reg.c 58.7 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52
#define REG_DBG_PRINT(format, args...) \
53
	do { \
54
		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 56
	} while (0)
#else
57
#define REG_DBG_PRINT(args...)
58 59
#endif

60
/* Receipt of information from last regulatory request */
61
static struct regulatory_request *last_request;
62

63 64
/* To trigger userspace events */
static struct platform_device *reg_pdev;
65

66 67 68 69
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

70 71
/*
 * Central wireless core regulatory domains, we only need two,
72
 * the current one and a world regulatory domain in case we have no
73 74
 * information to give us an alpha2
 */
75
const struct ieee80211_regdomain *cfg80211_regdomain;
76

77 78 79 80 81 82
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
83
static DEFINE_MUTEX(reg_mutex);
84 85 86 87 88

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
89

90
/* Used to queue up regulatory hints */
91 92 93
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

94 95 96 97 98 99 100 101 102 103 104 105
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

106 107 108
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

109 110 111
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

112 113
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
114
	.n_reg_rules = 5,
115 116
	.alpha2 =  "00",
	.reg_rules = {
117 118
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 120 121
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 123
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
124 125 126 127 128 129 130
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
131
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 133
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
134 135 136 137

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
138
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 140
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
141 142 143
	}
};

144 145
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
146

147
static char *ieee80211_regdom = "00";
148
static char user_alpha2[2];
149

150 151 152 153 154
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
155 156 157 158 159 160 161 162 163 164
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
165

166
	cfg80211_world_regdom = &world_regdom;
167 168 169
	cfg80211_regdomain = NULL;
}

170 171 172 173
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
174
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175
{
176
	BUG_ON(!last_request);
177 178 179 180 181 182 183

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

184
bool is_world_regdom(const char *alpha2)
185 186 187 188 189 190 191
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
192

193
static bool is_alpha2_set(const char *alpha2)
194 195 196 197 198 199 200
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
201

202
static bool is_unknown_alpha2(const char *alpha2)
203 204 205
{
	if (!alpha2)
		return false;
206 207 208 209
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
210 211 212 213
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
214

215 216 217 218
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
219 220
	/*
	 * Special case where regulatory domain is the
221
	 * result of an intersection between two regulatory domain
222 223
	 * structures
	 */
224 225 226 227 228
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

229
static bool is_an_alpha2(const char *alpha2)
230 231 232
{
	if (!alpha2)
		return false;
233
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 235 236
		return true;
	return false;
}
237

238
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 240 241 242 243 244 245 246 247
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

248
static bool regdom_changes(const char *alpha2)
249
{
250 251
	assert_cfg80211_lock();

252 253 254 255 256 257 258
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
311
static DEFINE_MUTEX(reg_regdb_search_mutex);
312 313 314 315 316 317 318

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

319
	mutex_lock(&reg_regdb_search_mutex);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
342
	mutex_unlock(&reg_regdb_search_mutex);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

360
	mutex_lock(&reg_regdb_search_mutex);
361
	list_add_tail(&request->list, &reg_regdb_search_list);
362
	mutex_unlock(&reg_regdb_search_mutex);
363 364 365 366 367 368 369

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

370 371
/*
 * This lets us keep regulatory code which is updated on a regulatory
372 373
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
374
 */
375 376 377
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
378
		pr_info("Calling CRDA for country: %c%c\n",
379 380
			alpha2[0], alpha2[1]);
	else
381
		pr_info("Calling CRDA to update world regulatory domain\n");
382

383 384 385
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

386
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 388 389
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
390
bool reg_is_valid_request(const char *alpha2)
391
{
392 393
	assert_cfg80211_lock();

394 395 396 397
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
398
}
399

400
/* Sanity check on a regulatory rule */
401
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402
{
403
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 405
	u32 freq_diff;

406
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 408 409 410 411 412 413
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

414 415
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
416 417 418 419 420
		return false;

	return true;
}

421
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422
{
423
	const struct ieee80211_reg_rule *reg_rule = NULL;
424
	unsigned int i;
425

426 427
	if (!rd->n_reg_rules)
		return false;
428

429 430 431
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

432 433 434 435 436 437 438
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
439 440
}

441 442 443
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
444
{
445 446 447 448 449 450 451 452 453 454
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
455
}
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

