gadget.c 96.4 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98 99
}

/**
100
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
101 102 103
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
104
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
105
{
106
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
107 108 109 110 111 112
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
113
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
114 115 116 117
	}
}

/**
118
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
119 120 121
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
122
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
123
{
124
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
125 126 127 128 129
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
130
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
131 132 133
}

/**
134
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
135 136 137 138 139 140 141 142
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
143
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
144 145 146 147 148 149 150 151 152 153 154
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
155
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
156 157 158 159
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
160
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
161 162 163 164
	local_irq_restore(flags);
}

/**
165
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
166 167
 * @hsotg: The device instance.
 */
168
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
169
{
170 171
	unsigned int ep;
	unsigned int addr;
172
	int timeout;
173 174
	u32 val;

175 176 177 178
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

179
	/* set RX/NPTX FIFO sizes */
180 181
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
182 183
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
184

185 186
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
187 188
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
189 190
	 * known values.
	 */
191 192

	/* start at the end of the GNPTXFSIZ, rounded up */
193
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
194

195
	/*
196
	 * Configure fifos sizes from provided configuration and assign
197 198
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
199
	 */
200 201 202
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
203
		val = addr;
204 205
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
206
			  "insufficient fifo memory");
207
		addr += hsotg->g_tx_fifo_sz[ep];
208

209
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
210
	}
211

212 213 214 215
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
216

217
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
218
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
219 220 221 222

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
223
		val = dwc2_readl(hsotg->regs + GRSTCTL);
224

225
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
226 227 228 229 230 231
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
232
			break;
233 234 235 236 237 238
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
239 240 241 242 243 244 245 246
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
247
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
248
						      gfp_t flags)
249
{
250
	struct dwc2_hsotg_req *req;
251

252
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
268
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
269 270 271 272 273
{
	return hs_ep->periodic;
}

/**
274
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
275 276 277 278
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
279
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
280
 * of a request to ensure the buffer is ready for access by the caller.
281
 */
282 283 284
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
285 286 287 288 289 290 291
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

292
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
293 294 295
}

/**
296
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
297 298 299 300 301 302 303 304 305 306 307 308 309
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
310
 */
311 312 313
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
314 315
{
	bool periodic = is_ep_periodic(hs_ep);
316
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
317 318 319 320 321
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
322
	int max_transfer;
323 324 325 326 327 328 329

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

330
	if (periodic && !hsotg->dedicated_fifos) {
331
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
332 333 334
		int size_left;
		int size_done;

335 336 337 338
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
339

340
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
341

342 343
		/*
		 * if shared fifo, we cannot write anything until the
344 345 346
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
347
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
348 349 350
			return -ENOSPC;
		}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
368
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
369 370
			return -ENOSPC;
		}
371
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
372
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
373 374 375

		can_write &= 0xffff;
		can_write *= 4;
376
	} else {
377
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
378 379 380 381
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

382
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
383 384 385
			return -ENOSPC;
		}

386
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
387
		can_write *= 4;	/* fifo size is in 32bit quantities. */
388 389
	}

390 391 392 393
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
394

395 396
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
397 398 399
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
400
	if (can_write > 512 && !periodic)
401 402
		can_write = 512;

403 404
	/*
	 * limit the write to one max-packet size worth of data, but allow
405
	 * the transfer to return that it did not run out of fifo space
406 407
	 * doing it.
	 */
408 409
	if (to_write > max_transfer) {
		to_write = max_transfer;
410

411 412
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
413
			dwc2_hsotg_en_gsint(hsotg,
414 415
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
416 417
	}

418 419 420 421
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
422
		pkt_round = to_write % max_transfer;
423

424 425
		/*
		 * Round the write down to an
426 427 428 429 430 431 432 433 434
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

435 436 437 438
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
439

440 441
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
442
			dwc2_hsotg_en_gsint(hsotg,
443 444
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

462
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
463 464 465 466 467 468 469 470 471 472 473

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
474
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
475 476 477 478 479 480
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
481 482
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
483
	} else {
484
		maxsize = 64+64;
485
		if (hs_ep->dir_in)
486
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
487
		else
488 489 490 491 492 493 494
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

495 496 497 498
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
499 500 501 502 503 504 505 506

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
507
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
508 509 510 511 512 513 514 515
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
516 517 518
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

545 546
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
547 548

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
549
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
550 551
		hs_ep->dir_in ? "in" : "out");

552
	/* If endpoint is stalled, we will restart request later */
553
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
554

555
	if (index && ctrl & DXEPCTL_STALL) {
556 557 558 559
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

560
	length = ureq->length - ureq->actual;
561 562
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

