reg.c 58.8 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52
#define REG_DBG_PRINT(format, args...) \
53
	do { \
54
		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 56
	} while (0)
#else
57
#define REG_DBG_PRINT(args...)
58 59
#endif

60
/* Receipt of information from last regulatory request */
61
static struct regulatory_request *last_request;
62

63 64
/* To trigger userspace events */
static struct platform_device *reg_pdev;
65

66 67 68 69
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

70 71
/*
 * Central wireless core regulatory domains, we only need two,
72
 * the current one and a world regulatory domain in case we have no
73 74
 * information to give us an alpha2
 */
75
const struct ieee80211_regdomain *cfg80211_regdomain;
76

77 78 79 80 81 82
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
83
static DEFINE_MUTEX(reg_mutex);
84 85 86 87 88

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
89

90
/* Used to queue up regulatory hints */
91 92 93
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

94 95 96 97 98 99 100 101 102 103 104 105
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

106 107 108
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

109 110 111
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

112 113
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
114
	.n_reg_rules = 5,
115 116
	.alpha2 =  "00",
	.reg_rules = {
117 118
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 120 121
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 123
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
124 125 126 127 128 129 130
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
131
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 133
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
134 135 136 137

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
138
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 140
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
141 142 143
	}
};

144 145
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
146

147
static char *ieee80211_regdom = "00";
148
static char user_alpha2[2];
149

150 151 152 153 154
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
155 156 157 158 159 160 161 162 163 164
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
165

166
	cfg80211_world_regdom = &world_regdom;
167 168 169
	cfg80211_regdomain = NULL;
}

170 171 172 173
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
174
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175
{
176
	BUG_ON(!last_request);
177 178 179 180 181 182 183

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

184
bool is_world_regdom(const char *alpha2)
185 186 187 188 189 190 191
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
192

193
static bool is_alpha2_set(const char *alpha2)
194 195 196 197 198 199 200
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
201

202
static bool is_unknown_alpha2(const char *alpha2)
203 204 205
{
	if (!alpha2)
		return false;
206 207 208 209
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
210 211 212 213
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
214

215 216 217 218
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
219 220
	/*
	 * Special case where regulatory domain is the
221
	 * result of an intersection between two regulatory domain
222 223
	 * structures
	 */
224 225 226 227 228
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

229
static bool is_an_alpha2(const char *alpha2)
230 231 232
{
	if (!alpha2)
		return false;
233
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 235 236
		return true;
	return false;
}
237

238
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 240 241 242 243 244 245 246 247
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

248
static bool regdom_changes(const char *alpha2)
249
{
250 251
	assert_cfg80211_lock();

252 253 254 255 256 257 258
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
311
static DEFINE_MUTEX(reg_regdb_search_mutex);
312 313 314 315 316 317 318

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

319
	mutex_lock(&reg_regdb_search_mutex);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
342
	mutex_unlock(&reg_regdb_search_mutex);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

360
	mutex_lock(&reg_regdb_search_mutex);
361
	list_add_tail(&request->list, &reg_regdb_search_list);
362
	mutex_unlock(&reg_regdb_search_mutex);
363 364 365 366 367 368 369

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

370 371
/*
 * This lets us keep regulatory code which is updated on a regulatory
372 373
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
374
 */
375 376 377
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
378
		pr_info("Calling CRDA for country: %c%c\n",
379 380
			alpha2[0], alpha2[1]);
	else
381
		pr_info("Calling CRDA to update world regulatory domain\n");
382

383 384 385
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

386
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 388 389
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
390
bool reg_is_valid_request(const char *alpha2)
391
{
392 393
	assert_cfg80211_lock();

394 395 396 397
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
398
}
399

400
/* Sanity check on a regulatory rule */
401
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402
{
403
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 405
	u32 freq_diff;

406
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 408 409 410 411 412 413
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

414 415
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
416 417 418 419 420
		return false;

	return true;
}

421
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422
{
423
	const struct ieee80211_reg_rule *reg_rule = NULL;
424
	unsigned int i;
425

426 427
	if (!rd->n_reg_rules)
		return false;
428

429 430 431
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

432 433 434 435 436 437 438
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
439 440
}

441 442 443
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
444
{
445 446 447 448 449 450 451 452 453 454
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
455
}
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