482 483 484 485
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

563 564
	/*
	 * First we get a count of the rules we'll need, then we actually
565 566 567
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
568 569
	 * All rules that do check out OK are valid.
	 */
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
597 598
			/*
			 * This time around instead of using the stack lets
599
			 * write to the target rule directly saving ourselves
600 601
			 * a memcpy()
			 */
602 603 604
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
605 606 607 608
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

627 628 629 630
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
631 632 633 634 635 636 637 638 639 640 641 642
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

643 644
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
645
			      u32 desired_bw_khz,
646 647
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
648 649
{
	int i;
650
	bool band_rule_found = false;
651
	const struct ieee80211_regdomain *regd;
652 653 654 655
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
656

657
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
658

659 660 661 662
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
663 664
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 667 668 669
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
670 671
		return -EINVAL;

672
	for (i = 0; i < regd->n_reg_rules; i++) {
673 674 675
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

676
		rr = &regd->reg_rules[i];
677
		fr = &rr->freq_range;
678

679 680
		/*
		 * We only need to know if one frequency rule was
681
		 * was in center_freq's band, that's enough, so lets
682 683
		 * not overwrite it once found
		 */
684 685 686
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

687 688 689
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
690

691
		if (band_rule_found && bw_fits) {
692
			*reg_rule = rr;
693
			return 0;
694 695 696
		}
	}

697 698 699
	if (!band_rule_found)
		return -ERANGE;

700
	return -EINVAL;
701 702
}

703 704 705 706
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
707
{
708
	assert_cfg80211_lock();
709 710 711 712 713
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
714
}
715
EXPORT_SYMBOL(freq_reg_info);
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

751
	REG_DBG_PRINT("Updating information on frequency %d MHz "
752
		      "for a %d MHz width channel with regulatory rule:\n",
753 754 755
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

756
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
757 758 759 760 761 762 763 764 765 766 767 768
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
769 770
#endif

771 772 773 774 775 776 777 778 779
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
780 781 782
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
783
			   unsigned int chan_idx)
784 785
{
	int r;
786 787
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 789
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
790
	const struct ieee80211_freq_range *freq_range = NULL;
791 792
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
793
	struct wiphy *request_wiphy = NULL;
794

795 796
	assert_cfg80211_lock();

797 798
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

799 800 801 802 803
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
804

805 806 807 808
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
809

810 811 812
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
813
		 * received regulatory rule unless the hint is coming
814 815 816 817 818 819 820 821 822 823 824
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

825
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826
		chan->flags = IEEE80211_CHAN_DISABLED;
827
		return;
828
	}
829

830 831
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

832
	power_rule = &reg_rule->power_rule;
833 834 835 836
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
837

838
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
840
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841
		/*
L
Lucas De Marchi 已提交
842
		 * This guarantees the driver's requested regulatory domain
843
		 * will always be used as a base for further regulatory
844 845
		 * settings
		 */
846
		chan->flags = chan->orig_flags =
847
			map_regdom_flags(reg_rule->flags) | bw_flags;
848 849 850 851 852 853 854
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

855
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856
	chan->max_antenna_gain = min(chan->orig_mag,
857
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
858
	if (chan->orig_mpwr)
859 860
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
861
	else
862
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 864
}

865 866 867
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
868
{
869 870 871 872 873
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
874 875

	for (i = 0; i < sband->n_channels; i++)
876
		handle_channel(wiphy, initiator, band, i);
877 878
}

879 880
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
881
{
882
	if (!last_request) {
883
		REG_DBG_PRINT("Ignoring regulatory request %s since "
884 885
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
886
		return true;
887 888
	}

889
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891
		REG_DBG_PRINT("Ignoring regulatory request %s "
892 893 894
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
895
		return true;
896 897
	}

898 899 900 901
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
902
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904
	    !is_world_regdom(last_request->alpha2)) {
905
		REG_DBG_PRINT("Ignoring regulatory request %s "
906 907 908
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
909
		return true;
910 911
	}

912 913 914
	return false;
}

915
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916
{
917
	struct cfg80211_registered_device *rdev;
918

919 920
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
921 922
}

923 924 925 926 927 928
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
929 930
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
931 932 933 934 935 936 937 938 939

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

940 941 942 943 944
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
945
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 947
		return;

