reg.c 62.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99 100
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
101
static DEFINE_MUTEX(reg_mutex);
102 103 104 105 106

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
107

108
/* Used to queue up regulatory hints */
109 110 111
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

112 113 114 115 116 117 118 119 120 121 122 123
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

124 125 126
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

127 128 129
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

130 131
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
132
	.n_reg_rules = 5,
133 134
	.alpha2 =  "00",
	.reg_rules = {
135 136
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 138 139
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 141
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
142 143 144 145 146 147 148
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
149
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 151
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
152 153 154 155

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
156
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 158
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
159 160 161
	}
};

162 163
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
164

165
static char *ieee80211_regdom = "00";
166
static char user_alpha2[2];
167

168 169 170
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

171
static void reset_regdomains(bool full_reset)
172
{
173 174 175 176 177 178 179 180 181 182
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
183

184
	cfg80211_world_regdom = &world_regdom;
185
	cfg80211_regdomain = NULL;
186 187 188 189 190 191 192

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
193 194
}

195 196 197 198
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
199
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200
{
201
	BUG_ON(!last_request);
202

203
	reset_regdomains(false);
204 205 206 207 208

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

209
bool is_world_regdom(const char *alpha2)
210 211 212 213 214 215 216
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
217

218
static bool is_alpha2_set(const char *alpha2)
219 220 221 222 223 224 225
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
226

227
static bool is_unknown_alpha2(const char *alpha2)
228 229 230
{
	if (!alpha2)
		return false;
231 232 233 234
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
235 236 237 238
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
239

240 241 242 243
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
244 245
	/*
	 * Special case where regulatory domain is the
246
	 * result of an intersection between two regulatory domain
247 248
	 * structures
	 */
249 250 251 252 253
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

254
static bool is_an_alpha2(const char *alpha2)
255 256 257
{
	if (!alpha2)
		return false;
258
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 260 261
		return true;
	return false;
}
262

263
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 265 266 267 268 269 270 271 272
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

273
static bool regdom_changes(const char *alpha2)
274
{
275 276
	assert_cfg80211_lock();

277 278 279 280 281 282 283
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
336
static DEFINE_MUTEX(reg_regdb_search_mutex);
337 338 339 340 341 342 343

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

344
	mutex_lock(&reg_regdb_search_mutex);
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
367
	mutex_unlock(&reg_regdb_search_mutex);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

385
	mutex_lock(&reg_regdb_search_mutex);
386
	list_add_tail(&request->list, &reg_regdb_search_list);
387
	mutex_unlock(&reg_regdb_search_mutex);
388 389 390

	schedule_work(&reg_regdb_work);
}
391 392 393 394 395 396 397

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
398
#else
399
static inline void reg_regdb_size_check(void) {}
400 401 402
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

403 404
/*
 * This lets us keep regulatory code which is updated on a regulatory
405 406
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
407
 */
408 409 410
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
411
		pr_info("Calling CRDA for country: %c%c\n",
412 413
			alpha2[0], alpha2[1]);
	else
414
		pr_info("Calling CRDA to update world regulatory domain\n");
415

416 417 418
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

419
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
420 421 422
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
423
bool reg_is_valid_request(const char *alpha2)
424
{
425 426
	assert_cfg80211_lock();

427 428 429 430
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
431
}
432

433
/* Sanity check on a regulatory rule */
434
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
435
{
436
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
437 438
	u32 freq_diff;

439
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
440 441 442 443 444 445 446
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

447 448
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
449 450 451 452 453
		return false;

	return true;
}

454
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
455
{
456
	const struct ieee80211_reg_rule *reg_rule = NULL;
457
	unsigned int i;
458

459 460
	if (!rd->n_reg_rules)
		return false;
461

462 463 464
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

465 466 467 468 469 470 471
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
472 473
}

474 475 476
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
477
{
478 479 480 481 482 483 484 485 486 487
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
488
}
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

