reg.c 62.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99 100
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
101
static DEFINE_MUTEX(reg_mutex);
102 103 104 105 106

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
107

108
/* Used to queue up regulatory hints */
109 110 111
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

112 113 114 115 116 117 118 119 120 121 122 123
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

124 125 126
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

127 128 129
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

130 131
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
132
	.n_reg_rules = 5,
133 134
	.alpha2 =  "00",
	.reg_rules = {
135 136
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 138 139
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 141
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
142 143 144 145 146 147 148
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
149
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 151
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
152 153 154 155

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
156
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 158
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
159 160 161
	}
};

162 163
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
164

165
static char *ieee80211_regdom = "00";
166
static char user_alpha2[2];
167

168 169 170
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

171
static void reset_regdomains(bool full_reset)
172
{
173 174 175 176 177 178 179 180 181 182
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
183

184
	cfg80211_world_regdom = &world_regdom;
185
	cfg80211_regdomain = NULL;
186 187 188 189 190 191 192

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
193 194
}

195 196 197 198
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
199
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200
{
201
	BUG_ON(!last_request);
202

203
	reset_regdomains(false);
204 205 206 207 208

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

209
bool is_world_regdom(const char *alpha2)
210 211 212 213 214 215 216
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
217

218
static bool is_alpha2_set(const char *alpha2)
219 220 221 222 223 224 225
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
226

227
static bool is_unknown_alpha2(const char *alpha2)
228 229 230
{
	if (!alpha2)
		return false;
231 232 233 234
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
235 236 237 238
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
239

240 241 242 243
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
244 245
	/*
	 * Special case where regulatory domain is the
246
	 * result of an intersection between two regulatory domain
247 248
	 * structures
	 */
249 250 251 252 253
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

254
static bool is_an_alpha2(const char *alpha2)
255 256 257
{
	if (!alpha2)
		return false;
258
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 260 261
		return true;
	return false;
}
262

263
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 265 266 267 268 269 270 271 272
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

273
static bool regdom_changes(const char *alpha2)
274
{
275 276
	assert_cfg80211_lock();

277 278 279 280 281 282 283
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
336
static DEFINE_MUTEX(reg_regdb_search_mutex);
337 338 339 340 341 342 343

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

344
	mutex_lock(&reg_regdb_search_mutex);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
367
	mutex_unlock(&reg_regdb_search_mutex);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

385
	mutex_lock(&reg_regdb_search_mutex);
386
	list_add_tail(&request->list, &reg_regdb_search_list);
387
	mutex_unlock(&reg_regdb_search_mutex);
388 389 390 391 392 393 394

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

395 396
/*
 * This lets us keep regulatory code which is updated on a regulatory
397 398
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
399
 */
400 401 402
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
403
		pr_info("Calling CRDA for country: %c%c\n",
404 405
			alpha2[0], alpha2[1]);
	else
406
		pr_info("Calling CRDA to update world regulatory domain\n");
407

408 409 410
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

411
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 413 414
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
415
bool reg_is_valid_request(const char *alpha2)
416
{
417 418
	assert_cfg80211_lock();

419 420 421 422
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
423
}
424

425
/* Sanity check on a regulatory rule */
426
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427
{
428
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 430
	u32 freq_diff;

431
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 433 434 435 436 437 438
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

439 440
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
441 442 443 444 445
		return false;

	return true;
}

446
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447
{
448
	const struct ieee80211_reg_rule *reg_rule = NULL;
449
	unsigned int i;
450

451 452
	if (!rd->n_reg_rules)
		return false;
453

454 455 456
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

457 458 459 460 461 462 463
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
464 465
}

466 467 468
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
469
{
470 471 472 473 474 475 476 477 478 479
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
480
}
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

507 508 509 510
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

588 589
	/*
	 * First we get a count of the rules we'll need, then we actually
590 591 592
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
593 594
	 * All rules that do check out OK are valid.
	 */
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
622 623
			/*
			 * This time around instead of using the stack lets
624
			 * write to the target rule directly saving ourselves
625 626
			 * a memcpy()
			 */
627 628 629
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
630 631 632 633
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

652 653 654 655
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
656 657 658 659 660 661 662 663 664 665 666 667
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

668 669
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
670
			      u32 desired_bw_khz,
671 672
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
673 674
{
	int i;
675
	bool band_rule_found = false;
676
	const struct ieee80211_regdomain *regd;
677 678 679 680
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
681

