reg.c 59.0 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44
#include <linux/nl80211.h>
#include <linux/platform_device.h>
45
#include <linux/moduleparam.h>
46
#include <net/cfg80211.h>
47
#include "core.h"
48
#include "reg.h"
49
#include "regdb.h"
50
#include "nl80211.h"
51

52
#ifdef CONFIG_CFG80211_REG_DEBUG
53 54
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
55
#else
56
#define REG_DBG_PRINT(args...)
57 58
#endif

59
/* Receipt of information from last regulatory request */
60
static struct regulatory_request *last_request;
61

62 63
/* To trigger userspace events */
static struct platform_device *reg_pdev;
64

65 66 67 68
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

69 70
/*
 * Central wireless core regulatory domains, we only need two,
71
 * the current one and a world regulatory domain in case we have no
72 73
 * information to give us an alpha2
 */
74
const struct ieee80211_regdomain *cfg80211_regdomain;
75

76 77 78 79 80 81
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
82
static DEFINE_MUTEX(reg_mutex);
83 84 85 86 87

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
88

89
/* Used to queue up regulatory hints */
90 91 92
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

93 94 95 96 97 98 99 100 101 102 103 104
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

105 106 107
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

108 109 110
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

111 112
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
113
	.n_reg_rules = 5,
114 115
	.alpha2 =  "00",
	.reg_rules = {
116 117
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
118 119 120
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
121 122
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
123 124 125 126 127 128 129
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
130
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
131 132
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
133 134 135 136

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
137
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
138 139
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
140 141 142
	}
};

143 144
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
145

146
static char *ieee80211_regdom = "00";
147
static char user_alpha2[2];
148

149 150 151 152 153
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
154 155 156 157 158 159 160 161 162 163
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
164

165
	cfg80211_world_regdom = &world_regdom;
166 167 168
	cfg80211_regdomain = NULL;
}

169 170 171 172
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
173
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
174
{
175
	BUG_ON(!last_request);
176 177 178 179 180 181 182

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

183
bool is_world_regdom(const char *alpha2)
184 185 186 187 188 189 190
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
191

192
static bool is_alpha2_set(const char *alpha2)
193 194 195 196 197 198 199
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
200

201
static bool is_unknown_alpha2(const char *alpha2)
202 203 204
{
	if (!alpha2)
		return false;
205 206 207 208
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
209 210 211 212
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
213

214 215 216 217
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
218 219
	/*
	 * Special case where regulatory domain is the
220
	 * result of an intersection between two regulatory domain
221 222
	 * structures
	 */
223 224 225 226 227
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

228
static bool is_an_alpha2(const char *alpha2)
229 230 231
{
	if (!alpha2)
		return false;
232
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
233 234 235
		return true;
	return false;
}
236

237
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
238 239 240 241 242 243 244 245 246
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

247
static bool regdom_changes(const char *alpha2)
248
{
249 250
	assert_cfg80211_lock();

251 252 253 254 255 256 257
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
310
static DEFINE_MUTEX(reg_regdb_search_mutex);
311 312 313 314 315 316 317

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

318
	mutex_lock(&reg_regdb_search_mutex);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
341
	mutex_unlock(&reg_regdb_search_mutex);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

359
	mutex_lock(&reg_regdb_search_mutex);
360
	list_add_tail(&request->list, &reg_regdb_search_list);
361
	mutex_unlock(&reg_regdb_search_mutex);
362 363 364 365 366 367 368

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

369 370
/*
 * This lets us keep regulatory code which is updated on a regulatory
371 372
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
373
 */
374 375 376
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
377
		pr_info("Calling CRDA for country: %c%c\n",
378 379
			alpha2[0], alpha2[1]);
	else
380
		pr_info("Calling CRDA to update world regulatory domain\n");
381

382 383 384
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

385
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
386 387 388
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
389
bool reg_is_valid_request(const char *alpha2)
390
{
391 392
	assert_cfg80211_lock();

393 394 395 396
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
397
}
398

399
/* Sanity check on a regulatory rule */
400
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401
{
402
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403 404
	u32 freq_diff;

405
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406 407 408 409 410 411 412
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

413 414
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
415 416 417 418 419
		return false;

	return true;
}

420
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421
{
422
	const struct ieee80211_reg_rule *reg_rule = NULL;
423
	unsigned int i;
424