515 516 517 518
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

596 597
	/*
	 * First we get a count of the rules we'll need, then we actually
598 599 600
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
601 602
	 * All rules that do check out OK are valid.
	 */
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
630 631
			/*
			 * This time around instead of using the stack lets
632
			 * write to the target rule directly saving ourselves
633 634
			 * a memcpy()
			 */
635 636 637
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
638 639 640 641
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

660 661 662 663
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
664 665 666 667 668 669 670 671 672 673 674 675
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

676 677
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
678
			      u32 desired_bw_khz,
679 680
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
681 682
{
	int i;
683
	bool band_rule_found = false;
684
	const struct ieee80211_regdomain *regd;
685 686 687 688
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
689

690
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
691

692 693 694 695
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
696 697
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
698
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
699 700 701 702
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
703 704
		return -EINVAL;

705
	for (i = 0; i < regd->n_reg_rules; i++) {
706 707 708
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

709
		rr = &regd->reg_rules[i];
710
		fr = &rr->freq_range;
711

712 713
		/*
		 * We only need to know if one frequency rule was
714
		 * was in center_freq's band, that's enough, so lets
715 716
		 * not overwrite it once found
		 */
717 718 719
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

720 721 722
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
723

724
		if (band_rule_found && bw_fits) {
725
			*reg_rule = rr;
726
			return 0;
727 728 729
		}
	}

730 731 732
	if (!band_rule_found)
		return -ERANGE;

733
	return -EINVAL;
734 735
}

736 737 738 739
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
740
{
741
	assert_cfg80211_lock();
742 743 744 745 746
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
747
}
748
EXPORT_SYMBOL(freq_reg_info);
749

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

784
	REG_DBG_PRINT("Updating information on frequency %d MHz "
785
		      "for a %d MHz width channel with regulatory rule:\n",
786 787 788
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

789
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
790 791
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
792
		      freq_range->max_bandwidth_khz,
793 794 795 796 797 798 799 800 801 802
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
803 804
#endif

805 806 807 808 809 810 811 812 813
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
814 815 816
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
817
			   unsigned int chan_idx)
818 819
{
	int r;
820 821
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
822 823
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
824
	const struct ieee80211_freq_range *freq_range = NULL;
825 826
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
827
	struct wiphy *request_wiphy = NULL;
828

829 830
	assert_cfg80211_lock();

831 832
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

833 834 835 836 837
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
838

839 840 841 842
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
843

844 845 846
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
847
		 * received regulatory rule unless the hint is coming
848 849 850 851 852 853 854 855 856 857 858
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

859
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
860
		chan->flags = IEEE80211_CHAN_DISABLED;
861
		return;
862
	}
863

864 865
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

866
	power_rule = &reg_rule->power_rule;
867 868 869 870
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
871

872
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
873
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
874
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
875
		/*
L
Lucas De Marchi 已提交
876
		 * This guarantees the driver's requested regulatory domain
877
		 * will always be used as a base for further regulatory
878 879
		 * settings
		 */
880
		chan->flags = chan->orig_flags =
881
			map_regdom_flags(reg_rule->flags) | bw_flags;
882 883 884 885 886 887 888
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

889
	chan->beacon_found = false;
890
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
891
	chan->max_antenna_gain = min(chan->orig_mag,
892
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
893 894
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
	chan->max_power = min(chan->max_power, chan->max_reg_power);
895 896
}

897 898 899
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
900
{
901 902 903 904 905
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
906 907

	for (i = 0; i < sband->n_channels; i++)
908
		handle_channel(wiphy, initiator, band, i);
909 910
}

911 912
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
913
{
914
	if (!last_request) {
915
		REG_DBG_PRINT("Ignoring regulatory request %s since "
916 917
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
918
		return true;
919 920
	}