682
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
683

684 685 686 687
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
688 689
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691 692 693 694
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
695 696
		return -EINVAL;

697
	for (i = 0; i < regd->n_reg_rules; i++) {
698 699 700
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

701
		rr = &regd->reg_rules[i];
702
		fr = &rr->freq_range;
703

704 705
		/*
		 * We only need to know if one frequency rule was
706
		 * was in center_freq's band, that's enough, so lets
707 708
		 * not overwrite it once found
		 */
709 710 711
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

712 713 714
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
715

716
		if (band_rule_found && bw_fits) {
717
			*reg_rule = rr;
718
			return 0;
719 720 721
		}
	}

722 723 724
	if (!band_rule_found)
		return -ERANGE;

725
	return -EINVAL;
726 727
}

728 729 730 731
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
732
{
733
	assert_cfg80211_lock();
734 735 736 737 738
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
739
}
740
EXPORT_SYMBOL(freq_reg_info);
741

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

776
	REG_DBG_PRINT("Updating information on frequency %d MHz "
777
		      "for a %d MHz width channel with regulatory rule:\n",
778 779 780
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

781
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 783
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
784
		      freq_range->max_bandwidth_khz,
785 786 787 788 789 790 791 792 793 794
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
795 796
#endif

797 798 799 800 801 802 803 804 805
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
806 807 808
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
809
			   unsigned int chan_idx)
810 811
{
	int r;
812 813
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
814 815
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
816
	const struct ieee80211_freq_range *freq_range = NULL;
817 818
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
819
	struct wiphy *request_wiphy = NULL;
820

821 822
	assert_cfg80211_lock();

823 824
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

825 826 827 828 829
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
830

831 832 833 834
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
835

836 837 838
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
839
		 * received regulatory rule unless the hint is coming
840 841 842 843 844 845 846 847 848 849 850
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

851
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852
		chan->flags = IEEE80211_CHAN_DISABLED;
853
		return;
854
	}
855

856 857
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

858
	power_rule = &reg_rule->power_rule;
859 860 861 862
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
863

864
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
866
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867
		/*
L
Lucas De Marchi 已提交
868
		 * This guarantees the driver's requested regulatory domain
869
		 * will always be used as a base for further regulatory
870 871
		 * settings
		 */
872
		chan->flags = chan->orig_flags =
873
			map_regdom_flags(reg_rule->flags) | bw_flags;
874 875 876 877 878 879 880
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

881
	chan->beacon_found = false;
882
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883
	chan->max_antenna_gain = min(chan->orig_mag,
884
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
			chan->max_power =
				MBM_TO_DBM(power_rule->max_eirp);
		} else {
			chan->max_power = min(chan->orig_mpwr,
				(int) MBM_TO_DBM(power_rule->max_eirp));
		}
	} else
901
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
902 903
}

904 905 906
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
907
{
908 909 910 911 912
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
913 914

	for (i = 0; i < sband->n_channels; i++)
915
		handle_channel(wiphy, initiator, band, i);
916 917
}

918 919
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
920
{
921
	if (!last_request) {
922
		REG_DBG_PRINT("Ignoring regulatory request %s since "
923 924
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
925
		return true;
926 927
	}

928
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
929
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
930
		REG_DBG_PRINT("Ignoring regulatory request %s "
931
			      "since the driver uses its own custom "
932
			      "regulatory domain\n",
933
			      reg_initiator_name(initiator));
934
		return true;
935 936
	}

937 938 939 940
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
941
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
942
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
943
	    !is_world_regdom(last_request->alpha2)) {
944
		REG_DBG_PRINT("Ignoring regulatory request %s "
945
			      "since the driver requires its own regulatory "
946
			      "domain to be set first\n",
947
			      reg_initiator_name(initiator));
948
		return true;
949 950
	}

951 952 953
	return false;
}

954 955 956 957 958 959
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
960 961
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
962 963 964 965 966 967 968 969 970

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

971 972 973 974 975
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
976
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
977 978
		return;

979 980 981
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

982
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
983
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
984
		channel_changed = true;
985 986
	}

987
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
988
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
989
		channel_changed = true;
990 991
	}

992 993
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1045 1046
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1047
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1048 1049 1050 1051 1052 1053 1054
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1055 1056 1057 1058 1059 1060
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1061 1062 1063 1064 1065
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1116
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1117
	else
1118
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1119 1120

	if (is_ht40_not_allowed(channel_after))
1121
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1122
	else
1123
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1153 1154
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1155 1156
{
	enum ieee80211_band band;
1157

