reg.c 62.0 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/export.h>
40
#include <linux/slab.h>
41 42
#include <linux/list.h>
#include <linux/random.h>
43
#include <linux/ctype.h>
44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
46
#include <linux/moduleparam.h>
47
#include <net/cfg80211.h>
48
#include "core.h"
49
#include "reg.h"
50
#include "regdb.h"
51
#include "nl80211.h"
52

53
#ifdef CONFIG_CFG80211_REG_DEBUG
54 55
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
56
#else
57
#define REG_DBG_PRINT(args...)
58 59
#endif

60 61 62 63 64 65 66 67 68
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

69
/* Receipt of information from last regulatory request */
70
static struct regulatory_request *last_request = &core_request_world;
71

72 73
/* To trigger userspace events */
static struct platform_device *reg_pdev;
74

75 76 77 78
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

79 80
/*
 * Central wireless core regulatory domains, we only need two,
81
 * the current one and a world regulatory domain in case we have no
82 83
 * information to give us an alpha2
 */
84
const struct ieee80211_regdomain *cfg80211_regdomain;
85

86 87 88 89 90 91
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
92
static DEFINE_MUTEX(reg_mutex);
93 94 95 96 97

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
98

99
/* Used to queue up regulatory hints */
100 101 102
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

103 104 105 106 107 108 109 110 111 112 113 114
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

115 116 117
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

118 119 120
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

121 122
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
123
	.n_reg_rules = 5,
124 125
	.alpha2 =  "00",
	.reg_rules = {
126 127
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 129 130
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 132
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
133 134 135 136 137 138 139
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
140
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 142
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
143 144 145 146

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
147
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 149
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
150 151 152
	}
};

153 154
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
155

156
static char *ieee80211_regdom = "00";
157
static char user_alpha2[2];
158

159 160 161
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

162
static void reset_regdomains(bool full_reset)
163
{
164 165 166 167 168 169 170 171 172 173
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
174

175
	cfg80211_world_regdom = &world_regdom;
176
	cfg80211_regdomain = NULL;
177 178 179 180 181 182 183

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
184 185
}

186 187 188 189
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
190
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191
{
192
	BUG_ON(!last_request);
193

194
	reset_regdomains(false);
195 196 197 198 199

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

200
bool is_world_regdom(const char *alpha2)
201 202 203 204 205 206 207
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
208

209
static bool is_alpha2_set(const char *alpha2)
210 211 212 213 214 215 216
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
217

218
static bool is_unknown_alpha2(const char *alpha2)
219 220 221
{
	if (!alpha2)
		return false;
222 223 224 225
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
226 227 228 229
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
230

231 232 233 234
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
235 236
	/*
	 * Special case where regulatory domain is the
237
	 * result of an intersection between two regulatory domain
238 239
	 * structures
	 */
240 241 242 243 244
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

245
static bool is_an_alpha2(const char *alpha2)
246 247 248
{
	if (!alpha2)
		return false;
249
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250 251 252
		return true;
	return false;
}
253

254
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 256 257 258 259 260 261 262 263
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

264
static bool regdom_changes(const char *alpha2)
265
{
266 267
	assert_cfg80211_lock();

268 269 270 271 272 273 274
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
327
static DEFINE_MUTEX(reg_regdb_search_mutex);
328 329 330 331 332 333 334

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

335
	mutex_lock(&reg_regdb_search_mutex);
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
358
	mutex_unlock(&reg_regdb_search_mutex);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

376
	mutex_lock(&reg_regdb_search_mutex);
377
	list_add_tail(&request->list, &reg_regdb_search_list);
378
	mutex_unlock(&reg_regdb_search_mutex);
379 380 381 382 383 384 385

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

386 387
/*
 * This lets us keep regulatory code which is updated on a regulatory
388 389
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
390
 */
391 392 393
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
394
		pr_info("Calling CRDA for country: %c%c\n",
395 396
			alpha2[0], alpha2[1]);
	else
397
		pr_info("Calling CRDA to update world regulatory domain\n");
398