583 584 585 586 587
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

588
	if (dir_in && index != 0)
589
		if (hs_ep->isochronous)
590
			epsize = DXEPTSIZ_MC(packets);
591
		else
592
			epsize = DXEPTSIZ_MC(1);
593 594 595
	else
		epsize = 0;

596 597 598 599 600 601 602 603
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
604
			hs_ep->send_zlp = 1;
605 606
	}

607 608
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
609 610 611 612 613 614 615 616

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
617
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
618

619
	if (using_dma(hsotg) && !continuing) {
620 621
		unsigned int dma_reg;

622 623
		/*
		 * write DMA address to control register, buffer already
624
		 * synced by dwc2_hsotg_ep_queue().
625
		 */
626

627
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
628
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
629

630
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
631
			__func__, &ureq->dma, dma_reg);
632 633
	}

634
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
635

636
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
637 638

	/* For Setup request do not clear NAK */
639
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
640
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
641

642
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
643
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
644

645 646
	/*
	 * set these, it seems that DMA support increments past the end
647
	 * of the packet buffer so we need to calculate the length from
648 649
	 * this information.
	 */
650 651 652 653 654 655 656
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

657
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
658 659
	}

660 661 662 663
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
664 665

	/* check ep is enabled */
666
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
667
		dev_dbg(hsotg->dev,
668
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
669
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
670

671
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
672
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
673 674

	/* enable ep interrupts */
675
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
676 677 678
}

/**
679
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
680 681 682 683 684 685 686 687 688
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
689
 */
690 691
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
692 693
			     struct usb_request *req)
{
694
	struct dwc2_hsotg_req *hs_req = our_req(req);
695
	int ret;
696 697 698 699 700

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

701 702 703
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
704 705 706 707 708 709 710 711 712 713

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

714 715
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

745 746
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

767
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
768 769
			      gfp_t gfp_flags)
{
770 771
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
772
	struct dwc2_hsotg *hs = hs_ep->parent;
773
	bool first;
774
	int ret;
775 776 777 778 779

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

780 781 782 783 784 785 786
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

787 788 789 790 791
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

792
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
793 794 795
	if (ret)
		return ret;

796 797
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
798
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
799 800 801 802 803 804 805 806
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
807
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
808 809 810 811

	return 0;
}

812
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
813 814
			      gfp_t gfp_flags)
{
815
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
816
	struct dwc2_hsotg *hs = hs_ep->parent;
817 818 819 820
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
821
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
822 823 824 825 826
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

827
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
828 829
				      struct usb_request *req)
{
830
	struct dwc2_hsotg_req *hs_req = our_req(req);
831 832 833 834 835

	kfree(hs_req);
}

/**
836
 * dwc2_hsotg_complete_oursetup - setup completion callback
837 838 839 840 841 842
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
843
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
844 845
					struct usb_request *req)
{
846
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
847
	struct dwc2_hsotg *hsotg = hs_ep->parent;
848 849 850

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

851
	dwc2_hsotg_ep_free_request(ep, req);
852 853 854 855 856 857 858 859 860
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
861
 */
862
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
863 864
					   u32 windex)
{
865
	struct dwc2_hsotg_ep *ep;
866 867 868 869 870 871
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

872
	if (idx > hsotg->num_of_eps)
873 874
		return NULL;

875 876
	ep = index_to_ep(hsotg, idx, dir);

877 878 879 880 881 882
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

883
/**
884
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
885 886 887 888
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
889
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
890
{
891
	int dctl = dwc2_readl(hsotg->regs + DCTL);
892 893 894 895 896 897 898 899 900 901 902 903 904

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
905
	dwc2_writel(dctl, hsotg->regs + DCTL);
906 907 908
	return 0;
}

909
/**
910
 * dwc2_hsotg_send_reply - send reply to control request
911 912 913 914 915 916 917 918
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
919 920
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
921 922 923 924 925 926 927 928
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

929
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
930 931 932 933 934 935 936 937
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
938 939 940 941 942
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
943
	req->complete = dwc2_hsotg_complete_oursetup;
944 945 946 947

	if (length)
		memcpy(req->buf, buff, length);

948
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
949 950 951 952 953 954 955 956 957
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
958
 * dwc2_hsotg_process_req_status - process request GET_STATUS
959 960 961
 * @hsotg: The device state
 * @ctrl: USB control request
 */
962
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
963 964
					struct usb_ctrlrequest *ctrl)
{
965 966
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1003
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1004 1005 1006 1007 1008 1009 1010 1011
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1012
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1013

