reg.c 64.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46
#ifdef CONFIG_CFG80211_REG_DEBUG
47
#define REG_DBG_PRINT(format, args...) \
48
	do { \
49
		printk(KERN_DEBUG format , ## args); \
50 51
	} while (0)
#else
52
#define REG_DBG_PRINT(args...)
53 54
#endif

55
/* Receipt of information from last regulatory request */
56
static struct regulatory_request *last_request;
57

58 59
/* To trigger userspace events */
static struct platform_device *reg_pdev;
60

61 62
/*
 * Central wireless core regulatory domains, we only need two,
63
 * the current one and a world regulatory domain in case we have no
64 65
 * information to give us an alpha2
 */
66
const struct ieee80211_regdomain *cfg80211_regdomain;
67

68 69
/*
 * We use this as a place for the rd structure built from the
70
 * last parsed country IE to rest until CRDA gets back to us with
71 72
 * what it thinks should apply for the same country
 */
73 74
static const struct ieee80211_regdomain *country_ie_regdomain;

75 76 77 78 79 80 81 82 83 84
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

85
/* Used to queue up regulatory hints */
86 87 88
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

89 90 91 92 93 94 95 96 97 98 99 100
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

101 102
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
103
	.n_reg_rules = 5,
104 105
	.alpha2 =  "00",
	.reg_rules = {
106 107
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 109 110
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 112
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
113 114 115 116 117 118 119
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
120
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 122
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
123 124 125 126

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
127
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 129
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
130 131 132
	}
};

133 134
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
135

136 137
static char *ieee80211_regdom = "00";

138 139 140 141 142
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
143 144 145 146 147 148 149 150 151 152
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
153

154
	cfg80211_world_regdom = &world_regdom;
155 156 157
	cfg80211_regdomain = NULL;
}

158 159 160 161
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
162
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163
{
164
	BUG_ON(!last_request);
165 166 167 168 169 170 171

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

172
bool is_world_regdom(const char *alpha2)
173 174 175 176 177 178 179
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
180

181
static bool is_alpha2_set(const char *alpha2)
182 183 184 185 186 187 188
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
189

190 191 192 193 194 195 196
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
197

198
static bool is_unknown_alpha2(const char *alpha2)
199 200 201
{
	if (!alpha2)
		return false;
202 203 204 205
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
206 207 208 209
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
210

211 212 213 214
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
215 216
	/*
	 * Special case where regulatory domain is the
217
	 * result of an intersection between two regulatory domain
218 219
	 * structures
	 */
220 221 222 223 224
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

225
static bool is_an_alpha2(const char *alpha2)
226 227 228 229 230 231 232
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
233

234
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
235 236 237 238 239 240 241 242 243
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

244
static bool regdom_changes(const char *alpha2)
245
{
246 247
	assert_cfg80211_lock();

248 249 250 251 252 253 254
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
static DEFINE_SPINLOCK(reg_regdb_search_lock);

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

	spin_lock(&reg_regdb_search_lock);
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				spin_unlock(&reg_regdb_search_lock);
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				spin_lock(&reg_regdb_search_lock);
				break;
			}
		}

		kfree(request);
	}
	spin_unlock(&reg_regdb_search_lock);
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

	spin_lock(&reg_regdb_search_lock);
	list_add_tail(&request->list, &reg_regdb_search_list);
	spin_unlock(&reg_regdb_search_lock);

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

366 367 368 369
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

385 386 387
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

388 389 390 391 392 393 394
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
395
bool reg_is_valid_request(const char *alpha2)
396
{
397 398
	assert_cfg80211_lock();

399 400 401 402
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
403
}
404

405
/* Sanity check on a regulatory rule */
406
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
407
{
408
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
409 410
	u32 freq_diff;

411
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
412 413 414 415 416 417 418
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

419 420
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
421 422 423 424 425
		return false;

	return true;
}

426
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
427
{
428
	const struct ieee80211_reg_rule *reg_rule = NULL;
429
	unsigned int i;
430

431 432
	if (!rd->n_reg_rules)
		return false;
433

434 435 436
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

437 438 439 440 441 442 443
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
444 445
}

