reg.c 58.7 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52 53
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
54
#else
55
#define REG_DBG_PRINT(args...)
56 57
#endif

58
/* Receipt of information from last regulatory request */
59
static struct regulatory_request *last_request;
60

61 62
/* To trigger userspace events */
static struct platform_device *reg_pdev;
63

64 65 66 67
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

68 69
/*
 * Central wireless core regulatory domains, we only need two,
70
 * the current one and a world regulatory domain in case we have no
71 72
 * information to give us an alpha2
 */
73
const struct ieee80211_regdomain *cfg80211_regdomain;
74

75 76 77 78 79 80
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
81
static DEFINE_MUTEX(reg_mutex);
82 83 84 85 86

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
87

88
/* Used to queue up regulatory hints */
89 90 91
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

92 93 94 95 96 97 98 99 100 101 102 103
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

104 105 106
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

107 108 109
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

110 111
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
112
	.n_reg_rules = 5,
113 114
	.alpha2 =  "00",
	.reg_rules = {
115 116
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117 118 119
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
120 121
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
122 123 124 125 126 127 128
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
129
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
130 131
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
132 133 134 135

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
136
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
137 138
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
139 140 141
	}
};

142 143
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
144

145
static char *ieee80211_regdom = "00";
146
static char user_alpha2[2];
147

148 149 150 151 152
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
153 154 155 156 157 158 159 160 161 162
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
163

164
	cfg80211_world_regdom = &world_regdom;
165 166 167
	cfg80211_regdomain = NULL;
}

168 169 170 171
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
172
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173
{
174
	BUG_ON(!last_request);
175 176 177 178 179 180 181

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

182
bool is_world_regdom(const char *alpha2)
183 184 185 186 187 188 189
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
190

191
static bool is_alpha2_set(const char *alpha2)
192 193 194 195 196 197 198
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
199

200
static bool is_unknown_alpha2(const char *alpha2)
201 202 203
{
	if (!alpha2)
		return false;
204 205 206 207
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
208 209 210 211
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
212

213 214 215 216
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
217 218
	/*
	 * Special case where regulatory domain is the
219
	 * result of an intersection between two regulatory domain
220 221
	 * structures
	 */
222 223 224 225 226
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

227
static bool is_an_alpha2(const char *alpha2)
228 229 230
{
	if (!alpha2)
		return false;
231
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232 233 234
		return true;
	return false;
}
235

236
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 238 239 240 241 242 243 244 245
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

246
static bool regdom_changes(const char *alpha2)
247
{
248 249
	assert_cfg80211_lock();

250 251 252 253 254 255 256
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
309
static DEFINE_MUTEX(reg_regdb_search_mutex);
310 311 312 313 314 315 316

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

317
	mutex_lock(&reg_regdb_search_mutex);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
340
	mutex_unlock(&reg_regdb_search_mutex);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

358
	mutex_lock(&reg_regdb_search_mutex);
359
	list_add_tail(&request->list, &reg_regdb_search_list);
360
	mutex_unlock(&reg_regdb_search_mutex);
361 362 363 364 365 366 367

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

368 369
/*
 * This lets us keep regulatory code which is updated on a regulatory
370 371
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
372
 */
373 374 375
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
376
		pr_info("Calling CRDA for country: %c%c\n",
377 378
			alpha2[0], alpha2[1]);
	else
379
		pr_info("Calling CRDA to update world regulatory domain\n");
380

381 382 383
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

384
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
385 386 387
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
388
bool reg_is_valid_request(const char *alpha2)
389
{
390 391
	assert_cfg80211_lock();

392 393 394 395
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
396
}
397

398
/* Sanity check on a regulatory rule */
399
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400
{
401
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402 403
	u32 freq_diff;

404
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405 406 407 408 409 410 411
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

412 413
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
414 415 416 417 418
		return false;

	return true;
}

419
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420
{
421
	const struct ieee80211_reg_rule *reg_rule = NULL;
422
	unsigned int i;
423

424 425
	if (!rd->n_reg_rules)
		return false;
426

427 428 429
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

430 431 432 433 434 435 436
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
437 438
}

439 440 441
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
442
{
443 444 445 446 447 448 449 450 451 452
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
453
}
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

