reg.c 25.2 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct regulatory_request - receipt of last regulatory request
 *
 * @wiphy: this is set if this request's initiator is
 * 	%REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
 * 	can be used by the wireless core to deal with conflicts
 * 	and potentially inform users of which devices specifically
 * 	cased the conflicts.
 * @initiator: indicates who sent this request, could be any of
 * 	of those set in reg_set_by, %REGDOM_SET_BY_*
 * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
 * 	regulatory domain. We have a few special codes:
 * 	00 - World regulatory domain
 * 	99 - built by driver but a specific alpha2 cannot be determined
 * 	98 - result of an intersection between two regulatory domains
 * @intersect: indicates whether the wireless core should intersect
 * 	the requested regulatory domain with the presently set regulatory
 * 	domain.
63
 */
64 65 66 67
struct regulatory_request {
	struct wiphy *wiphy;
	enum reg_set_by initiator;
	char alpha2[2];
68
	bool intersect;
69 70
};

71
/* Receipt of information from last regulatory request */
72
static struct regulatory_request *last_request;
73

74 75
/* To trigger userspace events */
static struct platform_device *reg_pdev;
76

77 78 79 80
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
81 82
};

83 84 85
/* Central wireless core regulatory domains, we only need two,
 * the current one and a world regulatory domain in case we have no
 * information to give us an alpha2 */
86
static const struct ieee80211_regdomain *cfg80211_regdomain;
87 88 89 90 91 92 93 94 95 96 97 98

/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
	.n_reg_rules = 1,
	.alpha2 =  "00",
	.reg_rules = {
		REG_RULE(2412-10, 2462+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
	}
};

99 100
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

/* We assume 40 MHz bandwidth for the old regulatory work.
 * We make emphasis we are using the exact same frequencies
 * as before */

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
	/* This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility */
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

186
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
187 188 189 190 191
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
192 193
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
194
{
195
	return false;
196
}
197 198
#endif

199 200
static void reset_regdomains(void)
{
201 202 203 204 205 206 207 208 209 210 211 212
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
213

214
	cfg80211_world_regdom = &world_regdom;
215 216 217 218 219
	cfg80211_regdomain = NULL;
}

/* Dynamic world regulatory domain requested by the wireless
 * core upon initialization */
220
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
221
{
222
	BUG_ON(!last_request);
223 224 225 226 227 228 229

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

230
bool is_world_regdom(const char *alpha2)
231 232 233 234 235 236 237
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
238

239
static bool is_alpha2_set(const char *alpha2)
240 241 242 243 244 245 246
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
247

248 249 250 251 252 253 254
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
255

256
static bool is_unknown_alpha2(const char *alpha2)
257 258 259 260 261 262 263 264 265
{
	if (!alpha2)
		return false;
	/* Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined */
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
266

267
static bool is_an_alpha2(const char *alpha2)
268 269 270 271 272 273 274
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
275

276
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
277 278 279 280 281 282 283 284 285
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

286
static bool regdom_changed(const char *alpha2)
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
{
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

/* This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace. */
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
319
bool reg_is_valid_request(const char *alpha2)
320
{
321 322 323 324
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
325
}
326

327
/* Sanity check on a regulatory rule */
328
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
329
{
330
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
331 332
	u32 freq_diff;

333
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
334 335 336 337 338 339 340
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

341
	if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
342 343 344 345 346
		return false;

	return true;
}

347
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
348
{
349
	const struct ieee80211_reg_rule *reg_rule = NULL;
350
	unsigned int i;
351

352 353
	if (!rd->n_reg_rules)
		return false;
354

355 356 357 358 359 360 361
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
362 363
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/* Helper for regdom_intersect(), this does the real
 * mathematical intersection fun */
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

	/* First we get a count of the rules we'll need, then we actually
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
	 * All rules that do check out OK are valid. */

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			/* This time around instead of using the stack lets
			 * write to the target rule directly saving ourselves
			 * a memcpy() */
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
			/* No need to memset here the intersected rule here as
			 * we're not using the stack anymore */
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these */
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