446 447 448
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
449
{
450 451 452 453 454 455 456 457 458 459
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
460
}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Some APs may send a country IE triplet for each channel they
 * support and while this is completely overkill and silly we still
 * need to support it. We avoid making a single rule for each channel
 * though and to help us with this we use this helper to find the
 * actual subband end channel. These type of country IE triplet
 * scenerios are handled then, all yielding two regulaotry rules from
 * parsing a country IE:
 *
 * [1]
 * [2]
 * [36]
 * [40]
 *
 * [1]
 * [2-4]
 * [5-12]
 * [36]
 * [40-44]
 *
 * [1-4]
 * [5-7]
 * [36-44]
 * [48-64]
 *
 * [36-36]
 * [40-40]
 * [44-44]
 * [48-48]
 * [52-52]
 * [56-56]
 * [60-60]
 * [64-64]
 * [100-100]
 * [104-104]
 * [108-108]
 * [112-112]
 * [116-116]
 * [120-120]
 * [124-124]
 * [128-128]
 * [132-132]
 * [136-136]
 * [140-140]
 *
 * Returns 0 if the IE has been found to be invalid in the middle
 * somewhere.
 */
static int max_subband_chan(int orig_cur_chan,
			    int orig_end_channel,
			    s8 orig_max_power,
			    u8 **country_ie,
			    u8 *country_ie_len)
{
	u8 *triplets_start = *country_ie;
	u8 len_at_triplet = *country_ie_len;
	int end_subband_chan = orig_end_channel;
	enum ieee80211_band band;

	/*
	 * We'll deal with padding for the caller unless
	 * its not immediate and we don't process any channels
	 */
	if (*country_ie_len == 1) {
		*country_ie += 1;
		*country_ie_len -= 1;
		return orig_end_channel;
	}

	/* Move to the next triplet and then start search */
	*country_ie += 3;
	*country_ie_len -= 3;

	if (orig_cur_chan <= 14)
		band = IEEE80211_BAND_2GHZ;
	else
		band = IEEE80211_BAND_5GHZ;

	while (*country_ie_len >= 3) {
		int end_channel = 0;
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) *country_ie;
		int cur_channel = 0, next_expected_chan;
		enum ieee80211_band next_band = IEEE80211_BAND_2GHZ;

		/* means last triplet is completely unrelated to this one */
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (triplet->chans.first_channel == 0) {
			*country_ie += 1;
			*country_ie_len -= 1;
			if (*country_ie_len != 0)
				return 0;
			break;
		}

588 589 590
		if (triplet->chans.num_channels == 0)
			return 0;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
		/* Monitonically increasing channel order */
		if (triplet->chans.first_channel <= end_subband_chan)
			return 0;

		/* 2 GHz */
		if (triplet->chans.first_channel <= 14) {
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels - 1;
		}
		else {
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));
			next_band = IEEE80211_BAND_5GHZ;
		}

		if (band != next_band) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (orig_max_power != triplet->chans.max_power) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		cur_channel = triplet->chans.first_channel;

		/* The key is finding the right next expected channel */
		if (band == IEEE80211_BAND_2GHZ)
			next_expected_chan = end_subband_chan + 1;
		 else
			next_expected_chan = end_subband_chan + 4;

		if (cur_channel != next_expected_chan) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		end_subband_chan = end_channel;

		/* Move to the next one */
		*country_ie += 3;
		*country_ie_len -= 3;

		/*
		 * Padding needs to be dealt with if we processed
		 * some channels.
		 */
		if (*country_ie_len == 1) {
			*country_ie += 1;
			*country_ie_len -= 1;
			break;
		}

		/* If seen, the IE is invalid */
		if (*country_ie_len == 2)
			return 0;
	}

	if (end_subband_chan == orig_end_channel) {
		*country_ie = triplets_start;
		*country_ie_len = len_at_triplet;
		return orig_end_channel;
	}

	return end_subband_chan;
}

662 663
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
664 665
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
666 667
 * with our userspace regulatory agent to get lower bounds.
 */
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

712 713
	/*
	 * We need to build a reg rule for each triplet, but first we must
714
	 * calculate the number of reg rules we will need. We will need one
715 716
	 * for each channel subband
	 */
717
	while (country_ie_len >= 3) {
718
		int end_channel = 0;
719 720 721 722 723 724 725 726 727 728 729
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

730 731 732 733 734 735 736 737 738 739 740 741 742
		/*
		 * APs can add padding to make length divisible
		 * by two, required by the spec.
		 */
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			/* This is expected to be at the very end only */
			if (country_ie_len != 0)
				return NULL;
			break;
		}