482 483 484 485
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

563 564
	/*
	 * First we get a count of the rules we'll need, then we actually
565 566 567
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
568 569
	 * All rules that do check out OK are valid.
	 */
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
597 598
			/*
			 * This time around instead of using the stack lets
599
			 * write to the target rule directly saving ourselves
600 601
			 * a memcpy()
			 */
602 603 604
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
605 606 607 608
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

627 628 629 630
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
631 632 633 634 635 636 637 638 639 640 641 642
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

643 644
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
645
			      u32 desired_bw_khz,
646 647
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
648 649
{
	int i;
650
	bool band_rule_found = false;
651
	const struct ieee80211_regdomain *regd;
652 653 654 655
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
656

657
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
658

659 660 661 662
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
663 664
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 667 668 669
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
670 671
		return -EINVAL;

672
	for (i = 0; i < regd->n_reg_rules; i++) {
673 674 675 676
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

677
		rr = &regd->reg_rules[i];
678 679
		fr = &rr->freq_range;
		pr = &rr->power_rule;
680

681 682
		/*
		 * We only need to know if one frequency rule was
683
		 * was in center_freq's band, that's enough, so lets
684 685
		 * not overwrite it once found
		 */
686 687 688
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

689 690 691
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
692

693
		if (band_rule_found && bw_fits) {
694
			*reg_rule = rr;
695
			return 0;
696 697 698
		}
	}

699 700 701
	if (!band_rule_found)
		return -ERANGE;

702
	return -EINVAL;
703 704
}

705 706 707 708
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
709
{
710
	assert_cfg80211_lock();
711 712 713 714 715
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
716
}
717
EXPORT_SYMBOL(freq_reg_info);
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

753
	REG_DBG_PRINT("Updating information on frequency %d MHz "
754
		      "for a %d MHz width channel with regulatory rule:\n",
755 756 757
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

758
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
759 760 761 762 763 764 765 766 767 768 769 770
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
771 772
#endif

773 774 775 776 777 778 779 780 781
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
782 783 784
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
785
			   unsigned int chan_idx)
786 787
{
	int r;
788 789
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
790 791
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
792
	const struct ieee80211_freq_range *freq_range = NULL;
793 794
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
795
	struct wiphy *request_wiphy = NULL;
796

797 798
	assert_cfg80211_lock();

799 800
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

801 802 803 804 805
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
806

807 808 809 810
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	if (r) {
		/*
		 * We will disable all channels that do not match our
		 * recieved regulatory rule unless the hint is coming
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

827
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
828
		chan->flags = IEEE80211_CHAN_DISABLED;
829
		return;
830
	}
831

832 833
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

834
	power_rule = &reg_rule->power_rule;
835 836 837 838
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
839

840
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
841
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
842
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
843 844
		/*
		 * This gaurantees the driver's requested regulatory domain
845
		 * will always be used as a base for further regulatory
846 847
		 * settings
		 */
848
		chan->flags = chan->orig_flags =
849
			map_regdom_flags(reg_rule->flags) | bw_flags;
850 851 852 853 854 855 856
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

857
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858
	chan->max_antenna_gain = min(chan->orig_mag,
859
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
860
	if (chan->orig_mpwr)
861 862
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
863
	else
864
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 866
}

867 868 869
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
870
{
871 872 873 874 875
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
876 877

	for (i = 0; i < sband->n_channels; i++)
878
		handle_channel(wiphy, initiator, band, i);
879 880
}

881 882
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
883
{
884
	if (!last_request) {
885
		REG_DBG_PRINT("Ignoring regulatory request %s since "
886 887
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
888
		return true;
889 890
	}

891
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893
		REG_DBG_PRINT("Ignoring regulatory request %s "
894 895 896
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
897
		return true;
898 899
	}

900 901 902 903
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
904
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906
	    !is_world_regdom(last_request->alpha2)) {
907
		REG_DBG_PRINT("Ignoring regulatory request %s "
908 909 910
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
911
		return true;
912 913
	}

914 915 916
	return false;
}

917
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
918
{
919
	struct cfg80211_registered_device *rdev;
920

921 922
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
923 924
}

925 926 927 928 929 930
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
931 932
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
933 934 935 936 937 938 939 940 941

