 1464 1465 1466 1467 1468
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1469 1470
	if (r != -EALREADY &&
	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1472 1473
}

1474 1475 1476 1477 1478
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1479
static void reg_process_pending_hints(void)
1480
{
1481 1482
	struct regulatory_request *reg_request;

1483 1484 1485
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1486 1487 1488
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1489
			      "for it to be processed...\n");
1490 1491 1492
		goto out;
	}

1493 1494
	spin_lock(&reg_requests_lock);

1495
	if (list_empty(&reg_requests_list)) {
1496
		spin_unlock(&reg_requests_lock);
1497
		goto out;
1498
	}
1499 1500 1501 1502 1503 1504

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1505
	spin_unlock(&reg_requests_lock);
1506

1507 1508 1509
	reg_process_hint(reg_request);

out:
1510 1511
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1512 1513
}

1514 1515 1516
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1517
	struct cfg80211_registered_device *rdev;
1518 1519
	struct reg_beacon *pending_beacon, *tmp;

1520 1521 1522 1523
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1540 1541
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1552 1553 1554
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1555
	reg_process_pending_beacon_hints();
1556 1557 1558 1559
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1560 1561 1562 1563 1564
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1565 1566 1567 1568 1569 1570 1571
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1572 1573 1574 1575
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1576 1577 1578 1579
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1580 1581
	kfree(last_request);
	last_request = NULL;
1582 1583 1584 1585 1586 1587 1588 1589

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1590
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1591

1592
	queue_regulatory_request(request);
1593

1594
	return 0;
1595 1596
}

1597 1598
/* User hints */
int regulatory_hint_user(const char *alpha2)
1599
{
1600 1601
	struct regulatory_request *request;

1602
	BUG_ON(!alpha2);
1603

1604 1605 1606 1607 1608 1609 1610
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1611
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1637
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1638 1639 1640 1641

	queue_regulatory_request(request);

	return 0;
1642 1643 1644
}
EXPORT_SYMBOL(regulatory_hint);

1645 1646 1647 1648
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1649
void regulatory_hint_11d(struct wiphy *wiphy,
1650 1651 1652
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1653 1654 1655
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1656
	struct regulatory_request *request;
1657

1658
	mutex_lock(&reg_mutex);
1659

1660 1661
	if (unlikely(!last_request))
		goto out;
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1678
	/*
1679
	 * We will run this only upon a successful connection on cfg80211.
1680 1681
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1682
	 */
1683 1684
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685 1686
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1687

1688 1689
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1690
		goto out;
1691 1692

	request->wiphy_idx = get_wiphy_idx(wiphy);
1693 1694
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1695
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696 1697
	request->country_ie_env = env;

1698
	mutex_unlock(&reg_mutex);
1699

1700 1701 1702
	queue_regulatory_request(request);

	return;
1703

1704
out:
1705
	mutex_unlock(&reg_mutex);
1706
}
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1718
			REG_DBG_PRINT("Restoring regulatory settings "
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1729
				REG_DBG_PRINT("Keeping preference on "
1730 1731 1732 1733 1734 1735 1736
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1737
			REG_DBG_PRINT("Restoring regulatory settings "
1738 1739 1740 1741 1742 1743 1744
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1745
		REG_DBG_PRINT("Keeping preference on "
1746 1747 1748 1749 1750 1751
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1752
		REG_DBG_PRINT("Restoring regulatory settings\n");
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1774 1775
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1776 1777 1778 1779 1780 1781 1782

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1861 1862 1863

void regulatory_hint_disconnect(void)
{
1864
	REG_DBG_PRINT("All devices are disconnected, going to "
1865 1866 1867 1868
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1869 1870
static bool freq_is_chan_12_13_14(u16 freq)
{
1871 1872 1873
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1894
	REG_DBG_PRINT("Found new beacon on "
1895 1896 1897 1898 1899
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1917
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1918 1919
{
	unsigned int i;
1920 1921 1922
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1923

1924
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1925 1926 1927 1928 1929 1930

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1931 1932 1933 1934
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1935
		if (power_rule->max_antenna_gain)
1936
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937 1938 1939 1940 1941 1942
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1943
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944 1945 1946 1947 1948 1949 1950
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1951
static void print_regdomain(const struct ieee80211_regdomain *rd)
1952 1953
{

1954 1955
	if (is_intersected_alpha2(rd->alpha2)) {

1956 1957
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1958 1959
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1960
				last_request->wiphy_idx);
1961
			if (rdev) {
1962
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1963 1964
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1965
			} else
1966
				pr_info("Current regulatory domain intersected:\n");
1967
		} else
1968
			pr_info("Current regulatory domain intersected:\n");
1969
	} else if (is_world_regdom(rd->alpha2))
1970
		pr_info("World regulatory domain updated:\n");
1971 1972
	else {
		if (is_unknown_alpha2(rd->alpha2))
1973
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1974
		else
1975
			pr_info("Regulatory domain changed to country: %c%c\n",
1976 1977 1978 1979 1980
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1981
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1982
{
1983
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1984 1985 1986
	print_rd_rules(rd);
}

1987
/* Takes ownership of rd only if it doesn't fail */
1988
static int __set_regdom(const struct ieee80211_regdomain *rd)
1989
{
1990
	const struct ieee80211_regdomain *intersected_rd = NULL;
1991
	struct cfg80211_registered_device *rdev = NULL;
1992
	struct wiphy *request_wiphy;
1993 1994 1995
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1996
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1997 1998 1999 2000 2001 2002 2003 2004 2005
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2006
	if (!last_request)
2007 2008
		return -EINVAL;