948 949 950
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

951
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953
		channel_changed = true;
954 955
	}

956
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958
		channel_changed = true;
959 960
	}

961 962
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1014 1015
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1016
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 1018 1019 1020 1021 1022 1023
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1024 1025 1026 1027 1028 1029
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1030 1031 1032 1033 1034
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1085
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086
	else
1087
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088 1089

	if (is_ht40_not_allowed(channel_after))
1090
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091
	else
1092
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1122 1123
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1124 1125
{
	enum ieee80211_band band;
1126

1127
	if (ignore_reg_update(wiphy, initiator))
1128
		goto out;
1129
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1130
		if (wiphy->bands[band])
1131
			handle_band(wiphy, band, initiator);
1132
	}
1133 1134
out:
	reg_process_beacons(wiphy);
1135
	reg_process_ht_flags(wiphy);
1136
	if (wiphy->reg_notifier)
1137
		wiphy->reg_notifier(wiphy, last_request);
1138 1139
}

1140 1141 1142 1143 1144 1145
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1146 1147
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1148 1149
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1150
	const struct ieee80211_freq_range *freq_range = NULL;
1151 1152 1153
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1154
	assert_reg_lock();
1155

1156 1157 1158 1159
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1160 1161 1162 1163 1164
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1165 1166

	if (r) {
1167
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 1169 1170 1171
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1172 1173 1174 1175
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1176 1177
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1178
	power_rule = &reg_rule->power_rule;
1179 1180 1181 1182
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1183

1184
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1207
	unsigned int bands_set = 0;
1208

1209
	mutex_lock(&reg_mutex);
1210
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1211 1212 1213 1214
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1215
	}
1216
	mutex_unlock(&reg_mutex);
1217 1218 1219 1220 1221 1222

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1223
}
1224 1225
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1226 1227 1228 1229
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1230 1231
#define REG_INTERSECT	1

1232 1233
/* This has the logic which determines when a new request
 * should be ignored. */
1234 1235
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1236
{
1237
	struct wiphy *last_wiphy = NULL;
1238 1239 1240

	assert_cfg80211_lock();

1241 1242 1243 1244
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1245
	switch (pending_request->initiator) {
1246
	case NL80211_REGDOM_SET_BY_CORE:
1247
		return 0;
1248
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1249 1250 1251

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1252
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1253
			return -EINVAL;
1254 1255
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1256
			if (last_wiphy != wiphy) {
1257 1258
				/*
				 * Two cards with two APs claiming different
1259
				 * Country IE alpha2s. We could
1260 1261 1262
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1263
				if (regdom_changes(pending_request->alpha2))
1264 1265 1266
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1267 1268 1269 1270
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1271
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1272 1273 1274
				return 0;
			return -EALREADY;
		}
1275
		return 0;
1276 1277
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1278
			if (regdom_changes(pending_request->alpha2))
1279
				return 0;
1280
			return -EALREADY;
1281
		}
1282 1283 1284 1285 1286 1287

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1288
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289
		    !regdom_changes(pending_request->alpha2))
1290 1291
			return -EALREADY;

1292
		return REG_INTERSECT;
1293 1294
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1295
			return REG_INTERSECT;
1296 1297 1298 1299
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1300
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1301 1302
			  last_request->intersect)
			return -EOPNOTSUPP;
1303 1304 1305 1306
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1307 1308 1309
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1310
			if (regdom_changes(last_request->alpha2))
1311 1312 1313
				return -EAGAIN;
		}

1314
		if (!regdom_changes(pending_request->alpha2))
1315 1316
			return -EALREADY;

1317 1318 1319 1320 1321 1322
		return 0;
	}

	return -EINVAL;
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1334 1335 1336
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1337 1338 1339 1340
	if (need_more_processing)
		schedule_work(&reg_work);
}

1341 1342 1343 1344
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1345
 * @pending_request: the regulatory request currently being processed
1346 1347
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1348
 * what it believes should be the current regulatory domain.
1349 1350 1351 1352
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1353
 * Caller must hold &cfg80211_mutex and &reg_mutex
1354
 */
1355 1356
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1357
{
1358
	bool intersect = false;
1359 1360
	int r = 0;

1361 1362
	assert_cfg80211_lock();