/**
 * freq_reg_info - get regulatory information for the given frequency
 * @center_freq: Frequency in KHz for which we want regulatory information for
 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
 * 	you can set this to 0. If this frequency is allowed we then set
 * 	this value to the maximum allowed bandwidth.
 * @reg_rule: the regulatory rule which we have for this frequency
 *
 * Use this function to get the regulatory rule for a specific frequency.
 */
static int freq_reg_info(u32 center_freq, u32 *bandwidth,
			 const struct ieee80211_reg_rule **reg_rule)
542 543
{
	int i;
544
	u32 max_bandwidth = 0;
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	if (!cfg80211_regdomain)
		return -EINVAL;

	for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

		rr = &cfg80211_regdomain->reg_rules[i];
		fr = &rr->freq_range;
		pr = &rr->power_rule;
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
561 562 563 564
			break;
		}
	}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return !max_bandwidth;
}

static void handle_channel(struct ieee80211_channel *chan)
{
	int r;
	u32 flags = chan->orig_flags;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;

	r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule);

	if (r) {
580 581 582 583 584
		flags |= IEEE80211_CHAN_DISABLED;
		chan->flags = flags;
		return;
	}

585 586 587
	power_rule = &reg_rule->power_rule;

	chan->flags = flags | map_regdom_flags(reg_rule->flags);
588
	chan->max_antenna_gain = min(chan->orig_mag,
589 590
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
591
	if (chan->orig_mpwr)
592 593
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
594
	else
595
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
596 597
}

598
static void handle_band(struct ieee80211_supported_band *sband)
599 600 601 602
{
	int i;

	for (i = 0; i < sband->n_channels; i++)
603
		handle_channel(&sband->channels[i]);
604 605
}

606
static void update_all_wiphy_regulatory(enum reg_set_by setby)
607
{
608
	struct cfg80211_registered_device *drv;
609

610 611 612 613 614 615 616 617
	list_for_each_entry(drv, &cfg80211_drv_list, list)
		wiphy_update_regulatory(&drv->wiphy, setby);
}

void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
618
		if (wiphy->bands[band])
619 620 621 622 623 624
			handle_band(wiphy->bands[band]);
		if (wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, setby);
	}
}

625 626 627 628
/* Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains */
#define REG_INTERSECT	1

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/* This has the logic which determines when a new request
 * should be ignored. */
static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
			  const char *alpha2)
{
	/* All initial requests are respected */
	if (!last_request)
		return 0;

	switch (set_by) {
	case REGDOM_SET_BY_INIT:
		return -EINVAL;
	case REGDOM_SET_BY_CORE:
		/*
		 * Always respect new wireless core hints, should only happen
		 * when updating the world regulatory domain at init.
		 */
		return 0;
	case REGDOM_SET_BY_COUNTRY_IE:
		if (unlikely(!is_an_alpha2(alpha2)))
			return -EINVAL;
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
			if (last_request->wiphy != wiphy) {
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
				if (!alpha2_equal(alpha2,
						  cfg80211_regdomain->alpha2))
					return -EOPNOTSUPP;
				return -EALREADY;
			}
			/* Two consecutive Country IE hints on the same wiphy */
			if (!alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
				return 0;
			return -EALREADY;
		}
		/*
		 * Ignore Country IE hints for now, need to think about
		 * what we need to do to support multi-domain operation.
		 */
		return -EOPNOTSUPP;
	case REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == REGDOM_SET_BY_DRIVER)
			return -EALREADY;
		return 0;
	case REGDOM_SET_BY_USER:
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
679
			return REG_INTERSECT;
680 681 682 683 684 685
		return 0;
	}

	return -EINVAL;
}

686 687
/* Caller must hold &cfg80211_drv_mutex */
int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
688
		      const char *alpha2)
689 690
{
	struct regulatory_request *request;
691
	bool intersect = false;
692 693
	int r = 0;

694
	r = ignore_request(wiphy, set_by, alpha2);
695 696 697 698

	if (r == REG_INTERSECT)
		intersect = true;
	else if (r)
699 700
		return r;