2009 2010
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2011
	 * rd is non static (it means CRDA was present and was used last)
2012 2013
	 * and the pending request came in from a country IE
	 */
2014
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2015 2016 2017 2018
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2019
		if (!regdom_changes(rd->alpha2))
2020 2021 2022
			return -EINVAL;
	}

2023 2024
	/*
	 * Now lets set the regulatory domain, update all driver channels
2025 2026
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2027 2028
	 * internal EEPROM data
	 */
2029

2030
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2031 2032
		return -EINVAL;

2033
	if (!is_valid_rd(rd)) {
2034
		pr_err("Invalid regulatory domain detected:\n");
2035 2036
		print_regdomain_info(rd);
		return -EINVAL;
2037 2038
	}

2039 2040
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2041
	if (!last_request->intersect) {
2042 2043
		int r;

2044
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2045 2046 2047 2048 2049
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2050 2051 2052 2053
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2054

2055 2056 2057 2058 2059 2060
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2061

2062
		r = reg_copy_regd(&request_wiphy->regd, rd);
2063 2064 2065
		if (r)
			return r;

2066 2067 2068 2069 2070 2071 2072
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2073
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2074

2075 2076 2077
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2078

2079 2080
		/*
		 * We can trash what CRDA provided now.
2081
		 * However if a driver requested this specific regulatory
2082 2083
		 * domain we keep it for its private use
		 */
2084
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2085
			request_wiphy->regd = rd;
2086 2087 2088
		else
			kfree(rd);

2089 2090 2091 2092 2093 2094
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2095 2096
	}

2097 2098 2099
	if (!intersected_rd)
		return -EINVAL;

2100
	rdev = wiphy_to_dev(request_wiphy);
2101

2102 2103 2104
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2105 2106 2107 2108 2109 2110

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2111
	reset_regdomains();
2112
	cfg80211_regdomain = intersected_rd;
2113 2114 2115 2116 2117

	return 0;
}


2118 2119
/*
 * Use this call to set the current regulatory domain. Conflicts with
2120
 * multiple drivers can be ironed out later. Caller must've already
2121 2122
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2123
int set_regdom(const struct ieee80211_regdomain *rd)
2124 2125 2126
{
	int r;

2127 2128
	assert_cfg80211_lock();

2129 2130
	mutex_lock(&reg_mutex);

2131 2132
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2133 2134
	if (r) {
		kfree(rd);
2135
		mutex_unlock(&reg_mutex);
2136
		return r;
2137
	}
2138 2139

	/* This would make this whole thing pointless */
2140 2141
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2142 2143

	/* update all wiphys now with the new established regulatory domain */
2144
	update_all_wiphy_regulatory(last_request->initiator);
2145

2146
	print_regdomain(cfg80211_regdomain);
2147

2148 2149
	nl80211_send_reg_change_event(last_request);

2150 2151
	reg_set_request_processed();

2152 2153
	mutex_unlock(&reg_mutex);

2154 2155 2156
	return r;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2176
/* Caller must hold cfg80211_mutex */
2177 2178
void reg_device_remove(struct wiphy *wiphy)
{
2179
	struct wiphy *request_wiphy = NULL;
2180

2181 2182
	assert_cfg80211_lock();

2183 2184
	mutex_lock(&reg_mutex);

2185 2186
	kfree(wiphy->regd);

2187 2188
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2189

2190
	if (!request_wiphy || request_wiphy != wiphy)
2191
		goto out;
2192

2193
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2194
	last_request->country_ie_env = ENVIRON_ANY;
2195 2196
out:
	mutex_unlock(&reg_mutex);
2197 2198
}

2199 2200 2201
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2202
		      "restoring regulatory settings\n");
2203 2204 2205
	restore_regulatory_settings(true);
}

2206
int __init regulatory_init(void)
2207
{
2208
	int err = 0;
2209

2210 2211 2212
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2213

2214 2215
	reg_pdev->dev.type = &reg_device_type;

2216
	spin_lock_init(&reg_requests_lock);
2217
	spin_lock_init(&reg_pending_beacons_lock);
2218

2219
	cfg80211_regdomain = cfg80211_world_regdom;
2220

2221 2222 2223
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2224 2225
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2226
	if (err) {
2227 2228 2229 2230 2231 2232 2233 2234 2235
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2236
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2237 2238 2239
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2240
#endif
2241
	}
2242

2243 2244 2245 2246 2247 2248 2249
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2250 2251 2252
	return 0;
}

2253
void /* __init_or_exit */ regulatory_exit(void)
2254
{
2255
	struct regulatory_request *reg_request, *tmp;
2256
	struct reg_beacon *reg_beacon, *btmp;
2257 2258

	cancel_work_sync(&reg_work);
2259
	cancel_delayed_work_sync(&reg_timeout);
2260

2261
	mutex_lock(&cfg80211_mutex);
2262
	mutex_lock(&reg_mutex);
2263

2264
	reset_regdomains();
2265

2266 2267
	kfree(last_request);

2268
	platform_device_unregister(reg_pdev);
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2298
	mutex_unlock(&reg_mutex);
2299
	mutex_unlock(&cfg80211_mutex);
2300
}