1363
	r = ignore_request(wiphy, pending_request);
1364

1365
	if (r == REG_INTERSECT) {
1366 1367
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1368
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1369 1370
			if (r) {
				kfree(pending_request);
1371
				return r;
1372
			}
1373
		}
1374
		intersect = true;
1375
	} else if (r) {
1376 1377
		/*
		 * If the regulatory domain being requested by the
1378
		 * driver has already been set just copy it to the
1379 1380
		 * wiphy
		 */
1381
		if (r == -EALREADY &&
1382 1383
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1384
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1385 1386
			if (r) {
				kfree(pending_request);
1387
				return r;
1388
			}
1389 1390 1391
			r = -EALREADY;
			goto new_request;
		}
1392
		kfree(pending_request);
1393
		return r;
1394
	}
1395

1396
new_request:
1397
	kfree(last_request);
1398

1399 1400
	last_request = pending_request;
	last_request->intersect = intersect;
1401

1402
	pending_request = NULL;
1403

1404 1405 1406 1407 1408
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1409
	/* When r == REG_INTERSECT we do need to call CRDA */
1410 1411 1412 1413 1414 1415
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1416
		if (r == -EALREADY) {
1417
			nl80211_send_reg_change_event(last_request);
1418 1419
			reg_set_request_processed();
		}
1420
		return r;
1421
	}
1422

1423
	return call_crda(last_request->alpha2);
1424 1425
}

1426
/* This processes *all* regulatory hints */
1427
static void reg_process_hint(struct regulatory_request *reg_request)
1428 1429 1430
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1431
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1432 1433 1434 1435 1436 1437

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1438
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1439
	    !wiphy) {
1440
		kfree(reg_request);
1441
		return;
1442 1443
	}

1444
	r = __regulatory_hint(wiphy, reg_request);
1445
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1446
	if (r == -EALREADY && wiphy &&
1447
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1448
		wiphy_update_regulatory(wiphy, initiator);
1449 1450 1451 1452 1453 1454 1455
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1456 1457
	if (r != -EALREADY &&
	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1458
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1459 1460
}

1461 1462 1463 1464 1465
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1466
static void reg_process_pending_hints(void)
1467
{
1468 1469
	struct regulatory_request *reg_request;

1470 1471 1472
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1473 1474 1475 1476 1477 1478 1479
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
			      "for it to be processed...");
		goto out;
	}

1480 1481
	spin_lock(&reg_requests_lock);

1482
	if (list_empty(&reg_requests_list)) {
1483
		spin_unlock(&reg_requests_lock);
1484
		goto out;
1485
	}
1486 1487 1488 1489 1490 1491

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1492
	spin_unlock(&reg_requests_lock);
1493

1494 1495 1496
	reg_process_hint(reg_request);

out:
1497 1498
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1499 1500
}

1501 1502 1503
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1504
	struct cfg80211_registered_device *rdev;
1505 1506
	struct reg_beacon *pending_beacon, *tmp;

1507 1508 1509 1510
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1527 1528
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1539 1540 1541
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1542
	reg_process_pending_beacon_hints();
1543 1544 1545 1546
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1547 1548 1549 1550 1551
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1552 1553 1554 1555 1556 1557 1558
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1559 1560 1561 1562
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1563 1564 1565 1566
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1567 1568
	kfree(last_request);
	last_request = NULL;
1569 1570 1571 1572 1573 1574 1575 1576

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1577
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1578

1579
	queue_regulatory_request(request);
1580

1581
	return 0;
1582 1583
}

1584 1585
/* User hints */
int regulatory_hint_user(const char *alpha2)
1586
{
1587 1588
	struct regulatory_request *request;

1589
	BUG_ON(!alpha2);
1590

1591 1592 1593 1594 1595 1596 1597
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1598
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1624
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1625 1626 1627 1628

	queue_regulatory_request(request);

	return 0;
1629 1630 1631
}
EXPORT_SYMBOL(regulatory_hint);

1632 1633 1634 1635
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1636
void regulatory_hint_11d(struct wiphy *wiphy,
1637 1638 1639
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1640 1641 1642
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1643
	struct regulatory_request *request;
1644