425 426
	if (!rd->n_reg_rules)
		return false;
427

428 429 430
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

431 432 433 434 435 436 437
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
438 439
}

440 441 442
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
443
{
444 445 446 447 448 449 450 451 452 453
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
454
}
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

481 482 483 484
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

562 563
	/*
	 * First we get a count of the rules we'll need, then we actually
564 565 566
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
567 568
	 * All rules that do check out OK are valid.
	 */
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
596 597
			/*
			 * This time around instead of using the stack lets
598
			 * write to the target rule directly saving ourselves
599 600
			 * a memcpy()
			 */
601 602 603
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
604 605 606 607
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

626 627 628 629
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
630 631 632 633 634 635 636 637 638 639 640 641
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

642 643
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
644
			      u32 desired_bw_khz,
645 646
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
647 648
{
	int i;
649
	bool band_rule_found = false;
650
	const struct ieee80211_regdomain *regd;
651 652 653 654
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
655

656
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
657

658 659 660 661
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
662 663
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
664
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
665 666 667 668
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
669 670
		return -EINVAL;

671
	for (i = 0; i < regd->n_reg_rules; i++) {
672 673 674
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

675
		rr = &regd->reg_rules[i];
676
		fr = &rr->freq_range;
677

678 679
		/*
		 * We only need to know if one frequency rule was
680
		 * was in center_freq's band, that's enough, so lets
681 682
		 * not overwrite it once found
		 */
683 684 685
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

686 687 688
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
689

690
		if (band_rule_found && bw_fits) {
691
			*reg_rule = rr;
692
			return 0;
693 694 695
		}
	}

696 697 698
	if (!band_rule_found)
		return -ERANGE;

699
	return -EINVAL;
700 701
}

702 703 704 705
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
706
{
707
	assert_cfg80211_lock();
708 709 710 711 712
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
713
}
714
EXPORT_SYMBOL(freq_reg_info);
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

750
	REG_DBG_PRINT("Updating information on frequency %d MHz "
751
		      "for a %d MHz width channel with regulatory rule:\n",
752 753 754
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

755
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
756 757
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
758
		      freq_range->max_bandwidth_khz,
759 760 761 762 763 764 765 766 767 768
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
769 770
#endif

771 772 773 774 775 776 777 778 779
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
780 781 782
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
783
			   unsigned int chan_idx)
784 785
{
	int r;
786 787
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 789
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
790
	const struct ieee80211_freq_range *freq_range = NULL;
791 792
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
793
	struct wiphy *request_wiphy = NULL;
794

795 796
	assert_cfg80211_lock();

797 798
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

799 800 801 802 803
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
804

805 806 807 808
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
809

810 811 812
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
813
		 * received regulatory rule unless the hint is coming
814 815 816 817 818 819 820 821 822 823 824
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

825
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826
		chan->flags = IEEE80211_CHAN_DISABLED;
827
		return;
828
	}
829

830 831
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

832
	power_rule = &reg_rule->power_rule;
833 834 835 836
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
837

838
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
840
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841
		/*
L
Lucas De Marchi 已提交
842
		 * This guarantees the driver's requested regulatory domain
843
		 * will always be used as a base for further regulatory
844 845
		 * settings
		 */
846
		chan->flags = chan->orig_flags =
847
			map_regdom_flags(reg_rule->flags) | bw_flags;
848 849 850 851 852 853 854
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

855
	chan->beacon_found = false;
856
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
857
	chan->max_antenna_gain = min(chan->orig_mag,
858
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
859
	if (chan->orig_mpwr)
860 861
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
862
	else
863
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
864 865
}

866 867 868
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
869
{
870 871 872 873 874
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
875 876

	for (i = 0; i < sband->n_channels; i++)
877
		handle_channel(wiphy, initiator, band, i);
878 879
}

880 881
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
882
{
883
	if (!last_request) {
884
		REG_DBG_PRINT("Ignoring regulatory request %s since "
885 886
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
887
		return true;
888 889
	}

890
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
891
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
892
		REG_DBG_PRINT("Ignoring regulatory request %s "
893
			      "since the driver uses its own custom "
894
			      "regulatory domain\n",
895
			      reg_initiator_name(initiator));
896
		return true;
897 898
	}

899 900 901 902
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
903
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
904
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
905
	    !is_world_regdom(last_request->alpha2)) {
906
		REG_DBG_PRINT("Ignoring regulatory request %s "
907
			      "since the driver requires its own regulatory "
908
			      "domain to be set first\n",
909
			      reg_initiator_name(initiator));
910
		return true;
911 912
	}