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

942 943 944 945 946
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
947
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
948 949
		return;

950 951 952
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

953
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
954
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
955
		channel_changed = true;
956 957
	}

958
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
959
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
960
		channel_changed = true;
961 962
	}

963 964
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1016 1017
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1018
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1019 1020 1021 1022 1023 1024 1025
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1026 1027 1028 1029 1030 1031
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1032 1033 1034 1035 1036
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1087
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1088
	else
1089
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1090 1091

	if (is_ht40_not_allowed(channel_after))
1092
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1093
	else
1094
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1124 1125
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1126 1127
{
	enum ieee80211_band band;
1128

1129
	if (ignore_reg_update(wiphy, initiator))
1130
		goto out;
1131
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1132
		if (wiphy->bands[band])
1133
			handle_band(wiphy, band, initiator);
1134
	}
1135 1136
out:
	reg_process_beacons(wiphy);
1137
	reg_process_ht_flags(wiphy);
1138
	if (wiphy->reg_notifier)
1139
		wiphy->reg_notifier(wiphy, last_request);
1140 1141
}

1142 1143 1144 1145 1146 1147
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1148 1149
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1150 1151
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1152
	const struct ieee80211_freq_range *freq_range = NULL;
1153 1154 1155
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1156
	assert_reg_lock();
1157

1158 1159 1160 1161
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1162 1163 1164 1165 1166
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1167 1168

	if (r) {
1169
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1170 1171 1172 1173
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1174 1175 1176 1177
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1178 1179
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1180
	power_rule = &reg_rule->power_rule;
1181 1182 1183 1184
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1185

1186
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1209
	unsigned int bands_set = 0;
1210

1211
	mutex_lock(&reg_mutex);
1212
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1213 1214 1215 1216
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1217
	}
1218
	mutex_unlock(&reg_mutex);
1219 1220 1221 1222 1223 1224

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1225
}
1226 1227
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1228 1229 1230 1231
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1232 1233
#define REG_INTERSECT	1

1234 1235
/* This has the logic which determines when a new request
 * should be ignored. */
1236 1237
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1238
{
1239
	struct wiphy *last_wiphy = NULL;
1240 1241 1242

	assert_cfg80211_lock();

1243 1244 1245 1246
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1247
	switch (pending_request->initiator) {
1248
	case NL80211_REGDOM_SET_BY_CORE:
1249
		return 0;
1250
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1251 1252 1253

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1254
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1255
			return -EINVAL;
1256 1257
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1258
			if (last_wiphy != wiphy) {
1259 1260
				/*
				 * Two cards with two APs claiming different
1261
				 * Country IE alpha2s. We could
1262 1263 1264
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1265
				if (regdom_changes(pending_request->alpha2))
1266 1267 1268
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1269 1270 1271 1272
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1273
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1274 1275 1276
				return 0;
			return -EALREADY;
		}
1277
		return 0;
1278 1279
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1280
			if (regdom_changes(pending_request->alpha2))
1281
				return 0;
1282
			return -EALREADY;
1283
		}
1284 1285 1286 1287 1288 1289

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1290
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1291
		    !regdom_changes(pending_request->alpha2))
1292 1293
			return -EALREADY;

1294
		return REG_INTERSECT;
1295 1296
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1297
			return REG_INTERSECT;
1298 1299 1300 1301
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1302
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1303 1304
			  last_request->intersect)
			return -EOPNOTSUPP;
1305 1306 1307 1308
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1309 1310 1311
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1312
			if (regdom_changes(last_request->alpha2))
1313 1314 1315
				return -EAGAIN;
		}

1316
		if (!regdom_changes(pending_request->alpha2))
1317 1318
			return -EALREADY;

1319 1320 1321 1322 1323 1324
		return 0;
	}

	return -EINVAL;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1336 1337 1338
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1339 1340 1341 1342
	if (need_more_processing)
		schedule_work(&reg_work);
}

1343 1344 1345 1346
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1347
 * @pending_request: the regulatory request currently being processed
1348 1349
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1350
 * what it believes should be the current regulatory domain.
1351 1352 1353 1354
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1355
 * Caller must hold &cfg80211_mutex and &reg_mutex
1356
 */
1357 1358
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1359
{
1360
	bool intersect = false;
1361 1362
	int r = 0;