1645
	mutex_lock(&reg_mutex);
1646

1647 1648
	if (unlikely(!last_request))
		goto out;
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1665
	/*
1666
	 * We will run this only upon a successful connection on cfg80211.
1667 1668
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1669
	 */
1670 1671
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1672 1673
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1674

1675 1676
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1677
		goto out;
1678 1679

	request->wiphy_idx = get_wiphy_idx(wiphy);
1680 1681
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1682
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1683 1684
	request->country_ie_env = env;

1685
	mutex_unlock(&reg_mutex);
1686

1687 1688 1689
	queue_regulatory_request(request);

	return;
1690

1691
out:
1692
	mutex_unlock(&reg_mutex);
1693
}
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1705
			REG_DBG_PRINT("Restoring regulatory settings "
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1716
				REG_DBG_PRINT("Keeping preference on "
1717 1718 1719 1720 1721 1722 1723
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1724
			REG_DBG_PRINT("Restoring regulatory settings "
1725 1726 1727 1728 1729 1730 1731
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1732
		REG_DBG_PRINT("Keeping preference on "
1733 1734 1735 1736 1737 1738
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1739
		REG_DBG_PRINT("Restoring regulatory settings\n");
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1761 1762
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1763 1764 1765 1766 1767 1768 1769

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1848 1849 1850

void regulatory_hint_disconnect(void)
{
1851
	REG_DBG_PRINT("All devices are disconnected, going to "
1852 1853 1854 1855
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1856 1857
static bool freq_is_chan_12_13_14(u16 freq)
{
1858 1859 1860
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1881
	REG_DBG_PRINT("Found new beacon on "
1882 1883 1884 1885 1886
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1904
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1905 1906
{
	unsigned int i;
1907 1908 1909
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1910

1911
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1912 1913 1914 1915 1916 1917

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1918 1919 1920 1921
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1922
		if (power_rule->max_antenna_gain)
1923
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1924 1925 1926 1927 1928 1929
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1930
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1931 1932 1933 1934 1935 1936 1937
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1938
static void print_regdomain(const struct ieee80211_regdomain *rd)
1939 1940
{

1941 1942
	if (is_intersected_alpha2(rd->alpha2)) {

1943 1944
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 1946
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1947
				last_request->wiphy_idx);
1948
			if (rdev) {
1949
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1950 1951
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1952
			} else
1953
				pr_info("Current regulatory domain intersected:\n");
1954
		} else
1955
			pr_info("Current regulatory domain intersected:\n");
1956
	} else if (is_world_regdom(rd->alpha2))
1957
		pr_info("World regulatory domain updated:\n");
1958 1959
	else {
		if (is_unknown_alpha2(rd->alpha2))
1960
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1961
		else
1962
			pr_info("Regulatory domain changed to country: %c%c\n",
1963 1964 1965 1966 1967
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1968
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1969
{
1970
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1971 1972 1973
	print_rd_rules(rd);
}

1974
/* Takes ownership of rd only if it doesn't fail */
1975
static int __set_regdom(const struct ieee80211_regdomain *rd)
1976
{
1977
	const struct ieee80211_regdomain *intersected_rd = NULL;
1978
	struct cfg80211_registered_device *rdev = NULL;
1979
	struct wiphy *request_wiphy;
1980 1981 1982
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1983
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1984 1985 1986 1987 1988 1989 1990 1991 1992
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1993
	if (!last_request)
1994 1995
		return -EINVAL;

1996 1997
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1998
	 * rd is non static (it means CRDA was present and was used last)
1999 2000
	 * and the pending request came in from a country IE
	 */
2001
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2002 2003 2004 2005
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2006
		if (!regdom_changes(rd->alpha2))
2007 2008 2009
			return -EINVAL;
	}

2010 2011
	/*
	 * Now lets set the regulatory domain, update all driver channels
2012 2013
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2014 2015
	 * internal EEPROM data
	 */
2016

2017
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2018 2019
		return -EINVAL;

2020
	if (!is_valid_rd(rd)) {
2021
		pr_err("Invalid regulatory domain detected:\n");
2022 2023
		print_regdomain_info(rd);
		return -EINVAL;
2024 2025
	}

2026 2027
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2028
	if (!last_request->intersect) {
2029 2030
		int r;

2031
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2032 2033 2034 2035 2036
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2037 2038 2039 2040
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2041