743 744 745
		if (triplet->chans.num_channels == 0)
			return NULL;

746 747 748
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
749
				triplet->chans.num_channels - 1;
750 751 752 753 754 755 756 757 758 759 760 761 762
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

763
		cur_channel = triplet->chans.first_channel;
764 765 766 767 768 769 770 771 772 773 774 775 776 777

		/*
		 * Enhancement for APs that send a triplet for every channel
		 * or for whatever reason sends triplets with multiple channels
		 * separated when in fact they should be together.
		 */
		end_channel = max_subband_chan(cur_channel,
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);
		if (!end_channel)
			return NULL;

778
		cur_sub_max_channel = end_channel;
779 780 781 782 783

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

784 785
		/*
		 * Do not allow overlapping channels. Also channels
786
		 * passed in each subband must be monotonically
787 788
		 * increasing
		 */
789 790 791 792 793 794 795
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

796 797
		/*
		 * When dot11RegulatoryClassesRequired is supported
798 799
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
800 801
		 * don't support them
		 */
802 803 804 805 806 807 808 809
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		num_rules++;

810 811 812 813 814
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

815 816 817 818
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
839
		int end_channel = 0;
840 841 842 843 844 845
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

846 847 848 849
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
850 851 852 853 854 855 856
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

857 858 859 860 861 862
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			break;
		}

863 864 865 866 867 868
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

869 870 871
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
872
				triplet->chans.num_channels -1;
873 874 875 876
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

877 878 879 880 881 882
		end_channel = max_subband_chan(triplet->chans.first_channel,
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);

883 884
		/*
		 * The +10 is since the regulatory domain expects
885 886
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
887 888
		 * the channels passed
		 */
889 890 891 892 893
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
894
				end_channel) + 10);
895

896 897 898 899 900
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
901 902
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
903
		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
904 905 906

		i++;

907 908 909 910 911
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

912 913 914 915 916 917 918
		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


919 920 921 922
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

1000 1001
	/*
	 * First we get a count of the rules we'll need, then we actually
1002 1003 1004
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
1005 1006
	 * All rules that do check out OK are valid.
	 */
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
1034 1035
			/*
			 * This time around instead of using the stack lets
1036
			 * write to the target rule directly saving ourselves
1037 1038
			 * a memcpy()
			 */
1039 1040 1041
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
1042 1043 1044 1045
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

1064 1065 1066 1067
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

1080 1081
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
1082
			      u32 desired_bw_khz,
1083 1084
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
1085 1086
{
	int i;
1087
	bool band_rule_found = false;
1088
	const struct ieee80211_regdomain *regd;
1089 1090 1091 1092
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
1093

1094
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1095

1096 1097 1098 1099
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
1100 1101
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1102 1103 1104 1105
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
1106 1107
		return -EINVAL;

1108
	for (i = 0; i < regd->n_reg_rules; i++) {
1109 1110 1111 1112
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

1113
		rr = &regd->reg_rules[i];
1114 1115
		fr = &rr->freq_range;
		pr = &rr->power_rule;
1116

1117 1118
		/*
		 * We only need to know if one frequency rule was
1119
		 * was in center_freq's band, that's enough, so lets
1120 1121
		 * not overwrite it once found
		 */
1122 1123 1124
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

1125 1126 1127
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
1128

1129
		if (band_rule_found && bw_fits) {
1130
			*reg_rule = rr;
1131
			return 0;
1132 1133 1134
		}
	}

1135 1136 1137
	if (!band_rule_found)
		return -ERANGE;

1138
	return -EINVAL;
1139
}
1140
EXPORT_SYMBOL(freq_reg_info);
1141

1142 1143 1144 1145
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
1146
{
1147
	assert_cfg80211_lock();
1148 1149 1150 1151 1152
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
1153
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
1164 1165
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
1166 1167
{
	int r;
1168 1169
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1170 1171
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1172
	const struct ieee80211_freq_range *freq_range = NULL;
1173 1174
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1175
	struct wiphy *request_wiphy = NULL;
1176

1177 1178
	assert_cfg80211_lock();

1179 1180
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1181 1182 1183 1184 1185
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
1186