921
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
922
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
923
		REG_DBG_PRINT("Ignoring regulatory request %s "
924
			      "since the driver uses its own custom "
925
			      "regulatory domain\n",
926
			      reg_initiator_name(initiator));
927
		return true;
928 929
	}

930 931 932 933
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
934
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
935
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
936
	    !is_world_regdom(last_request->alpha2)) {
937
		REG_DBG_PRINT("Ignoring regulatory request %s "
938
			      "since the driver requires its own regulatory "
939
			      "domain to be set first\n",
940
			      reg_initiator_name(initiator));
941
		return true;
942 943
	}

944 945 946
	return false;
}

947 948 949 950 951 952
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
953 954
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
955 956 957 958 959 960 961 962 963

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

964 965 966 967 968
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
969
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
970 971
		return;

972 973 974
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

975
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
976
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
977
		channel_changed = true;
978 979
	}

980
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
981
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
982
		channel_changed = true;
983 984
	}

985 986
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1038 1039
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1040
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1041 1042 1043 1044 1045 1046 1047
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1048 1049 1050 1051 1052 1053
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1054 1055 1056 1057 1058
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1109
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1110
	else
1111
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1112 1113

	if (is_ht40_not_allowed(channel_after))
1114
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1115
	else
1116
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1146 1147
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1148 1149
{
	enum ieee80211_band band;
1150

1151 1152
	assert_reg_lock();

1153
	if (ignore_reg_update(wiphy, initiator))
1154 1155
		return;

1156 1157
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1158
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159
		if (wiphy->bands[band])
1160
			handle_band(wiphy, band, initiator);
1161
	}
1162

1163
	reg_process_beacons(wiphy);
1164
	reg_process_ht_flags(wiphy);
1165
	if (wiphy->reg_notifier)
1166
		wiphy->reg_notifier(wiphy, last_request);
1167 1168
}

1169 1170 1171 1172 1173 1174 1175 1176
void regulatory_update(struct wiphy *wiphy,
		       enum nl80211_reg_initiator setby)
{
	mutex_lock(&reg_mutex);
	wiphy_update_regulatory(wiphy, setby);
	mutex_unlock(&reg_mutex);
}

1177 1178 1179
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1180
	struct wiphy *wiphy;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1195 1196
}

1197 1198 1199 1200 1201 1202
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1203 1204
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1205 1206
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1207
	const struct ieee80211_freq_range *freq_range = NULL;
1208 1209 1210
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1211
	assert_reg_lock();
1212

1213 1214 1215 1216
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1217 1218 1219 1220 1221
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1222 1223

	if (r) {
1224
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1225 1226 1227 1228
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1229 1230 1231 1232
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1233 1234
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1235
	power_rule = &reg_rule->power_rule;
1236 1237 1238 1239
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1240

1241
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1264
	unsigned int bands_set = 0;
1265

1266
	mutex_lock(&reg_mutex);
1267
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268 1269 1270 1271
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1272
	}
1273
	mutex_unlock(&reg_mutex);
1274 1275 1276 1277 1278 1279

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1280
}
1281 1282
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1283 1284 1285 1286
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1287 1288
#define REG_INTERSECT	1

1289 1290
/* This has the logic which determines when a new request
 * should be ignored. */
1291 1292
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1293
{
1294
	struct wiphy *last_wiphy = NULL;
1295 1296 1297

	assert_cfg80211_lock();

1298 1299 1300 1301
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1302
	switch (pending_request->initiator) {
1303
	case NL80211_REGDOM_SET_BY_CORE:
1304
		return 0;
1305
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1306 1307 1308

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1309
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1310
			return -EINVAL;
1311 1312
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1313
			if (last_wiphy != wiphy) {
1314 1315
				/*
				 * Two cards with two APs claiming different
1316
				 * Country IE alpha2s. We could
1317 1318 1319
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1320
				if (regdom_changes(pending_request->alpha2))
1321 1322 1323
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1324 1325 1326 1327
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1328
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1329 1330 1331
				return 0;
			return -EALREADY;
		}
1332
		return 0;
1333 1334
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1335
			if (regdom_changes(pending_request->alpha2))
1336
				return 0;
1337
			return -EALREADY;
1338
		}
1339 1340 1341 1342 1343 1344