1158 1159
	assert_reg_lock();

1160
	if (ignore_reg_update(wiphy, initiator))
1161 1162
		return;

1163 1164
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1165
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1166
		if (wiphy->bands[band])
1167
			handle_band(wiphy, band, initiator);
1168
	}
1169

1170
	reg_process_beacons(wiphy);
1171
	reg_process_ht_flags(wiphy);
1172
	if (wiphy->reg_notifier)
1173
		wiphy->reg_notifier(wiphy, last_request);
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1184 1185 1186
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1187
	struct wiphy *wiphy;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1202 1203
}

1204 1205 1206 1207 1208 1209
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1210 1211
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1212 1213
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1214
	const struct ieee80211_freq_range *freq_range = NULL;
1215 1216 1217
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1218
	assert_reg_lock();
1219

1220 1221 1222 1223
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1224 1225 1226 1227 1228
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1229 1230

	if (r) {
1231
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1232 1233 1234 1235
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1236 1237 1238 1239
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1240 1241
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1242
	power_rule = &reg_rule->power_rule;
1243 1244 1245 1246
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1247

1248
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1271
	unsigned int bands_set = 0;
1272

1273
	mutex_lock(&reg_mutex);
1274
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1275 1276 1277 1278
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1279
	}
1280
	mutex_unlock(&reg_mutex);
1281 1282 1283 1284 1285 1286

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1287
}
1288 1289
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1290 1291 1292 1293
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1294 1295
#define REG_INTERSECT	1

1296 1297
/* This has the logic which determines when a new request
 * should be ignored. */
1298 1299
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1300
{
1301
	struct wiphy *last_wiphy = NULL;
1302 1303 1304

	assert_cfg80211_lock();

1305 1306 1307 1308
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1309
	switch (pending_request->initiator) {
1310
	case NL80211_REGDOM_SET_BY_CORE:
1311
		return 0;
1312
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1313 1314 1315

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1316
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1317
			return -EINVAL;
1318 1319
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1320
			if (last_wiphy != wiphy) {
1321 1322
				/*
				 * Two cards with two APs claiming different
1323
				 * Country IE alpha2s. We could
1324 1325 1326
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1327
				if (regdom_changes(pending_request->alpha2))
1328 1329 1330
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1331 1332 1333 1334
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1335
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1336 1337 1338
				return 0;
			return -EALREADY;
		}
1339
		return 0;
1340 1341
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1342
			if (regdom_changes(pending_request->alpha2))
1343
				return 0;
1344
			return -EALREADY;
1345
		}
1346 1347 1348 1349 1350 1351

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1352
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1353
		    !regdom_changes(pending_request->alpha2))
1354 1355
			return -EALREADY;

1356
		return REG_INTERSECT;
1357 1358
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1359
			return REG_INTERSECT;
1360 1361 1362 1363
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1364
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1365 1366
			  last_request->intersect)
			return -EOPNOTSUPP;
1367 1368 1369 1370
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1371 1372 1373
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1374
			if (regdom_changes(last_request->alpha2))
1375 1376 1377
				return -EAGAIN;
		}

1378
		if (!regdom_changes(pending_request->alpha2))
1379 1380
			return -EALREADY;

1381 1382 1383 1384 1385 1386
		return 0;
	}

	return -EINVAL;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1398 1399 1400
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
		cancel_delayed_work_sync(&reg_timeout);

1401 1402 1403 1404
	if (need_more_processing)
		schedule_work(&reg_work);
}

1405 1406 1407 1408
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1409
 * @pending_request: the regulatory request currently being processed
1410 1411
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1412
 * what it believes should be the current regulatory domain.
1413 1414 1415 1416
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1417
 * Caller must hold &cfg80211_mutex and &reg_mutex
1418
 */
1419 1420
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1421
{
1422
	bool intersect = false;
1423 1424
	int r = 0;

1425 1426
	assert_cfg80211_lock();