1187 1188 1189 1190
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
1191 1192

	if (r) {
1193 1194
		/*
		 * This means no regulatory rule was found in the country IE
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
1205 1206
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1207
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1208 1209
				"intact on %s - no rule found in band on "
				"Country IE\n",
1210
			chan->center_freq, wiphy_name(wiphy));
1211
		} else {
1212 1213 1214 1215
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
1216 1217
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1218
				REG_DBG_PRINT("cfg80211: Disabling "
1219 1220 1221 1222 1223 1224
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1225 1226 1227
		return;
	}

1228
	power_rule = &reg_rule->power_rule;
1229 1230 1231 1232
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1233

1234
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1235
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1236
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1237 1238
		/*
		 * This gaurantees the driver's requested regulatory domain
1239
		 * will always be used as a base for further regulatory
1240 1241
		 * settings
		 */
1242
		chan->flags = chan->orig_flags =
1243
			map_regdom_flags(reg_rule->flags) | bw_flags;
1244 1245 1246 1247 1248 1249 1250
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1251
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1252
	chan->max_antenna_gain = min(chan->orig_mag,
1253
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1254
	if (chan->orig_mpwr)
1255 1256
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1257
	else
1258
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1259 1260
}

1261
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1262
{
1263 1264 1265 1266 1267
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1268 1269

	for (i = 0; i < sband->n_channels; i++)
1270
		handle_channel(wiphy, band, i);
1271 1272
}

1273 1274
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1275 1276 1277
{
	if (!last_request)
		return true;
1278
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1279
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1280
		return true;
1281 1282 1283 1284
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1285
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1286
	    !is_world_regdom(last_request->alpha2))
1287 1288 1289 1290
		return true;
	return false;
}

1291
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1292
{
1293
	struct cfg80211_registered_device *rdev;
1294

1295 1296
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1297 1298
}

1299 1300 1301 1302 1303 1304
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1305 1306
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1307 1308 1309 1310 1311 1312 1313 1314 1315

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1316 1317 1318 1319 1320
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1321
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1322 1323
		return;

1324 1325 1326
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1327
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1328
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1329
		channel_changed = true;
1330 1331
	}

1332
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1333
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1334
		channel_changed = true;
1335 1336
	}

1337 1338
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1390 1391
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1392
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1393 1394 1395 1396 1397 1398 1399
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1400 1401 1402 1403 1404 1405
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1406 1407 1408 1409 1410
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1461
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1462
	else
1463
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1464 1465

	if (is_ht40_not_allowed(channel_after))
1466
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1467
	else
1468
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1498 1499
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1500 1501
{
	enum ieee80211_band band;
1502

1503
	if (ignore_reg_update(wiphy, initiator))
1504
		goto out;
1505
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1506
		if (wiphy->bands[band])
1507
			handle_band(wiphy, band);
1508
	}
1509 1510
out:
	reg_process_beacons(wiphy);
1511
	reg_process_ht_flags(wiphy);
1512
	if (wiphy->reg_notifier)
1513
		wiphy->reg_notifier(wiphy, last_request);
1514 1515
}

1516 1517 1518 1519 1520 1521
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1522 1523
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1524 1525
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1526
	const struct ieee80211_freq_range *freq_range = NULL;
1527 1528 1529
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1530
	assert_reg_lock();
1531

1532 1533 1534 1535
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1536 1537 1538 1539 1540
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1541 1542 1543 1544 1545 1546 1547

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1548 1549 1550 1551
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1552

1553
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1576
	unsigned int bands_set = 0;
1577

1578
	mutex_lock(&reg_mutex);
1579
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1580 1581 1582 1583
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1584
	}
1585
	mutex_unlock(&reg_mutex);
1586 1587 1588 1589 1590 1591

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1592
}
1593 1594
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1595 1596 1597 1598
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1599 1600
#define REG_INTERSECT	1

1601 1602
/* This has the logic which determines when a new request
 * should be ignored. */
1603 1604
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1605
{
1606
	struct wiphy *last_wiphy = NULL;
1607 1608 1609

	assert_cfg80211_lock();

1610 1611 1612 1613
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1614
	switch (pending_request->initiator) {
1615
	case NL80211_REGDOM_SET_BY_CORE:
1616
		return -EINVAL;
1617
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1618 1619 1620