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1345
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1346
		    !regdom_changes(pending_request->alpha2))
1347 1348
			return -EALREADY;

1349
		return REG_INTERSECT;
1350 1351
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1352
			return REG_INTERSECT;
1353 1354 1355 1356
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1357
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1358 1359
			  last_request->intersect)
			return -EOPNOTSUPP;
1360 1361 1362 1363
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1364 1365 1366
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1367
			if (regdom_changes(last_request->alpha2))
1368 1369 1370
				return -EAGAIN;
		}

1371
		if (!regdom_changes(pending_request->alpha2))
1372 1373
			return -EALREADY;

1374 1375 1376 1377 1378 1379
		return 0;
	}

	return -EINVAL;
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1391
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1392
		cancel_delayed_work(&reg_timeout);
1393

1394 1395 1396 1397
	if (need_more_processing)
		schedule_work(&reg_work);
}

1398 1399 1400 1401
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1402
 * @pending_request: the regulatory request currently being processed
1403 1404
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1405
 * what it believes should be the current regulatory domain.
1406 1407 1408 1409
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1410
 * Caller must hold &cfg80211_mutex and &reg_mutex
1411
 */
1412 1413
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1414
{
1415
	bool intersect = false;
1416 1417
	int r = 0;

1418 1419
	assert_cfg80211_lock();

1420
	r = ignore_request(wiphy, pending_request);
1421

1422
	if (r == REG_INTERSECT) {
1423 1424
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1425
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1426 1427
			if (r) {
				kfree(pending_request);
1428
				return r;
1429
			}
1430
		}
1431
		intersect = true;
1432
	} else if (r) {
1433 1434
		/*
		 * If the regulatory domain being requested by the
1435
		 * driver has already been set just copy it to the
1436 1437
		 * wiphy
		 */
1438
		if (r == -EALREADY &&
1439 1440
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1441
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1442 1443
			if (r) {
				kfree(pending_request);
1444
				return r;
1445
			}
1446 1447 1448
			r = -EALREADY;
			goto new_request;
		}
1449
		kfree(pending_request);
1450
		return r;
1451
	}
1452

1453
new_request:
1454 1455
	if (last_request != &core_request_world)
		kfree(last_request);
1456

1457 1458
	last_request = pending_request;
	last_request->intersect = intersect;
1459

1460
	pending_request = NULL;
1461

1462 1463 1464 1465 1466
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1467
	/* When r == REG_INTERSECT we do need to call CRDA */
1468 1469 1470 1471 1472 1473
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1474
		if (r == -EALREADY) {
1475
			nl80211_send_reg_change_event(last_request);
1476 1477
			reg_set_request_processed();
		}
1478
		return r;
1479
	}
1480

1481
	return call_crda(last_request->alpha2);
1482 1483
}

1484
/* This processes *all* regulatory hints */
1485 1486
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1496
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1497
	    !wiphy) {
1498
		kfree(reg_request);
1499
		return;
1500 1501
	}

1502
	r = __regulatory_hint(wiphy, reg_request);
1503
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1504
	if (r == -EALREADY && wiphy &&
1505
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1506
		wiphy_update_regulatory(wiphy, reg_initiator);
1507 1508 1509 1510 1511 1512 1513
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1514
	if (r != -EALREADY &&
1515
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1516
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1517 1518
}

1519 1520 1521 1522 1523
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1524
static void reg_process_pending_hints(void)
1525
{
1526 1527
	struct regulatory_request *reg_request;

1528 1529 1530
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1531 1532 1533
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1534
			      "for it to be processed...\n");
1535 1536 1537
		goto out;
	}