1014 1015 1016 1017 1018 1019
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1020
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1021 1022 1023 1024
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1025
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1026 1027
}

1028
/**
1029
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1030 1031 1032
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1033
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1034 1035
					 struct usb_ctrlrequest *ctrl)
{
1036 1037
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1038
	bool restart;
1039
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1040
	struct dwc2_hsotg_ep *ep;
1041
	int ret;
1042
	bool halted;
1043 1044 1045
	u32 recip;
	u32 wValue;
	u32 wIndex;
1046 1047 1048 1049

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1064
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1078 1079
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1080
				__func__, wIndex);
1081 1082 1083
			return -ENOENT;
		}

1084
		switch (wValue) {
1085
		case USB_ENDPOINT_HALT:
1086 1087
			halted = ep->halted;

1088
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1089

1090
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1091 1092 1093 1094 1095
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1096

1097 1098 1099 1100 1101 1102
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1103 1104 1105 1106 1107 1108 1109 1110
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1111 1112 1113 1114 1115 1116
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1117 1118 1119
				}

				/* If we have pending request, then start it */
1120 1121 1122 1123
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
1124
						dwc2_hsotg_start_req(hsotg, ep,
1125 1126
								hs_req, false);
					}
1127 1128 1129
				}
			}

1130 1131 1132 1133 1134
			break;

		default:
			return -ENOENT;
		}
1135 1136 1137 1138
		break;
	default:
		return -ENOENT;
	}
1139 1140 1141
	return 1;
}

1142
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1143

1144
/**
1145
 * dwc2_hsotg_stall_ep0 - stall ep0
1146 1147 1148 1149
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1150
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1151
{
1152
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1164
	ctrl = dwc2_readl(hsotg->regs + reg);
1165 1166
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1167
	dwc2_writel(ctrl, hsotg->regs + reg);
1168 1169

	dev_dbg(hsotg->dev,
1170
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1171
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1172 1173 1174 1175 1176

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1177
	 dwc2_hsotg_enqueue_setup(hsotg);
1178 1179
}

1180
/**
1181
 * dwc2_hsotg_process_control - process a control request
1182 1183 1184 1185 1186 1187 1188
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1189
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1190 1191
				      struct usb_ctrlrequest *ctrl)
{
1192
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1193 1194 1195
	int ret = 0;
	u32 dcfg;

1196 1197 1198 1199
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1200

1201 1202 1203 1204
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1205
		ep0->dir_in = 1;
1206 1207 1208 1209 1210
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1211 1212 1213 1214

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1215
			hsotg->connected = 1;
1216
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1217
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1218 1219
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1220
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1221 1222 1223

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1224
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1225 1226 1227
			return;

		case USB_REQ_GET_STATUS:
1228
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1229 1230 1231 1232
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1233
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1234 1235 1236 1237 1238 1239 1240
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1241
		spin_unlock(&hsotg->lock);
1242
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1243
		spin_lock(&hsotg->lock);
1244 1245 1246 1247
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1248 1249
	/*
	 * the request is either unhandlable, or is not formatted correctly
1250 1251 1252
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1253
	if (ret < 0)
1254
		dwc2_hsotg_stall_ep0(hsotg);
1255 1256 1257
}

/**
1258
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1259 1260 1261 1262 1263 1264
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1265
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1266 1267
				     struct usb_request *req)
{
1268
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1269
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1270 1271 1272 1273 1274 1275

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1276
	spin_lock(&hsotg->lock);
1277
	if (req->actual == 0)
1278
		dwc2_hsotg_enqueue_setup(hsotg);
1279
	else
1280
		dwc2_hsotg_process_control(hsotg, req->buf);
1281
	spin_unlock(&hsotg->lock);
1282 1283 1284
}

/**
1285
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1286 1287 1288 1289 1290
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1291
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1292 1293
{
	struct usb_request *req = hsotg->ctrl_req;
1294
	struct dwc2_hsotg_req *hs_req = our_req(req);
1295 1296 1297 1298 1299 1300 1301
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1302
	req->complete = dwc2_hsotg_complete_setup;
1303 1304 1305 1306 1307 1308

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1309
	hsotg->eps_out[0]->dir_in = 0;
1310
	hsotg->eps_out[0]->send_zlp = 0;
1311
	hsotg->ep0_state = DWC2_EP0_SETUP;
1312

1313
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1314 1315
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1316 1317 1318 1319
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1320 1321 1322
	}
}

1323 1324
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1325 1326 1327 1328 1329 1330
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1331 1332 1333 1334 1335 1336
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1337

1338 1339 1340
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1341

1342
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1343 1344 1345
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1346
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1347 1348
}