701 702 703 704 705 706 707 708 709 710 711 712 713
	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = set_by;
	request->wiphy = wiphy;
	request->intersect = intersect;

	kfree(last_request);
	last_request = request;
714
	return call_crda(alpha2);
715 716
}

717
void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
718
{
719
	BUG_ON(!alpha2);
720 721

	mutex_lock(&cfg80211_drv_mutex);
722
	__regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2);
723 724 725 726 727
	mutex_unlock(&cfg80211_drv_mutex);
}
EXPORT_SYMBOL(regulatory_hint);


728
static void print_rd_rules(const struct ieee80211_regdomain *rd)
729 730
{
	unsigned int i;
731 732 733
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		/* There may not be documentation for max antenna gain
		 * in certain regions */
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

763
static void print_regdomain(const struct ieee80211_regdomain *rd)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
{

	if (is_world_regdom(rd->alpha2))
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

782
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
783 784 785 786 787 788
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

789
/* Takes ownership of rd only if it doesn't fail */
790
static int __set_regdom(const struct ieee80211_regdomain *rd)
791
{
792
	const struct ieee80211_regdomain *intersected_rd = NULL;
793 794 795
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
796
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
797 798 799 800 801 802 803 804 805
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

806
	if (!last_request)
807 808
		return -EINVAL;

809
	/* allow overriding the static definitions if CRDA is present */
810
	if (!is_old_static_regdom(cfg80211_regdomain) &&
811
	    !regdom_changed(rd->alpha2))
812 813 814 815 816 817 818
		return -EINVAL;

	/* Now lets set the regulatory domain, update all driver channels
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
	 * internal EEPROM data */

819
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
820 821
		return -EINVAL;

822 823 824 825 826
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
827 828
	}

829 830 831 832 833 834 835 836 837 838
	if (!last_request->intersect) {
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {

839 840 841
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
842 843

		/* We can trash what CRDA provided now */
844
		kfree(rd);
845 846 847 848 849 850
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
851 852
	}

853 854 855
	/* Country IE parsing coming soon */
	reset_regdomains();
	WARN_ON(1);
856 857 858 859 860 861 862

	return 0;
}


/* Use this call to set the current regulatory domain. Conflicts with
 * multiple drivers can be ironed out later. Caller must've already
863
 * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
864
int set_regdom(const struct ieee80211_regdomain *rd)
865 866 867 868 869
{
	int r;

	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
870 871
	if (r) {
		kfree(rd);
872
		return r;
873
	}
874 875

	/* This would make this whole thing pointless */
876 877
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
878 879

	/* update all wiphys now with the new established regulatory domain */
880
	update_all_wiphy_regulatory(last_request->initiator);
881

882
	print_regdomain(cfg80211_regdomain);
883 884 885 886 887 888

	return r;
}

int regulatory_init(void)
{
889 890
	int err;

891 892 893
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
894 895

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
896
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
897

898
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
899 900 901 902 903
	print_regdomain_info(cfg80211_regdomain);
	/* The old code still requests for a new regdomain and if
	 * you have CRDA you get it updated, otherwise you get
	 * stuck with the static values. We ignore "EU" code as
	 * that is not a valid ISO / IEC 3166 alpha2 */
J
Johannes Berg 已提交
904
	if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
905
		err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
906
					ieee80211_regdom);
907
#else
908
	cfg80211_regdomain = cfg80211_world_regdom;
909

910
	err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00");
911 912 913 914 915 916
	if (err)
		printk(KERN_ERR "cfg80211: calling CRDA failed - "
		       "unable to update world regulatory domain, "
		       "using static definition\n");
#endif

917 918 919 920 921 922
	return 0;
}

void regulatory_exit(void)
{
	mutex_lock(&cfg80211_drv_mutex);
923

924
	reset_regdomains();
925

926 927
	kfree(last_request);

928
	platform_device_unregister(reg_pdev);
929

930
	mutex_unlock(&cfg80211_drv_mutex);
931
}