1538 1539
	spin_lock(&reg_requests_lock);

1540
	if (list_empty(&reg_requests_list)) {
1541
		spin_unlock(&reg_requests_lock);
1542
		goto out;
1543
	}
1544 1545 1546 1547 1548 1549

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1550
	spin_unlock(&reg_requests_lock);
1551

1552
	reg_process_hint(reg_request, reg_request->initiator);
1553 1554

out:
1555 1556
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1557 1558
}

1559 1560 1561
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1562
	struct cfg80211_registered_device *rdev;
1563 1564
	struct reg_beacon *pending_beacon, *tmp;

1565 1566 1567 1568
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1585 1586
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1597 1598 1599
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1600
	reg_process_pending_beacon_hints();
1601 1602 1603 1604
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1605 1606 1607 1608 1609
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1610 1611 1612 1613 1614 1615 1616
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1617 1618 1619 1620
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1632
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1633

1634
	queue_regulatory_request(request);
1635

1636
	return 0;
1637 1638
}

1639 1640
/* User hints */
int regulatory_hint_user(const char *alpha2)
1641
{
1642 1643
	struct regulatory_request *request;

1644
	BUG_ON(!alpha2);
1645

1646 1647 1648 1649 1650 1651 1652
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1653
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1679
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1680 1681 1682 1683

	queue_regulatory_request(request);

	return 0;
1684 1685 1686
}
EXPORT_SYMBOL(regulatory_hint);

1687 1688 1689 1690
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1691
void regulatory_hint_11d(struct wiphy *wiphy,
1692 1693 1694
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1695 1696 1697
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1698
	struct regulatory_request *request;
1699

1700
	mutex_lock(&reg_mutex);
1701

1702 1703
	if (unlikely(!last_request))
		goto out;
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1720
	/*
1721
	 * We will run this only upon a successful connection on cfg80211.
1722 1723
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1724
	 */
1725 1726
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727 1728
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1729

1730 1731
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1732
		goto out;
1733 1734

	request->wiphy_idx = get_wiphy_idx(wiphy);
1735 1736
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1737
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1738 1739
	request->country_ie_env = env;

1740
	mutex_unlock(&reg_mutex);
1741

1742 1743 1744
	queue_regulatory_request(request);

	return;
1745

1746
out:
1747
	mutex_unlock(&reg_mutex);
1748
}
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1760
			REG_DBG_PRINT("Restoring regulatory settings "
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1771
				REG_DBG_PRINT("Keeping preference on "
1772 1773 1774 1775 1776 1777 1778
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1779
			REG_DBG_PRINT("Restoring regulatory settings "
1780 1781 1782 1783 1784 1785 1786
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1787
		REG_DBG_PRINT("Keeping preference on "
1788 1789 1790 1791 1792 1793
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1794
		REG_DBG_PRINT("Restoring regulatory settings\n");
1795 1796
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
		}
	}
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1835
	char world_alpha2[2];
1836
	struct reg_beacon *reg_beacon, *btmp;
1837 1838
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1839
	struct cfg80211_registered_device *rdev;
1840 1841 1842 1843

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1844
	reset_regdomains(true);
1845 1846
	restore_alpha2(alpha2, reset_user);

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			if (reg_request->initiator !=
			    NL80211_REGDOM_SET_BY_USER)
				continue;
			list_del(&reg_request->list);
			list_add_tail(&reg_request->list, &tmp_reg_req_list);
		}
	}
	spin_unlock(&reg_requests_lock);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1887 1888
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1889

1890 1891 1892 1893 1894
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1895 1896 1897
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1898
	regulatory_hint_core(world_alpha2);
1899 1900 1901 1902 1903 1904 1905 1906 1907