913 914 915
	return false;
}

916 917 918 919 920 921
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
922 923
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
924 925 926 927 928 929 930 931 932

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

933 934 935 936 937
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
938
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
939 940
		return;

941 942 943
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

944
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
945
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
946
		channel_changed = true;
947 948
	}

949
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
950
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
951
		channel_changed = true;
952 953
	}

954 955
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1007 1008
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1009
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1010 1011 1012 1013 1014 1015 1016
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1017 1018 1019 1020 1021 1022
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1023 1024 1025 1026 1027
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1078
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1079
	else
1080
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1081 1082

	if (is_ht40_not_allowed(channel_after))
1083
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1084
	else
1085
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1115 1116
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1117 1118
{
	enum ieee80211_band band;
1119

1120 1121
	assert_reg_lock();

1122
	if (ignore_reg_update(wiphy, initiator))
1123 1124
		return;

1125
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1126
		if (wiphy->bands[band])
1127
			handle_band(wiphy, band, initiator);
1128
	}
1129

1130
	reg_process_beacons(wiphy);
1131
	reg_process_ht_flags(wiphy);
1132
	if (wiphy->reg_notifier)
1133
		wiphy->reg_notifier(wiphy, last_request);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1144 1145 1146 1147 1148 1149 1150 1151
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;

	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
}

1152 1153 1154 1155 1156 1157
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1158 1159
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1160 1161
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1162
	const struct ieee80211_freq_range *freq_range = NULL;
1163 1164 1165
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1166
	assert_reg_lock();
1167

1168 1169 1170 1171
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1172 1173 1174 1175 1176
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1177 1178

	if (r) {
1179
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1180 1181 1182 1183
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1184 1185 1186 1187
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1188 1189
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1190
	power_rule = &reg_rule->power_rule;
1191 1192 1193 1194
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1195

1196
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1219
	unsigned int bands_set = 0;
1220

1221
	mutex_lock(&reg_mutex);
1222
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1223 1224 1225 1226
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1227
	}
1228
	mutex_unlock(&reg_mutex);
1229 1230 1231 1232 1233 1234

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1235
}
1236 1237
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1238 1239 1240 1241
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1242 1243
#define REG_INTERSECT	1

1244 1245
/* This has the logic which determines when a new request
 * should be ignored. */
1246 1247
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1248
{
1249
	struct wiphy *last_wiphy = NULL;
1250 1251 1252

	assert_cfg80211_lock();

1253 1254 1255 1256
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1257
	switch (pending_request->initiator) {
1258
	case NL80211_REGDOM_SET_BY_CORE:
1259
		return 0;
1260
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1261 1262 1263

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1264
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1265
			return -EINVAL;
1266 1267
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1268
			if (last_wiphy != wiphy) {
1269 1270
				/*
				 * Two cards with two APs claiming different
1271
				 * Country IE alpha2s. We could
1272 1273 1274
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1275
				if (regdom_changes(pending_request->alpha2))
1276 1277 1278
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1279 1280 1281 1282
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1283
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1284 1285 1286
				return 0;
			return -EALREADY;
		}
1287
		return 0;
1288 1289
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1290
			if (regdom_changes(pending_request->alpha2))
1291
				return 0;
1292
			return -EALREADY;
1293
		}
1294 1295 1296 1297 1298 1299

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1300
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1301
		    !regdom_changes(pending_request->alpha2))
1302 1303
			return -EALREADY;

1304
		return REG_INTERSECT;
1305 1306
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1307
			return REG_INTERSECT;
1308 1309 1310 1311
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1312
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1313 1314
			  last_request->intersect)
			return -EOPNOTSUPP;
1315 1316 1317 1318
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1319 1320 1321
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1322
			if (regdom_changes(last_request->alpha2))
1323 1324 1325
				return -EAGAIN;
		}

1326
		if (!regdom_changes(pending_request->alpha2))
1327 1328
			return -EALREADY;

1329 1330 1331 1332 1333 1334
		return 0;
	}

	return -EINVAL;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1346 1347 1348
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1349 1350 1351 1352
	if (need_more_processing)
		schedule_work(&reg_work);
}