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1621
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1622
			return -EINVAL;
1623 1624
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1625
			if (last_wiphy != wiphy) {
1626 1627
				/*
				 * Two cards with two APs claiming different
1628
				 * Country IE alpha2s. We could
1629 1630 1631
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1632
				if (regdom_changes(pending_request->alpha2))
1633 1634 1635
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1636 1637 1638 1639
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1640
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1641 1642 1643
				return 0;
			return -EALREADY;
		}
1644
		return REG_INTERSECT;
1645 1646
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1647
			if (regdom_changes(pending_request->alpha2))
1648
				return 0;
1649
			return -EALREADY;
1650
		}
1651 1652 1653 1654 1655 1656

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1657
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1658
		    !regdom_changes(pending_request->alpha2))
1659 1660
			return -EALREADY;

1661
		return REG_INTERSECT;
1662 1663
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1664
			return REG_INTERSECT;
1665 1666 1667 1668
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1669
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1670 1671
			  last_request->intersect)
			return -EOPNOTSUPP;
1672 1673 1674 1675
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1676 1677 1678
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1679
			if (regdom_changes(last_request->alpha2))
1680 1681 1682
				return -EAGAIN;
		}

1683
		if (!regdom_changes(pending_request->alpha2))
1684 1685
			return -EALREADY;

1686 1687 1688 1689 1690 1691
		return 0;
	}

	return -EINVAL;
}

1692 1693 1694 1695
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1696
 * @pending_request: the regulatory request currently being processed
1697 1698
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1699
 * what it believes should be the current regulatory domain.
1700 1701 1702 1703
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1704
 * Caller must hold &cfg80211_mutex and &reg_mutex
1705
 */
1706 1707
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1708
{
1709
	bool intersect = false;
1710 1711
	int r = 0;

1712 1713
	assert_cfg80211_lock();

1714
	r = ignore_request(wiphy, pending_request);
1715

1716
	if (r == REG_INTERSECT) {
1717 1718
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1719
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1720 1721
			if (r) {
				kfree(pending_request);
1722
				return r;
1723
			}
1724
		}
1725
		intersect = true;
1726
	} else if (r) {
1727 1728
		/*
		 * If the regulatory domain being requested by the
1729
		 * driver has already been set just copy it to the
1730 1731
		 * wiphy
		 */
1732
		if (r == -EALREADY &&
1733 1734
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1735
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1736 1737
			if (r) {
				kfree(pending_request);
1738
				return r;
1739
			}
1740 1741 1742
			r = -EALREADY;
			goto new_request;
		}
1743
		kfree(pending_request);
1744
		return r;
1745
	}
1746

1747
new_request:
1748
	kfree(last_request);
1749

1750 1751
	last_request = pending_request;
	last_request->intersect = intersect;
1752

1753
	pending_request = NULL;
1754 1755

	/* When r == REG_INTERSECT we do need to call CRDA */
1756 1757 1758 1759 1760 1761 1762 1763
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1764
		return r;
1765
	}
1766

1767
	return call_crda(last_request->alpha2);
1768 1769
}

1770
/* This processes *all* regulatory hints */
1771
static void reg_process_hint(struct regulatory_request *reg_request)
1772 1773 1774 1775 1776 1777 1778
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1779
	mutex_lock(&reg_mutex);
1780 1781 1782 1783

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1784
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1785
	    !wiphy) {
1786
		kfree(reg_request);
1787 1788 1789
		goto out;
	}

1790
	r = __regulatory_hint(wiphy, reg_request);
1791
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1792 1793
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1794 1795
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1796
	mutex_unlock(&reg_mutex);
1797 1798 1799
	mutex_unlock(&cfg80211_mutex);
}

1800
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1812 1813
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1814 1815 1816 1817 1818
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1819 1820 1821
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1822
	struct cfg80211_registered_device *rdev;
1823 1824
	struct reg_beacon *pending_beacon, *tmp;

1825 1826 1827 1828
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1845 1846
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1857 1858 1859
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1860
	reg_process_pending_beacon_hints();
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1888
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1889

1890
	queue_regulatory_request(request);
1891

1892 1893 1894 1895 1896 1897 1898
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1899
	return 0;
1900 1901
}

1902 1903
/* User hints */
int regulatory_hint_user(const char *alpha2)
1904
{
1905 1906
	struct regulatory_request *request;