1349
/**
1350
 * dwc2_hsotg_complete_request - complete a request given to us
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1361
 */
1362 1363 1364
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1377 1378 1379 1380
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1381 1382 1383 1384

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1385 1386 1387
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1388
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1389

1390 1391 1392
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1393 1394 1395 1396
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1397 1398

	if (hs_req->req.complete) {
1399
		spin_unlock(&hsotg->lock);
1400
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1401
		spin_lock(&hsotg->lock);
1402 1403
	}

1404 1405
	/*
	 * Look to see if there is anything else to do. Note, the completion
1406
	 * of the previous request may have caused a new request to be started
1407 1408
	 * so be careful when doing this.
	 */
1409 1410 1411 1412 1413

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
1414
			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1415 1416 1417 1418 1419
		}
	}
}

/**
1420
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1421 1422 1423 1424 1425 1426 1427 1428
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1429
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1430
{
1431 1432
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1433
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1434 1435 1436 1437
	int to_read;
	int max_req;
	int read_ptr;

1438

1439
	if (!hs_req) {
1440
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1441 1442
		int ptr;

1443
		dev_dbg(hsotg->dev,
1444
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1445 1446 1447 1448
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1449
			(void)dwc2_readl(fifo);
1450 1451 1452 1453 1454 1455 1456 1457

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1458 1459 1460
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1461
	if (to_read > max_req) {
1462 1463
		/*
		 * more data appeared than we where willing
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1475 1476 1477 1478
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1479
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1480 1481 1482
}

/**
1483
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1484
 * @hsotg: The device instance
1485
 * @dir_in: If IN zlp
1486 1487 1488 1489 1490
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1491
 * currently believed that we do not need to wait for any space in
1492 1493
 * the TxFIFO.
 */
1494
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1495
{
1496
	/* eps_out[0] is used in both directions */
1497 1498
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1499

1500
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1501 1502
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1516
/**
1517
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1518 1519 1520 1521 1522 1523
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1524
 */
1525
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1526
{
1527
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1528 1529
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1530
	struct usb_request *req = &hs_req->req;
1531
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1532 1533 1534 1535 1536 1537 1538
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1539 1540
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1541 1542
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1543 1544 1545
		return;
	}

1546 1547 1548
	if (using_dma(hsotg)) {
		unsigned size_done;

1549 1550
		/*
		 * Calculate the size of the transfer by checking how much
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1564 1565
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1566
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1567 1568 1569
		return;
	}

1570 1571 1572 1573
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1574 1575 1576 1577
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1578 1579
	}

1580 1581
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1582
		dwc2_hsotg_ep0_zlp(hsotg, true);
1583
		return;
1584 1585
	}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
	}

1596
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1597 1598 1599
}

/**
1600
 * dwc2_hsotg_read_frameno - read current frame number
1601 1602 1603
 * @hsotg: The device instance
 *
 * Return the current frame number
1604
 */
1605
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1606 1607 1608
{
	u32 dsts;

1609
	dsts = dwc2_readl(hsotg->regs + DSTS);
1610 1611
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1612 1613 1614 1615 1616

	return dsts;
}

/**
1617
 * dwc2_hsotg_handle_rx - RX FIFO has data
1618 1619 1620 1621 1622 1623
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1624
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1625 1626 1627 1628 1629 1630 1631
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1632
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1633
{
1634
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1635 1636 1637 1638
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1639 1640
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1641

1642 1643
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1644

1645
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1646 1647
			__func__, grxstsr, size, epnum);

1648 1649 1650
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1651 1652
		break;

1653
	case GRXSTS_PKTSTS_OUTDONE:
1654
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1655
			dwc2_hsotg_read_frameno(hsotg));
1656 1657

		if (!using_dma(hsotg))
1658
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1659 1660
		break;

1661
	case GRXSTS_PKTSTS_SETUPDONE:
1662 1663
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1664
			dwc2_hsotg_read_frameno(hsotg),
1665
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1666
		/*
1667
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1668 1669 1670 1671
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1672
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1673 1674
		break;

1675
	case GRXSTS_PKTSTS_OUTRX:
1676
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1677 1678
		break;

1679
	case GRXSTS_PKTSTS_SETUPRX:
1680 1681
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1682
			dwc2_hsotg_read_frameno(hsotg),
1683
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1684

1685 1686
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1687
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1688 1689 1690 1691 1692 1693
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1694
		dwc2_hsotg_dump(hsotg);
1695 1696 1697 1698 1699
		break;
	}
}