1427
	r = ignore_request(wiphy, pending_request);
1428

1429
	if (r == REG_INTERSECT) {
1430 1431
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1432
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1433 1434
			if (r) {
				kfree(pending_request);
1435
				return r;
1436
			}
1437
		}
1438
		intersect = true;
1439
	} else if (r) {
1440 1441
		/*
		 * If the regulatory domain being requested by the
1442
		 * driver has already been set just copy it to the
1443 1444
		 * wiphy
		 */
1445
		if (r == -EALREADY &&
1446 1447
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1448
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1449 1450
			if (r) {
				kfree(pending_request);
1451
				return r;
1452
			}
1453 1454 1455
			r = -EALREADY;
			goto new_request;
		}
1456
		kfree(pending_request);
1457
		return r;
1458
	}
1459

1460
new_request:
1461 1462
	if (last_request != &core_request_world)
		kfree(last_request);
1463

1464 1465
	last_request = pending_request;
	last_request->intersect = intersect;
1466

1467
	pending_request = NULL;
1468

1469 1470 1471 1472 1473
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1474
	/* When r == REG_INTERSECT we do need to call CRDA */
1475 1476 1477 1478 1479 1480
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1481
		if (r == -EALREADY) {
1482
			nl80211_send_reg_change_event(last_request);
1483 1484
			reg_set_request_processed();
		}
1485
		return r;
1486
	}
1487

1488
	return call_crda(last_request->alpha2);
1489 1490
}

1491
/* This processes *all* regulatory hints */
1492 1493
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1503
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504
	    !wiphy) {
1505
		kfree(reg_request);
1506
		return;
1507 1508
	}

1509
	r = __regulatory_hint(wiphy, reg_request);
1510
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1511
	if (r == -EALREADY && wiphy &&
1512
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1513
		wiphy_update_regulatory(wiphy, reg_initiator);
1514 1515 1516 1517 1518 1519 1520
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1521
	if (r != -EALREADY &&
1522
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1523
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1524 1525
}

1526 1527 1528 1529 1530
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1531
static void reg_process_pending_hints(void)
1532
{
1533 1534
	struct regulatory_request *reg_request;

1535 1536 1537
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1538 1539 1540
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1541
			      "for it to be processed...\n");
1542 1543 1544
		goto out;
	}

1545 1546
	spin_lock(&reg_requests_lock);

1547
	if (list_empty(&reg_requests_list)) {
1548
		spin_unlock(&reg_requests_lock);
1549
		goto out;
1550
	}
1551 1552 1553 1554 1555 1556

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1557
	spin_unlock(&reg_requests_lock);
1558

1559
	reg_process_hint(reg_request, reg_request->initiator);
1560 1561

out:
1562 1563
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1564 1565
}

1566 1567 1568
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1569
	struct cfg80211_registered_device *rdev;
1570 1571
	struct reg_beacon *pending_beacon, *tmp;

1572 1573 1574 1575
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1592 1593
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1604 1605 1606
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1607
	reg_process_pending_beacon_hints();
1608 1609 1610 1611
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1612 1613 1614 1615 1616
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1617 1618 1619 1620 1621 1622 1623
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1624 1625 1626 1627
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1639
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1640

1641
	queue_regulatory_request(request);
1642

1643
	return 0;
1644 1645
}

1646 1647
/* User hints */
int regulatory_hint_user(const char *alpha2)
1648
{
1649 1650
	struct regulatory_request *request;

1651
	BUG_ON(!alpha2);
1652

1653 1654 1655 1656 1657 1658 1659
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1660
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1686
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1687 1688 1689 1690

	queue_regulatory_request(request);

	return 0;
1691 1692 1693
}
EXPORT_SYMBOL(regulatory_hint);

1694 1695 1696 1697
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1698
void regulatory_hint_11d(struct wiphy *wiphy,
1699 1700 1701
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1702 1703 1704
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1705
	struct regulatory_request *request;
1706

1707
	mutex_lock(&reg_mutex);
1708

1709 1710
	if (unlikely(!last_request))
		goto out;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1727
	/*
1728
	 * We will run this only upon a successful connection on cfg80211.
1729 1730
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1731
	 */
1732 1733
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734 1735
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1736

1737 1738
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1739
		goto out;
1740 1741

	request->wiphy_idx = get_wiphy_idx(wiphy);
1742 1743
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1744
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1745 1746
	request->country_ie_env = env;