480 481 482 483
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

561 562
	/*
	 * First we get a count of the rules we'll need, then we actually
563 564 565
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
566 567
	 * All rules that do check out OK are valid.
	 */
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
595 596
			/*
			 * This time around instead of using the stack lets
597
			 * write to the target rule directly saving ourselves
598 599
			 * a memcpy()
			 */
600 601 602
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
603 604 605 606
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

625 626 627 628
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
629 630 631 632 633 634 635 636 637 638 639 640
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

641 642
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
643
			      u32 desired_bw_khz,
644 645
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
646 647
{
	int i;
648
	bool band_rule_found = false;
649
	const struct ieee80211_regdomain *regd;
650 651 652 653
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
654

655
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
656

657 658 659 660
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
661 662
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 665 666 667
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
668 669
		return -EINVAL;

670
	for (i = 0; i < regd->n_reg_rules; i++) {
671 672 673
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

674
		rr = &regd->reg_rules[i];
675
		fr = &rr->freq_range;
676

677 678
		/*
		 * We only need to know if one frequency rule was
679
		 * was in center_freq's band, that's enough, so lets
680 681
		 * not overwrite it once found
		 */
682 683 684
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

685 686 687
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
688

689
		if (band_rule_found && bw_fits) {
690
			*reg_rule = rr;
691
			return 0;
692 693 694
		}
	}

695 696 697
	if (!band_rule_found)
		return -ERANGE;

698
	return -EINVAL;
699 700
}

701 702 703 704
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
705
{
706
	assert_cfg80211_lock();
707 708 709 710 711
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
712
}
713
EXPORT_SYMBOL(freq_reg_info);
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

749
	REG_DBG_PRINT("Updating information on frequency %d MHz "
750
		      "for a %d MHz width channel with regulatory rule:\n",
751 752 753
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

754
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
755 756 757 758 759 760 761 762 763 764 765 766
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
767 768
#endif

769 770 771 772 773 774 775 776 777
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
778 779 780
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
781
			   unsigned int chan_idx)
782 783
{
	int r;
784 785
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
786 787
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
788
	const struct ieee80211_freq_range *freq_range = NULL;
789 790
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
791
	struct wiphy *request_wiphy = NULL;
792

793 794
	assert_cfg80211_lock();

795 796
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

797 798 799 800 801
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
802

803 804 805 806
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
807

808 809 810
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
811
		 * received regulatory rule unless the hint is coming
812 813 814 815 816 817 818 819 820 821 822
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

823
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
824
		chan->flags = IEEE80211_CHAN_DISABLED;
825
		return;
826
	}
827

828 829
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

830
	power_rule = &reg_rule->power_rule;
831 832 833 834
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
835

836
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
837
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
838
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
839
		/*
L
Lucas De Marchi 已提交
840
		 * This guarantees the driver's requested regulatory domain
841
		 * will always be used as a base for further regulatory
842 843
		 * settings
		 */
844
		chan->flags = chan->orig_flags =
845
			map_regdom_flags(reg_rule->flags) | bw_flags;
846 847 848 849 850 851 852
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

853
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
854
	chan->max_antenna_gain = min(chan->orig_mag,
855
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
856
	if (chan->orig_mpwr)
857 858
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
859
	else
860
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
861 862
}

863 864 865
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
866
{
867 868 869 870 871
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
872 873

	for (i = 0; i < sband->n_channels; i++)
874
		handle_channel(wiphy, initiator, band, i);
875 876
}

877 878
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
879
{
880
	if (!last_request) {
881
		REG_DBG_PRINT("Ignoring regulatory request %s since "
882 883
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
884
		return true;
885 886
	}

887
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
888
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
889
		REG_DBG_PRINT("Ignoring regulatory request %s "
890
			      "since the driver uses its own custom "
891
			      "regulatory domain\n",
892
			      reg_initiator_name(initiator));
893
		return true;
894 895
	}

896 897 898 899
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
900
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
901
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
902
	    !is_world_regdom(last_request->alpha2)) {
903
		REG_DBG_PRINT("Ignoring regulatory request %s "
904
			      "since the driver requires its own regulatory "
905
			      "domain to be set first\n",
906
			      reg_initiator_name(initiator));
907
		return true;
908 909
	}

910 911 912
	return false;
}

913
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
914
{
915
	struct cfg80211_registered_device *rdev;
916