399 400 401
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

402
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 404 405
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
406
bool reg_is_valid_request(const char *alpha2)
407
{
408 409
	assert_cfg80211_lock();

410 411 412 413
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
414
}
415

416
/* Sanity check on a regulatory rule */
417
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418
{
419
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420 421
	u32 freq_diff;

422
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423 424 425 426 427 428 429
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

430 431
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
432 433 434 435 436
		return false;

	return true;
}

437
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438
{
439
	const struct ieee80211_reg_rule *reg_rule = NULL;
440
	unsigned int i;
441

442 443
	if (!rd->n_reg_rules)
		return false;
444

445 446 447
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

448 449 450 451 452 453 454
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
455 456
}

457 458 459
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
460
{
461 462 463 464 465 466 467 468 469 470
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
471
}
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

498 499 500 501
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

579 580
	/*
	 * First we get a count of the rules we'll need, then we actually
581 582 583
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
584 585
	 * All rules that do check out OK are valid.
	 */
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
613 614
			/*
			 * This time around instead of using the stack lets
615
			 * write to the target rule directly saving ourselves
616 617
			 * a memcpy()
			 */
618 619 620
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
621 622 623 624
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

643 644 645 646
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
647 648 649 650 651 652 653 654 655 656 657 658
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

659 660
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
661
			      u32 desired_bw_khz,
662 663
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
664 665
{
	int i;
666
	bool band_rule_found = false;
667
	const struct ieee80211_regdomain *regd;
668 669 670 671
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
672

673
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
674

675 676 677 678
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
679 680
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682 683 684 685
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
686 687
		return -EINVAL;

688
	for (i = 0; i < regd->n_reg_rules; i++) {
689 690 691
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

692
		rr = &regd->reg_rules[i];
693
		fr = &rr->freq_range;
694

695 696
		/*
		 * We only need to know if one frequency rule was
697
		 * was in center_freq's band, that's enough, so lets
698 699
		 * not overwrite it once found
		 */
700 701 702
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

703 704 705
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
706

707
		if (band_rule_found && bw_fits) {
708
			*reg_rule = rr;
709
			return 0;
710 711 712
		}
	}

713 714 715
	if (!band_rule_found)
		return -ERANGE;

716
	return -EINVAL;
717 718
}

719 720 721 722
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
723
{
724
	assert_cfg80211_lock();
725 726 727 728 729
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
730
}
731
EXPORT_SYMBOL(freq_reg_info);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

767
	REG_DBG_PRINT("Updating information on frequency %d MHz "
768
		      "for a %d MHz width channel with regulatory rule:\n",
769 770 771
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

772
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773 774
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
775
		      freq_range->max_bandwidth_khz,
776 777 778 779 780 781 782 783 784 785
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
786 787
#endif

788 789 790 791 792 793 794 795 796
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
797 798 799
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
800
			   unsigned int chan_idx)
801 802
{
	int r;
803 804
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
805 806
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
807
	const struct ieee80211_freq_range *freq_range = NULL;
808 809
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
810
	struct wiphy *request_wiphy = NULL;
811

812 813
	assert_cfg80211_lock();

814 815
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

816 817 818 819 820
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
821

822 823 824 825
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
826

827 828 829
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
830
		 * received regulatory rule unless the hint is coming
831 832 833 834 835 836 837 838 839 840 841
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

842
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843
		chan->flags = IEEE80211_CHAN_DISABLED;
844
		return;
845
	}
846

847 848
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

849
	power_rule = &reg_rule->power_rule;
850 851 852 853
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
854

855
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
857
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858
		/*
L
Lucas De Marchi 已提交
859
		 * This guarantees the driver's requested regulatory domain
860
		 * will always be used as a base for further regulatory
861 862
		 * settings
		 */
863
		chan->flags = chan->orig_flags =
864
			map_regdom_flags(reg_rule->flags) | bw_flags;
865 866 867 868 869 870 871
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