1363 1364
	assert_cfg80211_lock();

1365
	r = ignore_request(wiphy, pending_request);
1366

1367
	if (r == REG_INTERSECT) {
1368 1369
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1370
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371 1372
			if (r) {
				kfree(pending_request);
1373
				return r;
1374
			}
1375
		}
1376
		intersect = true;
1377
	} else if (r) {
1378 1379
		/*
		 * If the regulatory domain being requested by the
1380
		 * driver has already been set just copy it to the
1381 1382
		 * wiphy
		 */
1383
		if (r == -EALREADY &&
1384 1385
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1386
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1387 1388
			if (r) {
				kfree(pending_request);
1389
				return r;
1390
			}
1391 1392 1393
			r = -EALREADY;
			goto new_request;
		}
1394
		kfree(pending_request);
1395
		return r;
1396
	}
1397

1398
new_request:
1399
	kfree(last_request);
1400

1401 1402
	last_request = pending_request;
	last_request->intersect = intersect;
1403

1404
	pending_request = NULL;
1405

1406 1407 1408 1409 1410
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1411
	/* When r == REG_INTERSECT we do need to call CRDA */
1412 1413 1414 1415 1416 1417
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1418
		if (r == -EALREADY) {
1419
			nl80211_send_reg_change_event(last_request);
1420 1421
			reg_set_request_processed();
		}
1422
		return r;
1423
	}
1424

1425
	return call_crda(last_request->alpha2);
1426 1427
}

1428
/* This processes *all* regulatory hints */
1429
static void reg_process_hint(struct regulatory_request *reg_request)
1430 1431 1432
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1433
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1434 1435 1436 1437 1438 1439

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1440
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441
	    !wiphy) {
1442
		kfree(reg_request);
1443
		return;
1444 1445
	}

1446
	r = __regulatory_hint(wiphy, reg_request);
1447
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1448
	if (r == -EALREADY && wiphy &&
1449
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1450
		wiphy_update_regulatory(wiphy, initiator);
1451 1452 1453 1454 1455 1456 1457 1458 1459
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1460 1461
}

1462 1463 1464 1465 1466
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1467
static void reg_process_pending_hints(void)
1468
{
1469 1470
	struct regulatory_request *reg_request;

1471 1472 1473
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1474 1475 1476 1477 1478 1479 1480
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
			      "for it to be processed...");
		goto out;
	}

1481 1482
	spin_lock(&reg_requests_lock);

1483
	if (list_empty(&reg_requests_list)) {
1484
		spin_unlock(&reg_requests_lock);
1485
		goto out;
1486
	}
1487 1488 1489 1490 1491 1492

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1493
	spin_unlock(&reg_requests_lock);
1494

1495 1496 1497
	reg_process_hint(reg_request);

out:
1498 1499
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1500 1501
}

1502 1503 1504
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1505
	struct cfg80211_registered_device *rdev;
1506 1507
	struct reg_beacon *pending_beacon, *tmp;

1508 1509 1510 1511
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1528 1529
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1540 1541 1542
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1543
	reg_process_pending_beacon_hints();
1544 1545 1546 1547
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1548 1549 1550 1551 1552
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1553 1554 1555 1556 1557 1558 1559
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1560 1561 1562 1563
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1564 1565 1566 1567
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1568 1569
	kfree(last_request);
	last_request = NULL;
1570 1571 1572 1573 1574 1575 1576 1577

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1578
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1579

1580
	queue_regulatory_request(request);
1581

1582
	return 0;
1583 1584
}

1585 1586
/* User hints */
int regulatory_hint_user(const char *alpha2)
1587
{
1588 1589
	struct regulatory_request *request;

1590
	BUG_ON(!alpha2);
1591

1592 1593 1594 1595 1596 1597 1598
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1599
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1625
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1626 1627 1628 1629

	queue_regulatory_request(request);

	return 0;
1630 1631 1632
}
EXPORT_SYMBOL(regulatory_hint);

1633 1634 1635 1636
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1637
void regulatory_hint_11d(struct wiphy *wiphy,
1638 1639 1640
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1641 1642 1643
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1644
	struct regulatory_request *request;
1645