2042 2043 2044 2045 2046 2047
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2048

2049
		r = reg_copy_regd(&request_wiphy->regd, rd);
2050 2051 2052
		if (r)
			return r;

2053 2054 2055 2056 2057 2058 2059
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2060
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2061

2062 2063 2064
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2065

2066 2067
		/*
		 * We can trash what CRDA provided now.
2068
		 * However if a driver requested this specific regulatory
2069 2070
		 * domain we keep it for its private use
		 */
2071
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2072
			request_wiphy->regd = rd;
2073 2074 2075
		else
			kfree(rd);

2076 2077 2078 2079 2080 2081
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2082 2083
	}

2084 2085 2086
	if (!intersected_rd)
		return -EINVAL;

2087
	rdev = wiphy_to_dev(request_wiphy);
2088

2089 2090 2091
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2092 2093 2094 2095 2096 2097

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2098
	reset_regdomains();
2099
	cfg80211_regdomain = intersected_rd;
2100 2101 2102 2103 2104

	return 0;
}


2105 2106
/*
 * Use this call to set the current regulatory domain. Conflicts with
2107
 * multiple drivers can be ironed out later. Caller must've already
2108 2109
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2110
int set_regdom(const struct ieee80211_regdomain *rd)
2111 2112 2113
{
	int r;

2114 2115
	assert_cfg80211_lock();

2116 2117
	mutex_lock(&reg_mutex);

2118 2119
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2120 2121
	if (r) {
		kfree(rd);
2122
		mutex_unlock(&reg_mutex);
2123
		return r;
2124
	}
2125 2126

	/* This would make this whole thing pointless */
2127 2128
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2129 2130

	/* update all wiphys now with the new established regulatory domain */
2131
	update_all_wiphy_regulatory(last_request->initiator);
2132

2133
	print_regdomain(cfg80211_regdomain);
2134

2135 2136
	nl80211_send_reg_change_event(last_request);

2137 2138
	reg_set_request_processed();

2139 2140
	mutex_unlock(&reg_mutex);

2141 2142 2143
	return r;
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2163
/* Caller must hold cfg80211_mutex */
2164 2165
void reg_device_remove(struct wiphy *wiphy)
{
2166
	struct wiphy *request_wiphy = NULL;
2167

2168 2169
	assert_cfg80211_lock();

2170 2171
	mutex_lock(&reg_mutex);

2172 2173
	kfree(wiphy->regd);

2174 2175
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2176

2177
	if (!request_wiphy || request_wiphy != wiphy)
2178
		goto out;
2179

2180
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2181
	last_request->country_ie_env = ENVIRON_ANY;
2182 2183
out:
	mutex_unlock(&reg_mutex);
2184 2185
}

2186 2187 2188 2189 2190 2191 2192
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
		      "restoring regulatory settings");
	restore_regulatory_settings(true);
}

2193
int __init regulatory_init(void)
2194
{
2195
	int err = 0;
2196

2197 2198 2199
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2200

2201 2202
	reg_pdev->dev.type = &reg_device_type;

2203
	spin_lock_init(&reg_requests_lock);
2204
	spin_lock_init(&reg_pending_beacons_lock);
2205

2206
	cfg80211_regdomain = cfg80211_world_regdom;
2207

2208 2209 2210
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2211 2212
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2213
	if (err) {
2214 2215 2216 2217 2218 2219 2220 2221 2222
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2223
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2224 2225 2226
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2227
#endif
2228
	}
2229

2230 2231 2232 2233 2234 2235 2236
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2237 2238 2239
	return 0;
}

2240
void /* __init_or_exit */ regulatory_exit(void)
2241
{
2242
	struct regulatory_request *reg_request, *tmp;
2243
	struct reg_beacon *reg_beacon, *btmp;
2244 2245

	cancel_work_sync(&reg_work);
2246
	cancel_delayed_work_sync(&reg_timeout);
2247

2248
	mutex_lock(&cfg80211_mutex);
2249
	mutex_lock(&reg_mutex);
2250

2251
	reset_regdomains();
2252

2253 2254
	kfree(last_request);

2255
	platform_device_unregister(reg_pdev);
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2285
	mutex_unlock(&reg_mutex);
2286
	mutex_unlock(&cfg80211_mutex);
2287
}