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
		list_del(&reg_request->list);
		list_add_tail(&reg_request->list, &reg_requests_list);
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
1932 1933 1934

void regulatory_hint_disconnect(void)
{
1935
	REG_DBG_PRINT("All devices are disconnected, going to "
1936 1937 1938 1939
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1940 1941
static bool freq_is_chan_12_13_14(u16 freq)
{
1942 1943 1944
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1965
	REG_DBG_PRINT("Found new beacon on "
1966 1967 1968 1969 1970
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1988
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1989 1990
{
	unsigned int i;
1991 1992 1993
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1994

1995
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1996 1997 1998 1999 2000 2001

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2002 2003 2004 2005
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2006
		if (power_rule->max_antenna_gain)
2007
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2008 2009 2010 2011 2012 2013
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2014
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2015 2016 2017 2018 2019 2020 2021
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2058
static void print_regdomain(const struct ieee80211_regdomain *rd)
2059 2060
{

2061 2062
	if (is_intersected_alpha2(rd->alpha2)) {

2063 2064
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2065 2066
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2067
				last_request->wiphy_idx);
2068
			if (rdev) {
2069
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2070 2071
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2072
			} else
2073
				pr_info("Current regulatory domain intersected:\n");
2074
		} else
2075
			pr_info("Current regulatory domain intersected:\n");
2076
	} else if (is_world_regdom(rd->alpha2))
2077
		pr_info("World regulatory domain updated:\n");
2078 2079
	else {
		if (is_unknown_alpha2(rd->alpha2))
2080
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2081
		else
2082
			pr_info("Regulatory domain changed to country: %c%c\n",
2083 2084
				rd->alpha2[0], rd->alpha2[1]);
	}
2085
	print_dfs_region(rd->dfs_region);
2086 2087 2088
	print_rd_rules(rd);
}

2089
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2090
{
2091
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2092 2093 2094
	print_rd_rules(rd);
}

2095
/* Takes ownership of rd only if it doesn't fail */
2096
static int __set_regdom(const struct ieee80211_regdomain *rd)
2097
{
2098
	const struct ieee80211_regdomain *intersected_rd = NULL;
2099
	struct cfg80211_registered_device *rdev = NULL;
2100
	struct wiphy *request_wiphy;
2101 2102 2103
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2104
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2105 2106 2107 2108 2109 2110 2111 2112 2113
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2114
	if (!last_request)
2115 2116
		return -EINVAL;

2117 2118
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2119
	 * rd is non static (it means CRDA was present and was used last)
2120 2121
	 * and the pending request came in from a country IE
	 */
2122
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2123 2124 2125 2126
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2127
		if (!regdom_changes(rd->alpha2))
2128 2129 2130
			return -EINVAL;
	}

2131 2132
	/*
	 * Now lets set the regulatory domain, update all driver channels
2133 2134
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2135 2136
	 * internal EEPROM data
	 */
2137

2138
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2139 2140
		return -EINVAL;

2141
	if (!is_valid_rd(rd)) {
2142
		pr_err("Invalid regulatory domain detected:\n");
2143 2144
		print_regdomain_info(rd);
		return -EINVAL;
2145 2146
	}

2147
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2148 2149 2150 2151
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2152 2153
		return -ENODEV;
	}
2154

2155
	if (!last_request->intersect) {
2156 2157
		int r;

2158
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2159
			reset_regdomains(false);
2160 2161 2162 2163
			cfg80211_regdomain = rd;
			return 0;
		}

2164 2165 2166 2167
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2168

2169 2170 2171 2172 2173 2174
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2175

2176
		r = reg_copy_regd(&request_wiphy->regd, rd);
2177 2178 2179
		if (r)
			return r;

2180
		reset_regdomains(false);
2181 2182 2183 2184 2185 2186
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2187
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2188

2189 2190 2191
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2192

2193 2194
		/*
		 * We can trash what CRDA provided now.
2195
		 * However if a driver requested this specific regulatory
2196 2197
		 * domain we keep it for its private use
		 */
2198
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2199
			request_wiphy->regd = rd;
2200 2201 2202
		else
			kfree(rd);