/**
1700
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1701
 * @mps: The maximum packet size in bytes.
1702
 */
1703
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1704 1705 1706
{
	switch (mps) {
	case 64:
1707
		return D0EPCTL_MPS_64;
1708
	case 32:
1709
		return D0EPCTL_MPS_32;
1710
	case 16:
1711
		return D0EPCTL_MPS_16;
1712
	case 8:
1713
		return D0EPCTL_MPS_8;
1714 1715 1716 1717 1718 1719 1720 1721
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1722
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1723 1724 1725 1726 1727 1728 1729
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1730
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1731
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1732
{
1733
	struct dwc2_hsotg_ep *hs_ep;
1734 1735
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1736
	u32 mcval;
1737 1738
	u32 reg;

1739 1740 1741 1742
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1743 1744
	if (ep == 0) {
		/* EP0 is a special case */
1745
		mpsval = dwc2_hsotg_ep0_mps(mps);
1746 1747
		if (mpsval > 3)
			goto bad_mps;
1748
		hs_ep->ep.maxpacket = mps;
1749
		hs_ep->mc = 1;
1750
	} else {
1751
		mpsval = mps & DXEPCTL_MPS_MASK;
1752
		if (mpsval > 1024)
1753
			goto bad_mps;
1754 1755 1756 1757
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1758
		hs_ep->ep.maxpacket = mpsval;
1759 1760
	}

1761
	if (dir_in) {
1762
		reg = dwc2_readl(regs + DIEPCTL(ep));
1763 1764
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1765
		dwc2_writel(reg, regs + DIEPCTL(ep));
1766
	} else {
1767
		reg = dwc2_readl(regs + DOEPCTL(ep));
1768
		reg &= ~DXEPCTL_MPS_MASK;
1769
		reg |= mpsval;
1770
		dwc2_writel(reg, regs + DOEPCTL(ep));
1771
	}
1772 1773 1774 1775 1776 1777 1778

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1779
/**
1780
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1781 1782 1783
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1784
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1785 1786 1787 1788
{
	int timeout;
	int val;

1789 1790
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1791 1792 1793 1794 1795

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1796
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1797

1798
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1799 1800 1801 1802 1803 1804
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1805
			break;
1806 1807 1808 1809 1810
		}

		udelay(1);
	}
}
1811 1812

/**
1813
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1814 1815 1816 1817 1818 1819
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1820 1821
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1822
{
1823
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1824

1825 1826 1827 1828 1829 1830
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1831
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1832
					     hs_ep->dir_in, 0);
1833
		return 0;
1834
	}
1835 1836 1837 1838

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1839
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1840 1841 1842 1843 1844 1845
	}

	return 0;
}

/**
1846
 * dwc2_hsotg_complete_in - complete IN transfer
1847 1848 1849 1850 1851 1852
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1853 1854
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1855
{
1856
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1857
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1858 1859 1860 1861 1862 1863 1864
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1865
	/* Finish ZLP handling for IN EP0 transactions */
1866 1867
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1868
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1869 1870 1871
		if (hsotg->test_mode) {
			int ret;

1872
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1873 1874 1875
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1876
				dwc2_hsotg_stall_ep0(hsotg);
1877 1878 1879
				return;
			}
		}
1880
		dwc2_hsotg_enqueue_setup(hsotg);
1881 1882 1883
		return;
	}

1884 1885
	/*
	 * Calculate the size of the transfer by checking how much is left
1886 1887 1888 1889 1890 1891 1892 1893
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1894
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1895 1896 1897 1898 1899 1900 1901 1902 1903

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1904 1905 1906
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1907 1908
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1909
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1910 1911 1912
		return;
	}

1913
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1914
	if (hs_ep->send_zlp) {
1915
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1916
		hs_ep->send_zlp = 0;
1917 1918 1919 1920
		/* transfer will be completed on next complete interrupt */
		return;
	}

1921 1922
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1923
		dwc2_hsotg_ep0_zlp(hsotg, false);
1924 1925 1926
		return;
	}

1927
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1928 1929 1930
}

/**
1931
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1932 1933 1934 1935 1936
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1937
 */
1938
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1939 1940
			    int dir_in)
{
1941
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1942 1943 1944
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1945
	u32 ints;
1946
	u32 ctrl;
1947

1948 1949
	ints = dwc2_readl(hsotg->regs + epint_reg);
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1950

1951
	/* Clear endpoint interrupts */
1952
	dwc2_writel(ints, hsotg->regs + epint_reg);
1953

1954 1955 1956 1957 1958 1959
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1960 1961 1962
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1963 1964 1965 1966
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1967
	if (ints & DXEPINT_XFERCOMPL) {
1968 1969 1970
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1971