917 918
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
919 920
}

921 922 923 924 925 926
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
927 928
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
929 930 931 932 933 934 935 936 937

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

938 939 940 941 942
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
943
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
944 945
		return;

946 947 948
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

949
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
950
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
951
		channel_changed = true;
952 953
	}

954
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
955
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
956
		channel_changed = true;
957 958
	}

959 960
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1012 1013
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1014
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1015 1016 1017 1018 1019 1020 1021
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1022 1023 1024 1025 1026 1027
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1028 1029 1030 1031 1032
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1083
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1084
	else
1085
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1086 1087

	if (is_ht40_not_allowed(channel_after))
1088
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1089
	else
1090
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1120 1121
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1122 1123
{
	enum ieee80211_band band;
1124

1125
	if (ignore_reg_update(wiphy, initiator))
1126 1127
		return;

1128
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129
		if (wiphy->bands[band])
1130
			handle_band(wiphy, band, initiator);
1131
	}
1132

1133
	reg_process_beacons(wiphy);
1134
	reg_process_ht_flags(wiphy);
1135
	if (wiphy->reg_notifier)
1136
		wiphy->reg_notifier(wiphy, last_request);
1137 1138
}

1139 1140 1141 1142 1143 1144
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1145 1146
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1147 1148
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1149
	const struct ieee80211_freq_range *freq_range = NULL;
1150 1151 1152
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1153
	assert_reg_lock();
1154

1155 1156 1157 1158
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1159 1160 1161 1162 1163
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1164 1165

	if (r) {
1166
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167 1168 1169 1170
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1171 1172 1173 1174
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1175 1176
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1177
	power_rule = &reg_rule->power_rule;
1178 1179 1180 1181
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1182

1183
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1206
	unsigned int bands_set = 0;
1207

1208
	mutex_lock(&reg_mutex);
1209
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1210 1211 1212 1213
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1214
	}
1215
	mutex_unlock(&reg_mutex);
1216 1217 1218 1219 1220 1221

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1222
}
1223 1224
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1225 1226 1227 1228
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1229 1230
#define REG_INTERSECT	1

1231 1232
/* This has the logic which determines when a new request
 * should be ignored. */
1233 1234
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1235
{
1236
	struct wiphy *last_wiphy = NULL;
1237 1238 1239

	assert_cfg80211_lock();

1240 1241 1242 1243
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1244
	switch (pending_request->initiator) {
1245
	case NL80211_REGDOM_SET_BY_CORE:
1246
		return 0;
1247
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1248 1249 1250

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1251
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1252
			return -EINVAL;
1253 1254
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1255
			if (last_wiphy != wiphy) {
1256 1257
				/*
				 * Two cards with two APs claiming different
1258
				 * Country IE alpha2s. We could
1259 1260 1261
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1262
				if (regdom_changes(pending_request->alpha2))
1263 1264 1265
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1266 1267 1268 1269
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1270
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1271 1272 1273
				return 0;
			return -EALREADY;
		}
1274
		return 0;
1275 1276
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1277
			if (regdom_changes(pending_request->alpha2))
1278
				return 0;
1279
			return -EALREADY;
1280
		}
1281 1282 1283 1284 1285 1286

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1287
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288
		    !regdom_changes(pending_request->alpha2))
1289 1290
			return -EALREADY;

1291
		return REG_INTERSECT;
1292 1293
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1294
			return REG_INTERSECT;
1295 1296 1297 1298
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1299
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1300 1301
			  last_request->intersect)
			return -EOPNOTSUPP;
1302 1303 1304 1305
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1306 1307 1308
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1309
			if (regdom_changes(last_request->alpha2))
1310 1311 1312
				return -EAGAIN;
		}

1313
		if (!regdom_changes(pending_request->alpha2))
1314 1315
			return -EALREADY;

1316 1317 1318 1319 1320 1321
		return 0;
	}

	return -EINVAL;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1333 1334 1335
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1336 1337 1338 1339
	if (need_more_processing)
		schedule_work(&reg_work);
}

1340 1341 1342 1343
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1344
 * @pending_request: the regulatory request currently being processed
1345 1346
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1347
 * what it believes should be the current regulatory domain.
1348 1349 1350 1351
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1352
 * Caller must hold &cfg80211_mutex and &reg_mutex
1353
 */
1354 1355
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1356
{
1357
	bool intersect = false;
1358 1359
	int r = 0;