1353 1354 1355 1356
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1357
 * @pending_request: the regulatory request currently being processed
1358 1359
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1360
 * what it believes should be the current regulatory domain.
1361 1362 1363 1364
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1365
 * Caller must hold &cfg80211_mutex and &reg_mutex
1366
 */
1367 1368
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1369
{
1370
	bool intersect = false;
1371 1372
	int r = 0;

1373 1374
	assert_cfg80211_lock();

1375
	r = ignore_request(wiphy, pending_request);
1376

1377
	if (r == REG_INTERSECT) {
1378 1379
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1380
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1381 1382
			if (r) {
				kfree(pending_request);
1383
				return r;
1384
			}
1385
		}
1386
		intersect = true;
1387
	} else if (r) {
1388 1389
		/*
		 * If the regulatory domain being requested by the
1390
		 * driver has already been set just copy it to the
1391 1392
		 * wiphy
		 */
1393
		if (r == -EALREADY &&
1394 1395
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1396
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1397 1398
			if (r) {
				kfree(pending_request);
1399
				return r;
1400
			}
1401 1402 1403
			r = -EALREADY;
			goto new_request;
		}
1404
		kfree(pending_request);
1405
		return r;
1406
	}
1407

1408
new_request:
1409
	kfree(last_request);
1410

1411 1412
	last_request = pending_request;
	last_request->intersect = intersect;
1413

1414
	pending_request = NULL;
1415

1416 1417 1418 1419 1420
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1421
	/* When r == REG_INTERSECT we do need to call CRDA */
1422 1423 1424 1425 1426 1427
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1428
		if (r == -EALREADY) {
1429
			nl80211_send_reg_change_event(last_request);
1430 1431
			reg_set_request_processed();
		}
1432
		return r;
1433
	}
1434

1435
	return call_crda(last_request->alpha2);
1436 1437
}

1438
/* This processes *all* regulatory hints */
1439
static void reg_process_hint(struct regulatory_request *reg_request)
1440 1441 1442
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1443
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1444 1445 1446 1447 1448 1449

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1450
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1451
	    !wiphy) {
1452
		kfree(reg_request);
1453
		return;
1454 1455
	}

1456
	r = __regulatory_hint(wiphy, reg_request);
1457
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1458
	if (r == -EALREADY && wiphy &&
1459
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1460
		wiphy_update_regulatory(wiphy, initiator);
1461 1462 1463 1464 1465 1466 1467
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1468 1469
	if (r != -EALREADY &&
	    reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1470
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1471 1472
}

1473 1474 1475 1476 1477
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1478
static void reg_process_pending_hints(void)
1479
{
1480 1481
	struct regulatory_request *reg_request;

1482 1483 1484
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1485 1486 1487
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1488
			      "for it to be processed...\n");
1489 1490 1491
		goto out;
	}

1492 1493
	spin_lock(&reg_requests_lock);

1494
	if (list_empty(&reg_requests_list)) {
1495
		spin_unlock(&reg_requests_lock);
1496
		goto out;
1497
	}
1498 1499 1500 1501 1502 1503

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1504
	spin_unlock(&reg_requests_lock);
1505

1506 1507 1508
	reg_process_hint(reg_request);

out:
1509 1510
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1511 1512
}

1513 1514 1515
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1516
	struct cfg80211_registered_device *rdev;
1517 1518
	struct reg_beacon *pending_beacon, *tmp;

1519 1520 1521 1522
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1539 1540
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1551 1552 1553
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1554
	reg_process_pending_beacon_hints();
1555 1556 1557 1558
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1559 1560 1561 1562 1563
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1564 1565 1566 1567 1568 1569 1570
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1571 1572 1573 1574
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1575 1576 1577 1578
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1579 1580
	kfree(last_request);
	last_request = NULL;
1581 1582 1583 1584 1585 1586 1587 1588

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1589
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1590

1591
	queue_regulatory_request(request);
1592

1593
	return 0;
1594 1595
}

1596 1597
/* User hints */
int regulatory_hint_user(const char *alpha2)
1598
{
1599 1600
	struct regulatory_request *request;

1601
	BUG_ON(!alpha2);
1602

1603 1604 1605 1606 1607 1608 1609
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1610
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1636
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1637 1638 1639 1640

	queue_regulatory_request(request);

	return 0;
1641 1642 1643
}
EXPORT_SYMBOL(regulatory_hint);