1972
		dev_dbg(hsotg->dev,
1973
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1974 1975
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
1976

1977 1978 1979 1980
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1981
		if (dir_in) {
1982
			dwc2_hsotg_complete_in(hsotg, hs_ep);
1983

1984
			if (idx == 0 && !hs_ep->req)
1985
				dwc2_hsotg_enqueue_setup(hsotg);
1986
		} else if (using_dma(hsotg)) {
1987 1988 1989 1990
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1991

1992
			dwc2_hsotg_handle_outdone(hsotg, idx);
1993 1994 1995
		}
	}

1996
	if (ints & DXEPINT_EPDISBLD) {
1997 1998
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1999
		if (dir_in) {
2000
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2001

2002
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2003

2004 2005
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2006
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2007

2008
				dctl |= DCTL_CGNPINNAK;
2009
				dwc2_writel(dctl, hsotg->regs + DCTL);
2010 2011 2012 2013
			}
		}
	}

2014
	if (ints & DXEPINT_AHBERR)
2015 2016
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2017
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2018 2019 2020
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2021 2022
			/*
			 * this is the notification we've received a
2023 2024
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2025 2026
			 * the setup here.
			 */
2027 2028 2029 2030

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2031
				dwc2_hsotg_handle_outdone(hsotg, 0);
2032 2033 2034
		}
	}

2035
	if (ints & DXEPINT_BACK2BACKSETUP)
2036 2037
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2038
	if (dir_in && !hs_ep->isochronous) {
2039
		/* not sure if this is important, but we'll clear it anyway */
2040
		if (ints & DXEPINT_INTKNTXFEMP) {
2041 2042 2043 2044 2045
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2046
		if (ints & DXEPINT_INTKNEPMIS) {
2047 2048 2049
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2050 2051 2052

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2053
		    ints & DXEPINT_TXFEMP) {
2054 2055
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2056
			if (!using_dma(hsotg))
2057
				dwc2_hsotg_trytx(hsotg, hs_ep);
2058
		}
2059 2060 2061 2062
	}
}

/**
2063
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2064 2065 2066 2067
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2068
 */
2069
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2070
{
2071
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2072
	int ep0_mps = 0, ep_mps = 8;
2073

2074 2075
	/*
	 * This should signal the finish of the enumeration phase
2076
	 * of the USB handshaking, so we should now know what rate
2077 2078
	 * we connected at.
	 */
2079 2080 2081

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2082 2083
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2084
	 * it seems IN transfers must be a even number of packets we do
2085 2086
	 * not advertise a 64byte MPS on EP0.
	 */
2087 2088

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2089
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2090 2091
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2092 2093
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2094
		ep_mps = 1023;
2095 2096
		break;

2097
	case DSTS_ENUMSPD_HS:
2098 2099
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2100
		ep_mps = 1024;
2101 2102
		break;

2103
	case DSTS_ENUMSPD_LS:
2104
		hsotg->gadget.speed = USB_SPEED_LOW;
2105 2106
		/*
		 * note, we don't actually support LS in this driver at the
2107 2108 2109 2110 2111
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2112 2113
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2114

2115 2116 2117 2118
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2119 2120 2121

	if (ep0_mps) {
		int i;
2122
		/* Initialize ep0 for both in and out directions */
2123 2124
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2125 2126
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2127
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2128
			if (hsotg->eps_out[i])
2129
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2130
		}
2131 2132 2133 2134
	}

	/* ensure after enumeration our EP0 is active */

2135
	dwc2_hsotg_enqueue_setup(hsotg);
2136 2137

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2138 2139
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2151
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2152
			      struct dwc2_hsotg_ep *ep,
2153
			      int result)
2154
{
2155
	struct dwc2_hsotg_req *req, *treq;
2156
	unsigned size;
2157

2158
	ep->req = NULL;
2159

2160
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2161
		dwc2_hsotg_complete_request(hsotg, ep, req,
2162
					   result);
2163

2164 2165
	if (!hsotg->dedicated_fifos)
		return;
2166
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2167
	if (size < ep->fifo_size)
2168
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2169 2170 2171
}

/**
2172
 * dwc2_hsotg_disconnect - disconnect service
2173 2174
 * @hsotg: The device state.
 *
2175 2176 2177
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2178
 */
2179
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2180 2181 2182
{
	unsigned ep;

2183 2184 2185 2186
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2187
	hsotg->test_mode = 0;
2188 2189 2190 2191 2192 2193 2194 2195 2196

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2197 2198

	call_gadget(hsotg, disconnect);
2199
	hsotg->lx_state = DWC2_L3;
2200 2201 2202
}