1360 1361
	assert_cfg80211_lock();

1362
	r = ignore_request(wiphy, pending_request);
1363

1364
	if (r == REG_INTERSECT) {
1365 1366
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1367
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1368 1369
			if (r) {
				kfree(pending_request);
1370
				return r;
1371
			}
1372
		}
1373
		intersect = true;
1374
	} else if (r) {
1375 1376
		/*
		 * If the regulatory domain being requested by the
1377
		 * driver has already been set just copy it to the
1378 1379
		 * wiphy
		 */
1380
		if (r == -EALREADY &&
1381 1382
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1383
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1384 1385
			if (r) {
				kfree(pending_request);
1386
				return r;
1387
			}
1388 1389 1390
			r = -EALREADY;
			goto new_request;
		}
1391
		kfree(pending_request);
1392
		return r;
1393
	}
1394

1395
new_request:
1396
	kfree(last_request);
1397

1398 1399
	last_request = pending_request;
	last_request->intersect = intersect;
1400

1401
	pending_request = NULL;
1402

1403 1404 1405 1406 1407
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1408
	/* When r == REG_INTERSECT we do need to call CRDA */
1409 1410 1411 1412 1413 1414
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1415
		if (r == -EALREADY) {
1416
			nl80211_send_reg_change_event(last_request);
1417 1418
			reg_set_request_processed();
		}
1419
		return r;
1420
	}
1421

1422
	return call_crda(last_request->alpha2);
1423 1424
}

1425
/* This processes *all* regulatory hints */
1426
static void reg_process_hint(struct regulatory_request *reg_request)
1427 1428 1429
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1430
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1431 1432 1433 1434 1435 1436

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1437
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1438
	    !wiphy) {
1439
		kfree(reg_request);
1440
		return;
1441 1442
	}

1443
	r = __regulatory_hint(wiphy, reg_request);
1444
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1445
	if (r == -EALREADY && wiphy &&
1446
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1447
		wiphy_update_regulatory(wiphy, initiator);
1448 1449 1450 1451 1452 1453 1454
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1455 1456
	if (r != -EALREADY &&
	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1457
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1458 1459
}

1460 1461 1462 1463 1464
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1465
static void reg_process_pending_hints(void)
1466
{
1467 1468
	struct regulatory_request *reg_request;

1469 1470 1471
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1472 1473 1474
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1475
			      "for it to be processed...\n");
1476 1477 1478
		goto out;
	}

1479 1480
	spin_lock(&reg_requests_lock);

1481
	if (list_empty(&reg_requests_list)) {
1482
		spin_unlock(&reg_requests_lock);
1483
		goto out;
1484
	}
1485 1486 1487 1488 1489 1490

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1491
	spin_unlock(&reg_requests_lock);
1492

1493 1494 1495
	reg_process_hint(reg_request);

out:
1496 1497
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1498 1499
}

1500 1501 1502
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1503
	struct cfg80211_registered_device *rdev;
1504 1505
	struct reg_beacon *pending_beacon, *tmp;

1506 1507 1508 1509
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1526 1527
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1538 1539 1540
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1541
	reg_process_pending_beacon_hints();
1542 1543 1544 1545
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1546 1547 1548 1549 1550
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1551 1552 1553 1554 1555 1556 1557
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1558 1559 1560 1561
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1562 1563 1564 1565
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1566 1567
	kfree(last_request);
	last_request = NULL;
1568 1569 1570 1571 1572 1573 1574 1575

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1576
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1577

1578
	queue_regulatory_request(request);
1579

1580
	return 0;
1581 1582
}

1583 1584
/* User hints */
int regulatory_hint_user(const char *alpha2)
1585
{
1586 1587
	struct regulatory_request *request;

1588
	BUG_ON(!alpha2);
1589

1590 1591 1592 1593 1594 1595 1596
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1597
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1623
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1624 1625 1626 1627

	queue_regulatory_request(request);

	return 0;
1628 1629 1630
}
EXPORT_SYMBOL(regulatory_hint);

1631 1632 1633 1634
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1635
void regulatory_hint_11d(struct wiphy *wiphy,
1636 1637 1638
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1639 1640 1641
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1642
	struct regulatory_request *request;
1643