1644 1645 1646 1647
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1648
void regulatory_hint_11d(struct wiphy *wiphy,
1649 1650 1651
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1652 1653 1654
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1655
	struct regulatory_request *request;
1656

1657
	mutex_lock(&reg_mutex);
1658

1659 1660
	if (unlikely(!last_request))
		goto out;
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1677
	/*
1678
	 * We will run this only upon a successful connection on cfg80211.
1679 1680
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1681
	 */
1682 1683
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1684 1685
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1686

1687 1688
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1689
		goto out;
1690 1691

	request->wiphy_idx = get_wiphy_idx(wiphy);
1692 1693
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1694
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1695 1696
	request->country_ie_env = env;

1697
	mutex_unlock(&reg_mutex);
1698

1699 1700 1701
	queue_regulatory_request(request);

	return;
1702

1703
out:
1704
	mutex_unlock(&reg_mutex);
1705
}
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1717
			REG_DBG_PRINT("Restoring regulatory settings "
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1728
				REG_DBG_PRINT("Keeping preference on "
1729 1730 1731 1732 1733 1734 1735
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1736
			REG_DBG_PRINT("Restoring regulatory settings "
1737 1738 1739 1740 1741 1742 1743
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1744
		REG_DBG_PRINT("Keeping preference on "
1745 1746 1747 1748 1749 1750
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1751
		REG_DBG_PRINT("Restoring regulatory settings\n");
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;
1773 1774
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1775 1776 1777 1778 1779 1780 1781

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1860 1861 1862

void regulatory_hint_disconnect(void)
{
1863
	REG_DBG_PRINT("All devices are disconnected, going to "
1864 1865 1866 1867
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1868 1869
static bool freq_is_chan_12_13_14(u16 freq)
{
1870 1871 1872
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1893
	REG_DBG_PRINT("Found new beacon on "
1894 1895 1896 1897 1898
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1916
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1917 1918
{
	unsigned int i;
1919 1920 1921
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1922

1923
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1924 1925 1926 1927 1928 1929

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1930 1931 1932 1933
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1934
		if (power_rule->max_antenna_gain)
1935
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1936 1937 1938 1939 1940 1941
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1942
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1943 1944 1945 1946 1947 1948 1949
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1950
static void print_regdomain(const struct ieee80211_regdomain *rd)
1951 1952
{

1953 1954
	if (is_intersected_alpha2(rd->alpha2)) {

1955 1956
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1957 1958
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1959
				last_request->wiphy_idx);
1960
			if (rdev) {
1961
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1962 1963
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1964
			} else
1965
				pr_info("Current regulatory domain intersected:\n");
1966
		} else
1967
			pr_info("Current regulatory domain intersected:\n");
1968
	} else if (is_world_regdom(rd->alpha2))
1969
		pr_info("World regulatory domain updated:\n");
1970 1971
	else {
		if (is_unknown_alpha2(rd->alpha2))
1972
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1973
		else
1974
			pr_info("Regulatory domain changed to country: %c%c\n",
1975 1976 1977 1978 1979
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1980
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1981
{
1982
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1983 1984 1985
	print_rd_rules(rd);
}

1986
/* Takes ownership of rd only if it doesn't fail */
1987
static int __set_regdom(const struct ieee80211_regdomain *rd)
1988
{
1989
	const struct ieee80211_regdomain *intersected_rd = NULL;
1990
	struct cfg80211_registered_device *rdev = NULL;
1991
	struct wiphy *request_wiphy;
1992 1993 1994
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1995
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1996 1997 1998 1999 2000 2001 2002 2003 2004
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2005
	if (!last_request)
2006 2007
		return -EINVAL;

2008 2009
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2010
	 * rd is non static (it means CRDA was present and was used last)
2011 2012
	 * and the pending request came in from a country IE
	 */
2013
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2014 2015 2016 2017
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2018
		if (!regdom_changes(rd->alpha2))
2019 2020 2021
			return -EINVAL;
	}

2022 2023
	/*
	 * Now lets set the regulatory domain, update all driver channels
2024 2025
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2026 2027
	 * internal EEPROM data
	 */
2028

2029
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2030 2031
		return -EINVAL;

2032
	if (!is_valid_rd(rd)) {
2033
		pr_err("Invalid regulatory domain detected:\n");
2034 2035
		print_regdomain_info(rd);
		return -EINVAL;
2036 2037
	}

2038 2039
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2040
	if (!last_request->intersect) {
2041 2042
		int r;