/**
2203
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2204 2205 2206
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2207
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2208
{
2209
	struct dwc2_hsotg_ep *ep;
2210 2211 2212
	int epno, ret;

	/* look through for any more data to transmit */
2213
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2214 2215 2216 2217
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2218 2219 2220 2221 2222 2223 2224 2225

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2226
		ret = dwc2_hsotg_trytx(hsotg, ep);
2227 2228 2229 2230 2231 2232
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2233 2234 2235
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2236

2237
/**
2238
 * dwc2_hsotg_core_init - issue softreset to the core
2239 2240 2241 2242
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2243
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2244
						bool is_usb_reset)
2245
{
2246
	u32 intmsk;
2247
	u32 val;
2248
	u32 usbcfg;
2249

2250 2251 2252
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2253
	if (!is_usb_reset)
2254
		if (dwc2_core_reset(hsotg))
2255
			return;
2256 2257 2258 2259 2260 2261

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2262 2263 2264 2265 2266
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2267
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2268
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2269 2270 2271
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2272

2273
	dwc2_hsotg_init_fifo(hsotg);
2274

2275 2276
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2277

2278
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2279 2280

	/* Clear any pending OTG interrupts */
2281
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2282 2283

	/* Clear any pending interrupts */
2284
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2285
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2286
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2287 2288
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2289 2290
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2291 2292 2293 2294 2295

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2296 2297

	if (using_dma(hsotg))
2298 2299 2300
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2301
	else
2302 2303 2304 2305
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2306 2307

	/*
2308 2309 2310
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2311 2312
	 */

2313
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2314
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2315 2316 2317 2318
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2319 2320 2321 2322 2323

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2324
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2325 2326 2327 2328
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2329

2330
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2331 2332

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2333 2334
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2335 2336

	/* enable in and out endpoint interrupts */
2337
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2338 2339 2340 2341 2342 2343 2344

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2345
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2346 2347

	/* Enable interrupts for EP0 in and out */
2348 2349
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2350

2351 2352 2353 2354 2355
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2356

2357
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2358 2359

	/*
2360
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2361 2362 2363 2364
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2365
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2366
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2367

2368
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2369 2370
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2371
	       hsotg->regs + DOEPCTL0);
2372 2373

	/* enable, but don't activate EP0in */
2374
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2375
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2376

2377
	dwc2_hsotg_enqueue_setup(hsotg);
2378 2379

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2380 2381
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2382 2383

	/* clear global NAKs */
2384 2385 2386 2387
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2388 2389 2390 2391

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2392
	hsotg->lx_state = DWC2_L0;
2393 2394
}

2395
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2396 2397 2398 2399
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2400

2401
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2402
{
2403
	/* remove the soft-disconnect and let's go */
2404
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2405 2406
}

2407
/**
2408
 * dwc2_hsotg_irq - handle device interrupt
2409 2410 2411
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2412
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2413
{
2414
	struct dwc2_hsotg *hsotg = pw;
2415 2416 2417 2418
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2419 2420 2421
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2422
	spin_lock(&hsotg->lock);
2423
irq_retry:
2424 2425
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2426 2427 2428 2429 2430 2431

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2462
	if (gintsts & GINTSTS_ENUMDONE) {
2463
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2464

2465
		dwc2_hsotg_irq_enumdone(hsotg);
2466 2467
	}

2468
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2469 2470
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2471
		u32 daint_out, daint_in;
2472 2473
		int ep;

2474
		daint &= daintmsk;
2475 2476
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2477

2478 2479
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2480 2481
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2482
			if (daint_out & 1)
2483
				dwc2_hsotg_epint(hsotg, ep, 0);
2484 2485
		}

2486 2487
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2488
			if (daint_in & 1)
2489
				dwc2_hsotg_epint(hsotg, ep, 1);
2490 2491 2492 2493 2494
		}
	}

	/* check both FIFOs */

2495
	if (gintsts & GINTSTS_NPTXFEMP) {
2496 2497
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2498 2499
		/*
		 * Disable the interrupt to stop it happening again
2500
		 * unless one of these endpoint routines decides that
2501 2502
		 * it needs re-enabling
		 */
2503

2504 2505
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2506 2507
	}

2508
	if (gintsts & GINTSTS_PTXFEMP) {
2509 2510
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2511
		/* See note in GINTSTS_NPTxFEmp */
2512

2513 2514
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2515 2516
	}

2517
	if (gintsts & GINTSTS_RXFLVL) {
2518 2519
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2520
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2521 2522
		 * set.
		 */
2523