1646
	mutex_lock(&reg_mutex);
1647

1648 1649
	if (unlikely(!last_request))
		goto out;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1666
	/*
1667
	 * We will run this only upon a successful connection on cfg80211.
1668 1669
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1670
	 */
1671 1672
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1673 1674
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1675

1676 1677
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1678
		goto out;
1679 1680

	request->wiphy_idx = get_wiphy_idx(wiphy);
1681 1682
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1683
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1684 1685
	request->country_ie_env = env;

1686
	mutex_unlock(&reg_mutex);
1687

1688 1689 1690
	queue_regulatory_request(request);

	return;
1691

1692
out:
1693
	mutex_unlock(&reg_mutex);
1694
}
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1706
			REG_DBG_PRINT("Restoring regulatory settings "
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1717
				REG_DBG_PRINT("Keeping preference on "
1718 1719 1720 1721 1722 1723 1724
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1725
			REG_DBG_PRINT("Restoring regulatory settings "
1726 1727 1728 1729 1730 1731 1732
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1733
		REG_DBG_PRINT("Keeping preference on "
1734 1735 1736 1737 1738 1739
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1740
		REG_DBG_PRINT("Restoring regulatory settings\n");
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1762 1763
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1764 1765 1766 1767 1768 1769 1770

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1849 1850 1851

void regulatory_hint_disconnect(void)
{
1852
	REG_DBG_PRINT("All devices are disconnected, going to "
1853 1854 1855 1856
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1857 1858
static bool freq_is_chan_12_13_14(u16 freq)
{
1859 1860 1861
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1882
	REG_DBG_PRINT("Found new beacon on "
1883 1884 1885 1886 1887
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1905
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1906 1907
{
	unsigned int i;
1908 1909 1910
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1911

1912
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1913 1914 1915 1916 1917 1918

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1919 1920 1921 1922
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1923
		if (power_rule->max_antenna_gain)
1924
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1925 1926 1927 1928 1929 1930
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1931
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1932 1933 1934 1935 1936 1937 1938
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1939
static void print_regdomain(const struct ieee80211_regdomain *rd)
1940 1941
{

1942 1943
	if (is_intersected_alpha2(rd->alpha2)) {

1944 1945
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1946 1947
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1948
				last_request->wiphy_idx);
1949
			if (rdev) {
1950
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1951 1952
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1953
			} else
1954
				pr_info("Current regulatory domain intersected:\n");
1955
		} else
1956
			pr_info("Current regulatory domain intersected:\n");
1957
	} else if (is_world_regdom(rd->alpha2))
1958
		pr_info("World regulatory domain updated:\n");
1959 1960
	else {
		if (is_unknown_alpha2(rd->alpha2))
1961
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1962
		else
1963
			pr_info("Regulatory domain changed to country: %c%c\n",
1964 1965 1966 1967 1968
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1969
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1970
{
1971
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1972 1973 1974
	print_rd_rules(rd);
}

1975
/* Takes ownership of rd only if it doesn't fail */
1976
static int __set_regdom(const struct ieee80211_regdomain *rd)
1977
{
1978
	const struct ieee80211_regdomain *intersected_rd = NULL;
1979
	struct cfg80211_registered_device *rdev = NULL;
1980
	struct wiphy *request_wiphy;
1981 1982 1983
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1984
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1985 1986 1987 1988 1989 1990 1991 1992 1993
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1994
	if (!last_request)
1995 1996
		return -EINVAL;

1997 1998
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1999
	 * rd is non static (it means CRDA was present and was used last)
2000 2001
	 * and the pending request came in from a country IE
	 */
2002
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003 2004 2005 2006
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2007
		if (!regdom_changes(rd->alpha2))
2008 2009 2010
			return -EINVAL;
	}

2011 2012
	/*
	 * Now lets set the regulatory domain, update all driver channels
2013 2014
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2015 2016
	 * internal EEPROM data
	 */
2017

2018
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2019 2020
		return -EINVAL;

2021
	if (!is_valid_rd(rd)) {
2022
		pr_err("Invalid regulatory domain detected:\n");
2023 2024
		print_regdomain_info(rd);
		return -EINVAL;
2025 2026
	}

2027 2028
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2029
	if (!last_request->intersect) {
2030 2031
		int r;

2032
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2033 2034 2035 2036 2037
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2038 2039 2040 2041
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2042