1644
	mutex_lock(&reg_mutex);
1645

1646 1647
	if (unlikely(!last_request))
		goto out;
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1664
	/*
1665
	 * We will run this only upon a successful connection on cfg80211.
1666 1667
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1668
	 */
1669 1670
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1671 1672
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1673

1674 1675
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1676
		goto out;
1677 1678

	request->wiphy_idx = get_wiphy_idx(wiphy);
1679 1680
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1681
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1682 1683
	request->country_ie_env = env;

1684
	mutex_unlock(&reg_mutex);
1685

1686 1687 1688
	queue_regulatory_request(request);

	return;
1689

1690
out:
1691
	mutex_unlock(&reg_mutex);
1692
}
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1704
			REG_DBG_PRINT("Restoring regulatory settings "
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1715
				REG_DBG_PRINT("Keeping preference on "
1716 1717 1718 1719 1720 1721 1722
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1723
			REG_DBG_PRINT("Restoring regulatory settings "
1724 1725 1726 1727 1728 1729 1730
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1731
		REG_DBG_PRINT("Keeping preference on "
1732 1733 1734 1735 1736 1737
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1738
		REG_DBG_PRINT("Restoring regulatory settings\n");
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1760 1761
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1762 1763 1764 1765 1766 1767 1768

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1847 1848 1849

void regulatory_hint_disconnect(void)
{
1850
	REG_DBG_PRINT("All devices are disconnected, going to "
1851 1852 1853 1854
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1855 1856
static bool freq_is_chan_12_13_14(u16 freq)
{
1857 1858 1859
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1880
	REG_DBG_PRINT("Found new beacon on "
1881 1882 1883 1884 1885
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1903
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1904 1905
{
	unsigned int i;
1906 1907 1908
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1909

1910
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1911 1912 1913 1914 1915 1916

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1917 1918 1919 1920
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1921
		if (power_rule->max_antenna_gain)
1922
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1923 1924 1925 1926 1927 1928
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1929
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1930 1931 1932 1933 1934 1935 1936
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1937
static void print_regdomain(const struct ieee80211_regdomain *rd)
1938 1939
{

1940 1941
	if (is_intersected_alpha2(rd->alpha2)) {

1942 1943
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1944 1945
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1946
				last_request->wiphy_idx);
1947
			if (rdev) {
1948
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1949 1950
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1951
			} else
1952
				pr_info("Current regulatory domain intersected:\n");
1953
		} else
1954
			pr_info("Current regulatory domain intersected:\n");
1955
	} else if (is_world_regdom(rd->alpha2))
1956
		pr_info("World regulatory domain updated:\n");
1957 1958
	else {
		if (is_unknown_alpha2(rd->alpha2))
1959
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1960
		else
1961
			pr_info("Regulatory domain changed to country: %c%c\n",
1962 1963 1964 1965 1966
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1967
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1968
{
1969
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1970 1971 1972
	print_rd_rules(rd);
}

1973
/* Takes ownership of rd only if it doesn't fail */
1974
static int __set_regdom(const struct ieee80211_regdomain *rd)
1975
{
1976
	const struct ieee80211_regdomain *intersected_rd = NULL;
1977
	struct cfg80211_registered_device *rdev = NULL;
1978
	struct wiphy *request_wiphy;
1979 1980 1981
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1982
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1983 1984 1985 1986 1987 1988 1989 1990 1991
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1992
	if (!last_request)
1993 1994
		return -EINVAL;

1995 1996
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1997
	 * rd is non static (it means CRDA was present and was used last)
1998 1999
	 * and the pending request came in from a country IE
	 */
2000
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2001 2002 2003 2004
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2005
		if (!regdom_changes(rd->alpha2))
2006 2007 2008
			return -EINVAL;
	}

2009 2010
	/*
	 * Now lets set the regulatory domain, update all driver channels
2011 2012
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2013 2014
	 * internal EEPROM data
	 */
2015

2016
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2017 2018
		return -EINVAL;

2019
	if (!is_valid_rd(rd)) {
2020
		pr_err("Invalid regulatory domain detected:\n");
2021 2022
		print_regdomain_info(rd);
		return -EINVAL;
2023 2024
	}

2025 2026
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2027
	if (!last_request->intersect) {
2028 2029
		int r;

2030
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2031 2032 2033 2034 2035
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2036 2037 2038 2039
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2040