872
	chan->beacon_found = false;
873
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874
	chan->max_antenna_gain = min(chan->orig_mag,
875
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
			chan->max_power =
				MBM_TO_DBM(power_rule->max_eirp);
		} else {
			chan->max_power = min(chan->orig_mpwr,
				(int) MBM_TO_DBM(power_rule->max_eirp));
		}
	} else
892
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
893 894
}

895 896 897
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
898
{
899 900 901 902 903
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
904 905

	for (i = 0; i < sband->n_channels; i++)
906
		handle_channel(wiphy, initiator, band, i);
907 908
}

909 910
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
911
{
912
	if (!last_request) {
913
		REG_DBG_PRINT("Ignoring regulatory request %s since "
914 915
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
916
		return true;
917 918
	}

919
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
920
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
921
		REG_DBG_PRINT("Ignoring regulatory request %s "
922
			      "since the driver uses its own custom "
923
			      "regulatory domain\n",
924
			      reg_initiator_name(initiator));
925
		return true;
926 927
	}

928 929 930 931
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
932
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
933
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
934
	    !is_world_regdom(last_request->alpha2)) {
935
		REG_DBG_PRINT("Ignoring regulatory request %s "
936
			      "since the driver requires its own regulatory "
937
			      "domain to be set first\n",
938
			      reg_initiator_name(initiator));
939
		return true;
940 941
	}

942 943 944
	return false;
}

945 946 947 948 949 950
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
951 952
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
953 954 955 956 957 958 959 960 961

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

962 963 964 965 966
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
967
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
968 969
		return;

970 971 972
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

973
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
974
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
975
		channel_changed = true;
976 977
	}

978
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
979
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
980
		channel_changed = true;
981 982
	}

983 984
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1036 1037
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1038
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1039 1040 1041 1042 1043 1044 1045
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1046 1047 1048 1049 1050 1051
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1052 1053 1054 1055 1056
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1107
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1108
	else
1109
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1110 1111

	if (is_ht40_not_allowed(channel_after))
1112
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1113
	else
1114
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1144 1145
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1146 1147
{
	enum ieee80211_band band;
1148

1149 1150
	assert_reg_lock();

1151
	if (ignore_reg_update(wiphy, initiator))
1152 1153
		return;

1154 1155
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1156
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1157
		if (wiphy->bands[band])
1158
			handle_band(wiphy, band, initiator);
1159
	}
1160

1161
	reg_process_beacons(wiphy);
1162
	reg_process_ht_flags(wiphy);
1163
	if (wiphy->reg_notifier)
1164
		wiphy->reg_notifier(wiphy, last_request);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1175 1176 1177
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1178
	struct wiphy *wiphy;
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1193 1194
}

1195 1196 1197 1198 1199 1200
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1201 1202
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1203 1204
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1205
	const struct ieee80211_freq_range *freq_range = NULL;
1206 1207 1208
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1209
	assert_reg_lock();
1210

1211 1212 1213 1214
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1215 1216 1217 1218 1219
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1220 1221

	if (r) {
1222
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1223 1224 1225 1226
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1227 1228 1229 1230
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1231 1232
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1233
	power_rule = &reg_rule->power_rule;
1234 1235 1236 1237
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1238

1239
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1262
	unsigned int bands_set = 0;
1263

1264
	mutex_lock(&reg_mutex);
1265
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1266 1267 1268 1269
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1270
	}
1271
	mutex_unlock(&reg_mutex);
1272 1273 1274 1275 1276 1277

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1278
}
1279 1280
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1281 1282 1283 1284
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1285 1286
#define REG_INTERSECT	1

1287 1288
/* This has the logic which determines when a new request
 * should be ignored. */
1289 1290
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1291
{
1292
	struct wiphy *last_wiphy = NULL;
1293 1294 1295

	assert_cfg80211_lock();