1907
	BUG_ON(!alpha2);
1908

1909 1910 1911 1912 1913 1914 1915
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1916
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1942
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1943 1944 1945 1946

	queue_regulatory_request(request);

	return 0;
1947 1948 1949
}
EXPORT_SYMBOL(regulatory_hint);

1950
/* Caller must hold reg_mutex */
1951 1952 1953
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1954 1955
	struct wiphy *request_wiphy;

1956
	assert_reg_lock();
1957

1958 1959 1960 1961
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1962 1963 1964
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1965
		return false;
1966 1967

	if (likely(request_wiphy != wiphy))
1968
		return !country_ie_integrity_changes(country_ie_checksum);
1969 1970
	/*
	 * We should not have let these through at this point, they
1971
	 * should have been picked up earlier by the first alpha2 check
1972 1973
	 * on the device
	 */
1974 1975 1976 1977 1978
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

1979 1980 1981 1982
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1983 1984 1985 1986 1987 1988 1989 1990
void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1991
	struct regulatory_request *request;
1992

1993
	mutex_lock(&reg_mutex);
1994

1995 1996
	if (unlikely(!last_request))
		goto out;
1997

1998 1999 2000 2001 2002 2003 2004
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

2005 2006
	/*
	 * Pending country IE processing, this can happen after we
2007
	 * call CRDA and wait for a response if a beacon was received before
2008 2009
	 * we were able to process the last regulatory_hint_11d() call
	 */
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

2021
	/*
2022
	 * We will run this only upon a successful connection on cfg80211.
2023 2024
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
2025
	 */
2026 2027
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2028 2029
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
2030 2031

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
2032 2033
	if (!rd) {
		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2034
		goto out;
2035
	}
2036

2037 2038
	/*
	 * This will not happen right now but we leave it here for the
2039 2040
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
2041 2042 2043 2044 2045 2046
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2047
		goto free_rd_out;
2048

2049 2050 2051 2052
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

2053 2054 2055 2056
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
2057 2058
	country_ie_regdomain = rd;

2059 2060 2061
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
2062
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2063 2064 2065
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

2066
	mutex_unlock(&reg_mutex);
2067

2068 2069 2070
	queue_regulatory_request(request);

	return;
2071 2072 2073

free_rd_out:
	kfree(rd);
2074
out:
2075
	mutex_unlock(&reg_mutex);
2076
}
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2103 2104 2105 2106 2107 2108
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2126
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2127 2128
{
	unsigned int i;
2129 2130 2131
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2132

2133
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2134 2135 2136 2137 2138 2139 2140
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2141 2142 2143 2144
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2145
		if (power_rule->max_antenna_gain)
2146
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2147 2148 2149 2150 2151 2152 2153
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2154
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2155 2156 2157 2158 2159 2160 2161 2162
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2163
static void print_regdomain(const struct ieee80211_regdomain *rd)
2164 2165
{

2166 2167
	if (is_intersected_alpha2(rd->alpha2)) {

2168 2169
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2170 2171
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2172
				last_request->wiphy_idx);
2173
			if (rdev) {
2174 2175
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
2176 2177
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2178 2179 2180 2181 2182
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2183
					"domain intersected: \n");
2184
	} else if (is_world_regdom(rd->alpha2))
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2200
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2201 2202 2203 2204 2205 2206
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2220
		print_regdomain_info(intersected_rd);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2234
/* Takes ownership of rd only if it doesn't fail */
2235
static int __set_regdom(const struct ieee80211_regdomain *rd)
2236
{
2237
	const struct ieee80211_regdomain *intersected_rd = NULL;
2238
	struct cfg80211_registered_device *rdev = NULL;
2239
	struct wiphy *request_wiphy;
2240 2241 2242
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2243
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2244 2245 2246 2247 2248 2249 2250 2251 2252
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2253
	if (!last_request)
2254 2255
		return -EINVAL;

2256 2257
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2258
	 * rd is non static (it means CRDA was present and was used last)
2259 2260
	 * and the pending request came in from a country IE
	 */
2261
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2262 2263 2264 2265
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2266
		if (!regdom_changes(rd->alpha2))
2267 2268 2269
			return -EINVAL;
	}

2270 2271
	/*
	 * Now lets set the regulatory domain, update all driver channels
2272 2273
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2274 2275
	 * internal EEPROM data
	 */
2276

2277
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2278 2279
		return -EINVAL;