2041 2042 2043 2044 2045 2046
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2047

2048
		r = reg_copy_regd(&request_wiphy->regd, rd);
2049 2050 2051
		if (r)
			return r;

2052 2053 2054 2055 2056 2057 2058
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2059
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2060

2061 2062 2063
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2064

2065 2066
		/*
		 * We can trash what CRDA provided now.
2067
		 * However if a driver requested this specific regulatory
2068 2069
		 * domain we keep it for its private use
		 */
2070
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2071
			request_wiphy->regd = rd;
2072 2073 2074
		else
			kfree(rd);

2075 2076 2077 2078 2079 2080
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2081 2082
	}

2083 2084 2085
	if (!intersected_rd)
		return -EINVAL;

2086
	rdev = wiphy_to_dev(request_wiphy);
2087

2088 2089 2090
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2091 2092 2093 2094 2095 2096

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2097
	reset_regdomains();
2098
	cfg80211_regdomain = intersected_rd;
2099 2100 2101 2102 2103

	return 0;
}


2104 2105
/*
 * Use this call to set the current regulatory domain. Conflicts with
2106
 * multiple drivers can be ironed out later. Caller must've already
2107 2108
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2109
int set_regdom(const struct ieee80211_regdomain *rd)
2110 2111 2112
{
	int r;

2113 2114
	assert_cfg80211_lock();

2115 2116
	mutex_lock(&reg_mutex);

2117 2118
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2119 2120
	if (r) {
		kfree(rd);
2121
		mutex_unlock(&reg_mutex);
2122
		return r;
2123
	}
2124 2125

	/* This would make this whole thing pointless */
2126 2127
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2128 2129

	/* update all wiphys now with the new established regulatory domain */
2130
	update_all_wiphy_regulatory(last_request->initiator);
2131

2132
	print_regdomain(cfg80211_regdomain);
2133

2134 2135
	nl80211_send_reg_change_event(last_request);

2136 2137
	reg_set_request_processed();

2138 2139
	mutex_unlock(&reg_mutex);

2140 2141 2142
	return r;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2162
/* Caller must hold cfg80211_mutex */
2163 2164
void reg_device_remove(struct wiphy *wiphy)
{
2165
	struct wiphy *request_wiphy = NULL;
2166

2167 2168
	assert_cfg80211_lock();

2169 2170
	mutex_lock(&reg_mutex);

2171 2172
	kfree(wiphy->regd);

2173 2174
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2175

2176
	if (!request_wiphy || request_wiphy != wiphy)
2177
		goto out;
2178

2179
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2180
	last_request->country_ie_env = ENVIRON_ANY;
2181 2182
out:
	mutex_unlock(&reg_mutex);
2183 2184
}

2185 2186 2187
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2188
		      "restoring regulatory settings\n");
2189 2190 2191
	restore_regulatory_settings(true);
}

2192
int __init regulatory_init(void)
2193
{
2194
	int err = 0;
2195

2196 2197 2198
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2199

2200 2201
	reg_pdev->dev.type = &reg_device_type;

2202
	spin_lock_init(&reg_requests_lock);
2203
	spin_lock_init(&reg_pending_beacons_lock);
2204

2205
	cfg80211_regdomain = cfg80211_world_regdom;
2206

2207 2208 2209
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2210 2211
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2212
	if (err) {
2213 2214 2215 2216 2217 2218 2219 2220 2221
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2222
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2223 2224 2225
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2226
#endif
2227
	}
2228

2229 2230 2231 2232 2233 2234 2235
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2236 2237 2238
	return 0;
}

2239
void /* __init_or_exit */ regulatory_exit(void)
2240
{
2241
	struct regulatory_request *reg_request, *tmp;
2242
	struct reg_beacon *reg_beacon, *btmp;
2243 2244

	cancel_work_sync(&reg_work);
2245
	cancel_delayed_work_sync(&reg_timeout);
2246

2247
	mutex_lock(&cfg80211_mutex);
2248
	mutex_lock(&reg_mutex);
2249

2250
	reset_regdomains();
2251

2252 2253
	kfree(last_request);

2254
	platform_device_unregister(reg_pdev);
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2284
	mutex_unlock(&reg_mutex);
2285
	mutex_unlock(&cfg80211_mutex);
2286
}