2043 2044 2045 2046 2047 2048
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2049

2050
		r = reg_copy_regd(&request_wiphy->regd, rd);
2051 2052 2053
		if (r)
			return r;

2054 2055 2056 2057 2058 2059 2060
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2061
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062

2063 2064 2065
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2066

2067 2068
		/*
		 * We can trash what CRDA provided now.
2069
		 * However if a driver requested this specific regulatory
2070 2071
		 * domain we keep it for its private use
		 */
2072
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2073
			request_wiphy->regd = rd;
2074 2075 2076
		else
			kfree(rd);

2077 2078 2079 2080 2081 2082
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2083 2084
	}

2085 2086 2087
	if (!intersected_rd)
		return -EINVAL;

2088
	rdev = wiphy_to_dev(request_wiphy);
2089

2090 2091 2092
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2093 2094 2095 2096 2097 2098

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2099
	reset_regdomains();
2100
	cfg80211_regdomain = intersected_rd;
2101 2102 2103 2104 2105

	return 0;
}


2106 2107
/*
 * Use this call to set the current regulatory domain. Conflicts with
2108
 * multiple drivers can be ironed out later. Caller must've already
2109 2110
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2111
int set_regdom(const struct ieee80211_regdomain *rd)
2112 2113 2114
{
	int r;

2115 2116
	assert_cfg80211_lock();

2117 2118
	mutex_lock(&reg_mutex);

2119 2120
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2121 2122
	if (r) {
		kfree(rd);
2123
		mutex_unlock(&reg_mutex);
2124
		return r;
2125
	}
2126 2127

	/* This would make this whole thing pointless */
2128 2129
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2130 2131

	/* update all wiphys now with the new established regulatory domain */
2132
	update_all_wiphy_regulatory(last_request->initiator);
2133

2134
	print_regdomain(cfg80211_regdomain);
2135

2136 2137
	nl80211_send_reg_change_event(last_request);

2138 2139
	reg_set_request_processed();

2140 2141
	mutex_unlock(&reg_mutex);

2142 2143 2144
	return r;
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2164
/* Caller must hold cfg80211_mutex */
2165 2166
void reg_device_remove(struct wiphy *wiphy)
{
2167
	struct wiphy *request_wiphy = NULL;
2168

2169 2170
	assert_cfg80211_lock();

2171 2172
	mutex_lock(&reg_mutex);

2173 2174
	kfree(wiphy->regd);

2175 2176
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2177

2178
	if (!request_wiphy || request_wiphy != wiphy)
2179
		goto out;
2180

2181
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2182
	last_request->country_ie_env = ENVIRON_ANY;
2183 2184
out:
	mutex_unlock(&reg_mutex);
2185 2186
}

2187 2188 2189 2190 2191 2192 2193
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
		      "restoring regulatory settings");
	restore_regulatory_settings(true);
}

2194
int __init regulatory_init(void)
2195
{
2196
	int err = 0;
2197

2198 2199 2200
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2201

2202 2203
	reg_pdev->dev.type = &reg_device_type;

2204
	spin_lock_init(&reg_requests_lock);
2205
	spin_lock_init(&reg_pending_beacons_lock);
2206

2207
	cfg80211_regdomain = cfg80211_world_regdom;
2208

2209 2210 2211
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2212 2213
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2214
	if (err) {
2215 2216 2217 2218 2219 2220 2221 2222 2223
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2224
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2225 2226 2227
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2228
#endif
2229
	}
2230

2231 2232 2233 2234 2235 2236 2237
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2238 2239 2240
	return 0;
}

2241
void /* __init_or_exit */ regulatory_exit(void)
2242
{
2243
	struct regulatory_request *reg_request, *tmp;
2244
	struct reg_beacon *reg_beacon, *btmp;
2245 2246

	cancel_work_sync(&reg_work);
2247
	cancel_delayed_work_sync(&reg_timeout);
2248

2249
	mutex_lock(&cfg80211_mutex);
2250
	mutex_lock(&reg_mutex);
2251

2252
	reset_regdomains();
2253

2254 2255
	kfree(last_request);

2256
	platform_device_unregister(reg_pdev);
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2286
	mutex_unlock(&reg_mutex);
2287
	mutex_unlock(&cfg80211_mutex);
2288
}