1296 1297 1298 1299
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1300
	switch (pending_request->initiator) {
1301
	case NL80211_REGDOM_SET_BY_CORE:
1302
		return 0;
1303
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1304 1305 1306

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1307
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1308
			return -EINVAL;
1309 1310
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1311
			if (last_wiphy != wiphy) {
1312 1313
				/*
				 * Two cards with two APs claiming different
1314
				 * Country IE alpha2s. We could
1315 1316 1317
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1318
				if (regdom_changes(pending_request->alpha2))
1319 1320 1321
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1322 1323 1324 1325
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1326
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1327 1328 1329
				return 0;
			return -EALREADY;
		}
1330
		return 0;
1331 1332
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1333
			if (regdom_changes(pending_request->alpha2))
1334
				return 0;
1335
			return -EALREADY;
1336
		}
1337 1338 1339 1340 1341 1342

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1343
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1344
		    !regdom_changes(pending_request->alpha2))
1345 1346
			return -EALREADY;

1347
		return REG_INTERSECT;
1348 1349
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1350
			return REG_INTERSECT;
1351 1352 1353 1354
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1355
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1356 1357
			  last_request->intersect)
			return -EOPNOTSUPP;
1358 1359 1360 1361
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1362 1363 1364
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1365
			if (regdom_changes(last_request->alpha2))
1366 1367 1368
				return -EAGAIN;
		}

1369
		if (!regdom_changes(pending_request->alpha2))
1370 1371
			return -EALREADY;

1372 1373 1374 1375 1376 1377
		return 0;
	}

	return -EINVAL;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1389 1390 1391
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1392 1393 1394 1395
	if (need_more_processing)
		schedule_work(&reg_work);
}

1396 1397 1398 1399
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1400
 * @pending_request: the regulatory request currently being processed
1401 1402
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1403
 * what it believes should be the current regulatory domain.
1404 1405 1406 1407
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1408
 * Caller must hold &cfg80211_mutex and &reg_mutex
1409
 */
1410 1411
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1412
{
1413
	bool intersect = false;
1414 1415
	int r = 0;

1416 1417
	assert_cfg80211_lock();

1418
	r = ignore_request(wiphy, pending_request);
1419

1420
	if (r == REG_INTERSECT) {
1421 1422
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1423
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1424 1425
			if (r) {
				kfree(pending_request);
1426
				return r;
1427
			}
1428
		}
1429
		intersect = true;
1430
	} else if (r) {
1431 1432
		/*
		 * If the regulatory domain being requested by the
1433
		 * driver has already been set just copy it to the
1434 1435
		 * wiphy
		 */
1436
		if (r == -EALREADY &&
1437 1438
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1439
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1440 1441
			if (r) {
				kfree(pending_request);
1442
				return r;
1443
			}
1444 1445 1446
			r = -EALREADY;
			goto new_request;
		}
1447
		kfree(pending_request);
1448
		return r;
1449
	}
1450

1451
new_request:
1452 1453
	if (last_request != &core_request_world)
		kfree(last_request);
1454

1455 1456
	last_request = pending_request;
	last_request->intersect = intersect;
1457

1458
	pending_request = NULL;
1459

1460 1461 1462 1463 1464
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1465
	/* When r == REG_INTERSECT we do need to call CRDA */
1466 1467 1468 1469 1470 1471
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1472
		if (r == -EALREADY) {
1473
			nl80211_send_reg_change_event(last_request);
1474 1475
			reg_set_request_processed();
		}
1476
		return r;
1477
	}
1478

1479
	return call_crda(last_request->alpha2);
1480 1481
}

1482
/* This processes *all* regulatory hints */
1483 1484
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1494
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1495
	    !wiphy) {
1496
		kfree(reg_request);
1497
		return;
1498 1499
	}