1747
	mutex_unlock(&reg_mutex);
1748

1749 1750 1751
	queue_regulatory_request(request);

	return;
1752

1753
out:
1754
	mutex_unlock(&reg_mutex);
1755
}
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1767
			REG_DBG_PRINT("Restoring regulatory settings "
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1778
				REG_DBG_PRINT("Keeping preference on "
1779 1780 1781 1782 1783 1784 1785
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1786
			REG_DBG_PRINT("Restoring regulatory settings "
1787 1788 1789 1790 1791 1792 1793
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1794
		REG_DBG_PRINT("Keeping preference on "
1795 1796 1797 1798 1799 1800
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1801
		REG_DBG_PRINT("Restoring regulatory settings\n");
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1842
	char world_alpha2[2];
1843
	struct reg_beacon *reg_beacon, *btmp;
1844 1845
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1846
	struct cfg80211_registered_device *rdev;
1847 1848 1849 1850

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1851
	reset_regdomains(true);
1852 1853
	restore_alpha2(alpha2, reset_user);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1894 1895
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1896

1897 1898 1899 1900 1901
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1902 1903 1904
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1905
	regulatory_hint_core(world_alpha2);
1906 1907 1908 1909 1910 1911 1912 1913 1914

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1939 1940 1941

void regulatory_hint_disconnect(void)
{
1942
	REG_DBG_PRINT("All devices are disconnected, going to "
1943 1944 1945 1946
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1947 1948
static bool freq_is_chan_12_13_14(u16 freq)
{
1949 1950 1951
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1972
	REG_DBG_PRINT("Found new beacon on "
1973 1974 1975 1976 1977
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1995
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1996 1997
{
	unsigned int i;
1998 1999 2000
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2001

2002
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2003 2004 2005 2006 2007 2008

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2009 2010 2011 2012
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2013
		if (power_rule->max_antenna_gain)
2014
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2015 2016 2017 2018 2019 2020
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2021
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2022 2023 2024 2025 2026 2027 2028
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2065
static void print_regdomain(const struct ieee80211_regdomain *rd)
2066 2067
{

2068 2069
	if (is_intersected_alpha2(rd->alpha2)) {

2070 2071
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072 2073
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2074
				last_request->wiphy_idx);
2075
			if (rdev) {
2076
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2077 2078
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2079
			} else
2080
				pr_info("Current regulatory domain intersected:\n");
2081
		} else
2082
			pr_info("Current regulatory domain intersected:\n");
2083
	} else if (is_world_regdom(rd->alpha2))
2084
		pr_info("World regulatory domain updated:\n");
2085 2086
	else {
		if (is_unknown_alpha2(rd->alpha2))
2087
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2088
		else
2089
			pr_info("Regulatory domain changed to country: %c%c\n",
2090 2091
				rd->alpha2[0], rd->alpha2[1]);
	}
2092
	print_dfs_region(rd->dfs_region);
2093 2094 2095
	print_rd_rules(rd);
}

2096
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2097
{
2098
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2099 2100 2101
	print_rd_rules(rd);
}

2102
/* Takes ownership of rd only if it doesn't fail */
2103
static int __set_regdom(const struct ieee80211_regdomain *rd)
2104
{
2105
	const struct ieee80211_regdomain *intersected_rd = NULL;
2106
	struct cfg80211_registered_device *rdev = NULL;
2107
	struct wiphy *request_wiphy;
2108 2109 2110
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2111
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2112 2113 2114 2115 2116 2117 2118 2119 2120
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2121
	if (!last_request)
2122 2123
		return -EINVAL;

2124 2125
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2126
	 * rd is non static (it means CRDA was present and was used last)
2127 2128
	 * and the pending request came in from a country IE
	 */
2129
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2130 2131 2132 2133
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2134
		if (!regdom_changes(rd->alpha2))
2135 2136 2137
			return -EINVAL;
	}

2138 2139
	/*
	 * Now lets set the regulatory domain, update all driver channels
2140 2141
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2142 2143
	 * internal EEPROM data
	 */
2144

2145
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2146 2147
		return -EINVAL;

2148
	if (!is_valid_rd(rd)) {
2149
		pr_err("Invalid regulatory domain detected:\n");
2150 2151
		print_regdomain_info(rd);
		return -EINVAL;
2152 2153
	}

2154
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2155 2156 2157 2158
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2159 2160
		return -ENODEV;
	}
2161

2162
	if (!last_request->intersect) {
2163 2164
		int r;

2165
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166
			reset_regdomains(false);
2167 2168 2169 2170
			cfg80211_regdomain = rd;
			return 0;
		}

2171 2172 2173 2174
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2175

2176 2177 2178 2179 2180 2181
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2182