2280 2281 2282 2283 2284
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2285 2286
	}

2287 2288
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2289
	if (!last_request->intersect) {
2290 2291
		int r;

2292
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2293 2294 2295 2296 2297
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2298 2299 2300 2301
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2302

2303 2304 2305 2306 2307 2308
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2309

2310
		r = reg_copy_regd(&request_wiphy->regd, rd);
2311 2312 2313
		if (r)
			return r;

2314 2315 2316 2317 2318 2319 2320
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2321
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2322

2323 2324 2325
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2326

2327 2328
		/*
		 * We can trash what CRDA provided now.
2329
		 * However if a driver requested this specific regulatory
2330 2331
		 * domain we keep it for its private use
		 */
2332
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2333
			request_wiphy->regd = rd;
2334 2335 2336
		else
			kfree(rd);

2337 2338 2339 2340 2341 2342
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2343 2344
	}

2345 2346 2347 2348 2349
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2350 2351 2352 2353 2354 2355 2356
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2357
	BUG_ON(rd == country_ie_regdomain);
2358

2359 2360 2361 2362
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2363

2364
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2365

2366 2367 2368
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2369

2370 2371
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2372 2373 2374 2375

	if (!intersected_rd)
		return -EINVAL;

2376
	rdev = wiphy_to_dev(request_wiphy);
2377

2378 2379 2380
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2381 2382 2383 2384 2385 2386

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2387
	reset_regdomains();
2388
	cfg80211_regdomain = intersected_rd;
2389 2390 2391 2392 2393

	return 0;
}


2394 2395
/*
 * Use this call to set the current regulatory domain. Conflicts with
2396
 * multiple drivers can be ironed out later. Caller must've already
2397 2398
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2399
int set_regdom(const struct ieee80211_regdomain *rd)
2400 2401 2402
{
	int r;

2403 2404
	assert_cfg80211_lock();

2405 2406
	mutex_lock(&reg_mutex);

2407 2408
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2409 2410
	if (r) {
		kfree(rd);
2411
		mutex_unlock(&reg_mutex);
2412
		return r;
2413
	}
2414 2415

	/* This would make this whole thing pointless */
2416 2417
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2418 2419

	/* update all wiphys now with the new established regulatory domain */
2420
	update_all_wiphy_regulatory(last_request->initiator);
2421

2422
	print_regdomain(cfg80211_regdomain);
2423

2424 2425
	nl80211_send_reg_change_event(last_request);

2426 2427
	mutex_unlock(&reg_mutex);

2428 2429 2430
	return r;
}

2431
/* Caller must hold cfg80211_mutex */
2432 2433
void reg_device_remove(struct wiphy *wiphy)
{
2434
	struct wiphy *request_wiphy = NULL;
2435

2436 2437
	assert_cfg80211_lock();

2438 2439
	mutex_lock(&reg_mutex);

2440 2441
	kfree(wiphy->regd);

2442 2443
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2444

2445
	if (!request_wiphy || request_wiphy != wiphy)
2446
		goto out;
2447

2448
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2449
	last_request->country_ie_env = ENVIRON_ANY;
2450 2451
out:
	mutex_unlock(&reg_mutex);
2452 2453
}

2454 2455
int regulatory_init(void)
{
2456
	int err = 0;
2457

2458 2459 2460
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2461

2462
	spin_lock_init(&reg_requests_lock);
2463
	spin_lock_init(&reg_pending_beacons_lock);
2464

2465
	cfg80211_regdomain = cfg80211_world_regdom;
2466

2467 2468
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2469
	if (err) {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2484
#endif
2485
	}
2486

2487 2488 2489 2490 2491 2492 2493
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2494 2495 2496 2497 2498
	return 0;
}

void regulatory_exit(void)
{
2499
	struct regulatory_request *reg_request, *tmp;
2500
	struct reg_beacon *reg_beacon, *btmp;
2501 2502 2503

	cancel_work_sync(&reg_work);

2504
	mutex_lock(&cfg80211_mutex);
2505
	mutex_lock(&reg_mutex);
2506

2507
	reset_regdomains();
2508

2509 2510 2511
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2512 2513
	kfree(last_request);

2514
	platform_device_unregister(reg_pdev);
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2544
	mutex_unlock(&reg_mutex);
2545
	mutex_unlock(&cfg80211_mutex);
2546
}