1500
	r = __regulatory_hint(wiphy, reg_request);
1501
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1502
	if (r == -EALREADY && wiphy &&
1503
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1504
		wiphy_update_regulatory(wiphy, reg_initiator);
1505 1506 1507 1508 1509 1510 1511
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1512
	if (r != -EALREADY &&
1513
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1514
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1515 1516
}

1517 1518 1519 1520 1521
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1522
static void reg_process_pending_hints(void)
1523
{
1524 1525
	struct regulatory_request *reg_request;

1526 1527 1528
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1529 1530 1531
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1532
			      "for it to be processed...\n");
1533 1534 1535
		goto out;
	}

1536 1537
	spin_lock(&reg_requests_lock);

1538
	if (list_empty(&reg_requests_list)) {
1539
		spin_unlock(&reg_requests_lock);
1540
		goto out;
1541
	}
1542 1543 1544 1545 1546 1547

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1548
	spin_unlock(&reg_requests_lock);
1549

1550
	reg_process_hint(reg_request, reg_request->initiator);
1551 1552

out:
1553 1554
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1555 1556
}

1557 1558 1559
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1560
	struct cfg80211_registered_device *rdev;
1561 1562
	struct reg_beacon *pending_beacon, *tmp;

1563 1564 1565 1566
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1583 1584
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1595 1596 1597
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1598
	reg_process_pending_beacon_hints();
1599 1600 1601 1602
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1603 1604 1605 1606 1607
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1608 1609 1610 1611 1612 1613 1614
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1615 1616 1617 1618
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1630
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1631

1632
	queue_regulatory_request(request);
1633

1634
	return 0;
1635 1636
}

1637 1638
/* User hints */
int regulatory_hint_user(const char *alpha2)
1639
{
1640 1641
	struct regulatory_request *request;

1642
	BUG_ON(!alpha2);
1643

1644 1645 1646 1647 1648 1649 1650
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1651
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1677
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1678 1679 1680 1681

	queue_regulatory_request(request);

	return 0;
1682 1683 1684
}
EXPORT_SYMBOL(regulatory_hint);

1685 1686 1687 1688
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1689
void regulatory_hint_11d(struct wiphy *wiphy,
1690 1691 1692
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1693 1694 1695
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1696
	struct regulatory_request *request;
1697

1698
	mutex_lock(&reg_mutex);
1699

1700 1701
	if (unlikely(!last_request))
		goto out;
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1718
	/*
1719
	 * We will run this only upon a successful connection on cfg80211.
1720 1721
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1722
	 */
1723 1724
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1725 1726
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1727

1728 1729
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1730
		goto out;
1731 1732

	request->wiphy_idx = get_wiphy_idx(wiphy);
1733 1734
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1735
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1736 1737
	request->country_ie_env = env;

1738
	mutex_unlock(&reg_mutex);
1739

1740 1741 1742
	queue_regulatory_request(request);

	return;
1743

1744
out:
1745
	mutex_unlock(&reg_mutex);
1746
}
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1758
			REG_DBG_PRINT("Restoring regulatory settings "
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1769
				REG_DBG_PRINT("Keeping preference on "
1770 1771 1772 1773 1774 1775 1776
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1777
			REG_DBG_PRINT("Restoring regulatory settings "
1778 1779 1780 1781 1782 1783 1784
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1785
		REG_DBG_PRINT("Keeping preference on "
1786 1787 1788 1789 1790 1791
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1792
		REG_DBG_PRINT("Restoring regulatory settings\n");
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1833
	char world_alpha2[2];
1834
	struct reg_beacon *reg_beacon, *btmp;
1835 1836
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1837
	struct cfg80211_registered_device *rdev;
1838 1839 1840 1841

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1842
	reset_regdomains(true);
1843 1844
	restore_alpha2(alpha2, reset_user);

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1885 1886
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1887

1888 1889 1890 1891 1892
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1893 1894 1895
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1896
	regulatory_hint_core(world_alpha2);
1897 1898 1899 1900 1901 1902 1903 1904 1905