2183
		r = reg_copy_regd(&request_wiphy->regd, rd);
2184 2185 2186
		if (r)
			return r;

2187
		reset_regdomains(false);
2188 2189 2190 2191 2192 2193
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2194
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2195

2196 2197 2198
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2199

2200 2201
		/*
		 * We can trash what CRDA provided now.
2202
		 * However if a driver requested this specific regulatory
2203 2204
		 * domain we keep it for its private use
		 */
2205
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2206
			request_wiphy->regd = rd;
2207 2208 2209
		else
			kfree(rd);

2210 2211
		rd = NULL;

2212
		reset_regdomains(false);
2213 2214 2215
		cfg80211_regdomain = intersected_rd;

		return 0;
2216 2217
	}

2218 2219 2220
	if (!intersected_rd)
		return -EINVAL;

2221
	rdev = wiphy_to_dev(request_wiphy);
2222

2223 2224 2225
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2226 2227 2228 2229 2230 2231

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2232
	reset_regdomains(false);
2233
	cfg80211_regdomain = intersected_rd;
2234 2235 2236 2237 2238

	return 0;
}


2239 2240
/*
 * Use this call to set the current regulatory domain. Conflicts with
2241
 * multiple drivers can be ironed out later. Caller must've already
2242 2243
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2244
int set_regdom(const struct ieee80211_regdomain *rd)
2245 2246 2247
{
	int r;

2248 2249
	assert_cfg80211_lock();

2250 2251
	mutex_lock(&reg_mutex);

2252 2253
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2254 2255
	if (r) {
		kfree(rd);
2256
		mutex_unlock(&reg_mutex);
2257
		return r;
2258
	}
2259 2260

	/* This would make this whole thing pointless */
2261 2262
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2263 2264

	/* update all wiphys now with the new established regulatory domain */
2265
	update_all_wiphy_regulatory(last_request->initiator);
2266

2267
	print_regdomain(cfg80211_regdomain);
2268

2269 2270
	nl80211_send_reg_change_event(last_request);

2271 2272
	reg_set_request_processed();

2273 2274
	mutex_unlock(&reg_mutex);

2275 2276 2277
	return r;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2297
/* Caller must hold cfg80211_mutex */
2298 2299
void reg_device_remove(struct wiphy *wiphy)
{
2300
	struct wiphy *request_wiphy = NULL;
2301

2302 2303
	assert_cfg80211_lock();

2304 2305
	mutex_lock(&reg_mutex);

2306 2307
	kfree(wiphy->regd);

2308 2309
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2310

2311
	if (!request_wiphy || request_wiphy != wiphy)
2312
		goto out;
2313

2314
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2315
	last_request->country_ie_env = ENVIRON_ANY;
2316 2317
out:
	mutex_unlock(&reg_mutex);
2318 2319
}

2320 2321 2322
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2323
		      "restoring regulatory settings\n");
2324 2325 2326
	restore_regulatory_settings(true);
}

2327
int __init regulatory_init(void)
2328
{
2329
	int err = 0;
2330

2331 2332 2333
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2334

2335 2336
	reg_pdev->dev.type = &reg_device_type;

2337
	spin_lock_init(&reg_requests_lock);
2338
	spin_lock_init(&reg_pending_beacons_lock);
2339

2340
	cfg80211_regdomain = cfg80211_world_regdom;
2341

2342 2343 2344
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2345 2346
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2347
	if (err) {
2348 2349 2350 2351 2352 2353 2354 2355 2356
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2357
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2358 2359 2360
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2361
#endif
2362
	}
2363

2364 2365 2366 2367 2368 2369 2370
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2371 2372 2373
	return 0;
}

2374
void /* __init_or_exit */ regulatory_exit(void)
2375
{
2376
	struct regulatory_request *reg_request, *tmp;
2377
	struct reg_beacon *reg_beacon, *btmp;
2378 2379

	cancel_work_sync(&reg_work);
2380
	cancel_delayed_work_sync(&reg_timeout);
2381

2382
	mutex_lock(&cfg80211_mutex);
2383
	mutex_lock(&reg_mutex);
2384

2385
	reset_regdomains(true);
2386

2387
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2388

2389
	platform_device_unregister(reg_pdev);
2390

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2419
	mutex_unlock(&reg_mutex);
2420
	mutex_unlock(&cfg80211_mutex);
2421
}