2203 2204
		rd = NULL;

2205
		reset_regdomains(false);
2206 2207 2208
		cfg80211_regdomain = intersected_rd;

		return 0;
2209 2210
	}

2211 2212 2213
	if (!intersected_rd)
		return -EINVAL;

2214
	rdev = wiphy_to_dev(request_wiphy);
2215

2216 2217 2218
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2219 2220 2221 2222 2223 2224

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2225
	reset_regdomains(false);
2226
	cfg80211_regdomain = intersected_rd;
2227 2228 2229 2230 2231

	return 0;
}


2232 2233
/*
 * Use this call to set the current regulatory domain. Conflicts with
2234
 * multiple drivers can be ironed out later. Caller must've already
2235 2236
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2237
int set_regdom(const struct ieee80211_regdomain *rd)
2238 2239 2240
{
	int r;

2241 2242
	assert_cfg80211_lock();

2243 2244
	mutex_lock(&reg_mutex);

2245 2246
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2247 2248
	if (r) {
		kfree(rd);
2249
		mutex_unlock(&reg_mutex);
2250
		return r;
2251
	}
2252 2253

	/* This would make this whole thing pointless */
2254 2255
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2256 2257

	/* update all wiphys now with the new established regulatory domain */
2258
	update_all_wiphy_regulatory(last_request->initiator);
2259

2260
	print_regdomain(cfg80211_regdomain);
2261

2262 2263
	nl80211_send_reg_change_event(last_request);

2264 2265
	reg_set_request_processed();

2266 2267
	mutex_unlock(&reg_mutex);

2268 2269 2270
	return r;
}

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2290
/* Caller must hold cfg80211_mutex */
2291 2292
void reg_device_remove(struct wiphy *wiphy)
{
2293
	struct wiphy *request_wiphy = NULL;
2294

2295 2296
	assert_cfg80211_lock();

2297 2298
	mutex_lock(&reg_mutex);

2299 2300
	kfree(wiphy->regd);

2301 2302
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2303

2304
	if (!request_wiphy || request_wiphy != wiphy)
2305
		goto out;
2306

2307
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2308
	last_request->country_ie_env = ENVIRON_ANY;
2309 2310
out:
	mutex_unlock(&reg_mutex);
2311 2312
}

2313 2314 2315
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2316
		      "restoring regulatory settings\n");
2317 2318 2319
	restore_regulatory_settings(true);
}

2320
int __init regulatory_init(void)
2321
{
2322
	int err = 0;
2323

2324 2325 2326
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2327

2328 2329
	reg_pdev->dev.type = &reg_device_type;

2330
	spin_lock_init(&reg_requests_lock);
2331
	spin_lock_init(&reg_pending_beacons_lock);
2332

2333 2334
	reg_regdb_size_check();

2335
	cfg80211_regdomain = cfg80211_world_regdom;
2336

2337 2338 2339
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2340 2341
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2342
	if (err) {
2343 2344 2345 2346 2347 2348 2349 2350 2351
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2352
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2353 2354 2355
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2356
#endif
2357
	}
2358

2359 2360 2361 2362 2363 2364 2365
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2366 2367 2368
	return 0;
}

2369
void /* __init_or_exit */ regulatory_exit(void)
2370
{
2371
	struct regulatory_request *reg_request, *tmp;
2372
	struct reg_beacon *reg_beacon, *btmp;
2373 2374

	cancel_work_sync(&reg_work);
2375
	cancel_delayed_work_sync(&reg_timeout);
2376

2377
	mutex_lock(&cfg80211_mutex);
2378
	mutex_lock(&reg_mutex);
2379

2380
	reset_regdomains(true);
2381

2382
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2383

2384
	platform_device_unregister(reg_pdev);
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2414
	mutex_unlock(&reg_mutex);
2415
	mutex_unlock(&cfg80211_mutex);
2416
}