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1930 1931 1932

void regulatory_hint_disconnect(void)
{
1933
	REG_DBG_PRINT("All devices are disconnected, going to "
1934 1935 1936 1937
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1938 1939
static bool freq_is_chan_12_13_14(u16 freq)
{
1940 1941 1942
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1963
	REG_DBG_PRINT("Found new beacon on "
1964 1965 1966 1967 1968
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1986
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1987 1988
{
	unsigned int i;
1989 1990 1991
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1992

1993
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1994 1995 1996 1997 1998 1999

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2000 2001 2002 2003
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2004
		if (power_rule->max_antenna_gain)
2005
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2006 2007 2008 2009 2010 2011
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2012
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2013 2014 2015 2016 2017 2018 2019
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2056
static void print_regdomain(const struct ieee80211_regdomain *rd)
2057 2058
{

2059 2060
	if (is_intersected_alpha2(rd->alpha2)) {

2061 2062
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2063 2064
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2065
				last_request->wiphy_idx);
2066
			if (rdev) {
2067
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2068 2069
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2070
			} else
2071
				pr_info("Current regulatory domain intersected:\n");
2072
		} else
2073
			pr_info("Current regulatory domain intersected:\n");
2074
	} else if (is_world_regdom(rd->alpha2))
2075
		pr_info("World regulatory domain updated:\n");
2076 2077
	else {
		if (is_unknown_alpha2(rd->alpha2))
2078
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2079
		else
2080
			pr_info("Regulatory domain changed to country: %c%c\n",
2081 2082
				rd->alpha2[0], rd->alpha2[1]);
	}
2083
	print_dfs_region(rd->dfs_region);
2084 2085 2086
	print_rd_rules(rd);
}

2087
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2088
{
2089
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2090 2091 2092
	print_rd_rules(rd);
}

2093
/* Takes ownership of rd only if it doesn't fail */
2094
static int __set_regdom(const struct ieee80211_regdomain *rd)
2095
{
2096
	const struct ieee80211_regdomain *intersected_rd = NULL;
2097
	struct cfg80211_registered_device *rdev = NULL;
2098
	struct wiphy *request_wiphy;
2099 2100 2101
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2102
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2103 2104 2105 2106 2107 2108 2109 2110 2111
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2112
	if (!last_request)
2113 2114
		return -EINVAL;

2115 2116
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2117
	 * rd is non static (it means CRDA was present and was used last)
2118 2119
	 * and the pending request came in from a country IE
	 */
2120
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2121 2122 2123 2124
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2125
		if (!regdom_changes(rd->alpha2))
2126 2127 2128
			return -EINVAL;
	}

2129 2130
	/*
	 * Now lets set the regulatory domain, update all driver channels
2131 2132
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2133 2134
	 * internal EEPROM data
	 */
2135

2136
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2137 2138
		return -EINVAL;

2139
	if (!is_valid_rd(rd)) {
2140
		pr_err("Invalid regulatory domain detected:\n");
2141 2142
		print_regdomain_info(rd);
		return -EINVAL;
2143 2144
	}

2145
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2146 2147 2148 2149
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2150 2151
		return -ENODEV;
	}
2152

2153
	if (!last_request->intersect) {
2154 2155
		int r;

2156
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2157
			reset_regdomains(false);
2158 2159 2160 2161
			cfg80211_regdomain = rd;
			return 0;
		}

2162 2163 2164 2165
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2166

2167 2168 2169 2170 2171 2172
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2173

2174
		r = reg_copy_regd(&request_wiphy->regd, rd);
2175 2176 2177
		if (r)
			return r;

2178
		reset_regdomains(false);
2179 2180 2181 2182 2183 2184
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2185
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2186

2187 2188 2189
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2190

2191 2192
		/*
		 * We can trash what CRDA provided now.
2193
		 * However if a driver requested this specific regulatory
2194 2195
		 * domain we keep it for its private use
		 */
2196
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2197
			request_wiphy->regd = rd;
2198 2199 2200
		else
			kfree(rd);