2043
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2044 2045 2046 2047 2048
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2049 2050 2051 2052
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2053

2054 2055 2056 2057 2058 2059
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2060

2061
		r = reg_copy_regd(&request_wiphy->regd, rd);
2062 2063 2064
		if (r)
			return r;

2065 2066 2067 2068 2069 2070 2071
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2072
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2073

2074 2075 2076
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2077

2078 2079
		/*
		 * We can trash what CRDA provided now.
2080
		 * However if a driver requested this specific regulatory
2081 2082
		 * domain we keep it for its private use
		 */
2083
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2084
			request_wiphy->regd = rd;
2085 2086 2087
		else
			kfree(rd);

2088 2089 2090 2091 2092 2093
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2094 2095
	}

2096 2097 2098
	if (!intersected_rd)
		return -EINVAL;

2099
	rdev = wiphy_to_dev(request_wiphy);
2100

2101 2102 2103
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2104 2105 2106 2107 2108 2109

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2110
	reset_regdomains();
2111
	cfg80211_regdomain = intersected_rd;
2112 2113 2114 2115 2116

	return 0;
}


2117 2118
/*
 * Use this call to set the current regulatory domain. Conflicts with
2119
 * multiple drivers can be ironed out later. Caller must've already
2120 2121
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2122
int set_regdom(const struct ieee80211_regdomain *rd)
2123 2124 2125
{
	int r;

2126 2127
	assert_cfg80211_lock();

2128 2129
	mutex_lock(&reg_mutex);

2130 2131
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2132 2133
	if (r) {
		kfree(rd);
2134
		mutex_unlock(&reg_mutex);
2135
		return r;
2136
	}
2137 2138

	/* This would make this whole thing pointless */
2139 2140
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2141 2142

	/* update all wiphys now with the new established regulatory domain */
2143
	update_all_wiphy_regulatory(last_request->initiator);
2144

2145
	print_regdomain(cfg80211_regdomain);
2146

2147 2148
	nl80211_send_reg_change_event(last_request);

2149 2150
	reg_set_request_processed();

2151 2152
	mutex_unlock(&reg_mutex);

2153 2154 2155
	return r;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2175
/* Caller must hold cfg80211_mutex */
2176 2177
void reg_device_remove(struct wiphy *wiphy)
{
2178
	struct wiphy *request_wiphy = NULL;
2179

2180 2181
	assert_cfg80211_lock();

2182 2183
	mutex_lock(&reg_mutex);

2184 2185
	kfree(wiphy->regd);

2186 2187
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2188

2189
	if (!request_wiphy || request_wiphy != wiphy)
2190
		goto out;
2191

2192
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2193
	last_request->country_ie_env = ENVIRON_ANY;
2194 2195
out:
	mutex_unlock(&reg_mutex);
2196 2197
}

2198 2199 2200
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2201
		      "restoring regulatory settings\n");
2202 2203 2204
	restore_regulatory_settings(true);
}

2205
int __init regulatory_init(void)
2206
{
2207
	int err = 0;
2208

2209 2210 2211
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2212

2213 2214
	reg_pdev->dev.type = &reg_device_type;

2215
	spin_lock_init(&reg_requests_lock);
2216
	spin_lock_init(&reg_pending_beacons_lock);
2217

2218
	cfg80211_regdomain = cfg80211_world_regdom;
2219

2220 2221 2222
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2223 2224
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2225
	if (err) {
2226 2227 2228 2229 2230 2231 2232 2233 2234
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2235
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2236 2237 2238
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2239
#endif
2240
	}
2241

2242 2243 2244 2245 2246 2247 2248
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2249 2250 2251
	return 0;
}

2252
void /* __init_or_exit */ regulatory_exit(void)
2253
{
2254
	struct regulatory_request *reg_request, *tmp;
2255
	struct reg_beacon *reg_beacon, *btmp;
2256 2257

	cancel_work_sync(&reg_work);
2258
	cancel_delayed_work_sync(&reg_timeout);
2259

2260
	mutex_lock(&cfg80211_mutex);
2261
	mutex_lock(&reg_mutex);
2262

2263
	reset_regdomains();
2264

2265 2266
	kfree(last_request);

2267
	platform_device_unregister(reg_pdev);
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2297
	mutex_unlock(&reg_mutex);
2298
	mutex_unlock(&cfg80211_mutex);
2299
}