2201 2202
		rd = NULL;

2203
		reset_regdomains(false);
2204 2205 2206
		cfg80211_regdomain = intersected_rd;

		return 0;
2207 2208
	}

2209 2210 2211
	if (!intersected_rd)
		return -EINVAL;

2212
	rdev = wiphy_to_dev(request_wiphy);
2213

2214 2215 2216
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2217 2218 2219 2220 2221 2222

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2223
	reset_regdomains(false);
2224
	cfg80211_regdomain = intersected_rd;
2225 2226 2227 2228 2229

	return 0;
}


2230 2231
/*
 * Use this call to set the current regulatory domain. Conflicts with
2232
 * multiple drivers can be ironed out later. Caller must've already
2233 2234
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2235
int set_regdom(const struct ieee80211_regdomain *rd)
2236 2237 2238
{
	int r;

2239 2240
	assert_cfg80211_lock();

2241 2242
	mutex_lock(&reg_mutex);

2243 2244
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2245 2246
	if (r) {
		kfree(rd);
2247
		mutex_unlock(&reg_mutex);
2248
		return r;
2249
	}
2250 2251

	/* This would make this whole thing pointless */
2252 2253
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2254 2255

	/* update all wiphys now with the new established regulatory domain */
2256
	update_all_wiphy_regulatory(last_request->initiator);
2257

2258
	print_regdomain(cfg80211_regdomain);
2259

2260 2261
	nl80211_send_reg_change_event(last_request);

2262 2263
	reg_set_request_processed();

2264 2265
	mutex_unlock(&reg_mutex);

2266 2267 2268
	return r;
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2288
/* Caller must hold cfg80211_mutex */
2289 2290
void reg_device_remove(struct wiphy *wiphy)
{
2291
	struct wiphy *request_wiphy = NULL;
2292

2293 2294
	assert_cfg80211_lock();

2295 2296
	mutex_lock(&reg_mutex);

2297 2298
	kfree(wiphy->regd);

2299 2300
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2301

2302
	if (!request_wiphy || request_wiphy != wiphy)
2303
		goto out;
2304

2305
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2306
	last_request->country_ie_env = ENVIRON_ANY;
2307 2308
out:
	mutex_unlock(&reg_mutex);
2309 2310
}

2311 2312 2313
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2314
		      "restoring regulatory settings\n");
2315 2316 2317
	restore_regulatory_settings(true);
}

2318
int __init regulatory_init(void)
2319
{
2320
	int err = 0;
2321

2322 2323 2324
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2325

2326 2327
	reg_pdev->dev.type = &reg_device_type;

2328
	spin_lock_init(&reg_requests_lock);
2329
	spin_lock_init(&reg_pending_beacons_lock);
2330

2331
	cfg80211_regdomain = cfg80211_world_regdom;
2332

2333 2334 2335
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2336 2337
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2338
	if (err) {
2339 2340 2341 2342 2343 2344 2345 2346 2347
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2348
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2349 2350 2351
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2352
#endif
2353
	}
2354

2355 2356 2357 2358 2359 2360 2361
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2362 2363 2364
	return 0;
}

2365
void /* __init_or_exit */ regulatory_exit(void)
2366
{
2367
	struct regulatory_request *reg_request, *tmp;
2368
	struct reg_beacon *reg_beacon, *btmp;
2369 2370

	cancel_work_sync(&reg_work);
2371
	cancel_delayed_work_sync(&reg_timeout);
2372

2373
	mutex_lock(&cfg80211_mutex);
2374
	mutex_lock(&reg_mutex);
2375

2376
	reset_regdomains(true);
2377

2378
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2379

2380
	platform_device_unregister(reg_pdev);
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2410
	mutex_unlock(&reg_mutex);
2411
	mutex_unlock(&cfg80211_mutex);
2412
}