2524
		dwc2_hsotg_handle_rx(hsotg);
2525 2526
	}

2527
	if (gintsts & GINTSTS_ERLYSUSP) {
2528
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2529
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2530 2531
	}

2532 2533
	/*
	 * these next two seem to crop-up occasionally causing the core
2534
	 * to shutdown the USB transfer, so try clearing them and logging
2535 2536
	 * the occurrence.
	 */
2537

2538
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2539 2540
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2541
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2542

2543
		dwc2_hsotg_dump(hsotg);
2544 2545
	}

2546
	if (gintsts & GINTSTS_GINNAKEFF) {
2547 2548
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2549
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2550

2551
		dwc2_hsotg_dump(hsotg);
2552 2553
	}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (gintsts & GINTSTS_INCOMPL_SOIN) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_in[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DIEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
	}

	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DOEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
	}

2588 2589 2590 2591
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2592 2593 2594 2595

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2596 2597
	spin_unlock(&hsotg->lock);

2598 2599 2600 2601
	return IRQ_HANDLED;
}

/**
2602
 * dwc2_hsotg_ep_enable - enable the given endpoint
2603 2604 2605 2606
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2607
 */
2608
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2609 2610
			       const struct usb_endpoint_descriptor *desc)
{
2611
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2612
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2613
	unsigned long flags;
2614
	unsigned int index = hs_ep->index;
2615 2616 2617
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2618 2619
	unsigned int dir_in;
	unsigned int i, val, size;
2620
	int ret = 0;
2621 2622 2623 2624 2625 2626 2627

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2628 2629 2630 2631
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2632 2633 2634 2635 2636 2637 2638

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2639
	mps = usb_endpoint_maxp(desc);
2640

2641
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2642

2643
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2644
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2645 2646 2647 2648

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2649
	spin_lock_irqsave(&hsotg->lock, flags);
2650

2651 2652
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2653

2654 2655 2656 2657
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2658
	epctrl |= DXEPCTL_USBACTEP;
2659

2660 2661
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2662 2663 2664 2665 2666
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2667
	epctrl |= DXEPCTL_SNAK;
2668 2669

	/* update the endpoint state */
2670
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2671 2672

	/* default, set to non-periodic */
2673
	hs_ep->isochronous = 0;
2674
	hs_ep->periodic = 0;
2675
	hs_ep->halted = 0;
2676
	hs_ep->interval = desc->bInterval;
2677
	hs_ep->has_correct_parity = 0;
2678

2679 2680 2681
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2682 2683
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2684 2685
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2686 2687 2688 2689
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2690 2691

	case USB_ENDPOINT_XFER_BULK:
2692
		epctrl |= DXEPCTL_EPTYPE_BULK;
2693 2694 2695
		break;

	case USB_ENDPOINT_XFER_INT:
2696
		if (dir_in)
2697 2698
			hs_ep->periodic = 1;

2699
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2700 2701 2702
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2703
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2704 2705 2706
		break;
	}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2718 2719
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2720 2721
	 * a unique tx-fifo even if it is non-periodic.
	 */
2722
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2723 2724
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2725
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2726
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2727 2728
			if (hsotg->fifo_map & (1<<i))
				continue;
2729
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2730 2731 2732
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2733 2734 2735 2736 2737
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2738
		}
2739
		if (!fifo_index) {
2740 2741
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2742 2743 2744
			ret = -ENOMEM;
			goto error;
		}
2745 2746 2747 2748
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2749
	}
2750

2751 2752
	/* for non control endpoints, set PID to D0 */
	if (index)
2753
		epctrl |= DXEPCTL_SETD0PID;
2754 2755 2756 2757

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2758
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2759
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2760
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2761 2762

	/* enable the endpoint interrupt */
2763
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2764

2765
error:
2766
	spin_unlock_irqrestore(&hsotg->lock, flags);
2767
	return ret;
2768 2769
}

2770
/**
2771
 * dwc2_hsotg_ep_disable - disable given endpoint
2772 2773
 * @ep: The endpoint to disable.
 */
2774
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2775
{
2776
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2777
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2778 2779 2780 2781 2782 2783
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2784
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2785

2786
	if (ep == &hsotg->eps_out[0]->ep) {
2787 2788 2789 2790
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2791
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2792

2793
	spin_lock_irqsave(&hsotg->lock, flags);
2794

2795 2796 2797
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2798

2799
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2800 2801 2802
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2803 2804

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2805
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2806 2807

	/* disable endpoint interrupts */
2808
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2809

2810 2811 2812
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2813
	spin_unlock_irqrestore(&hsotg->lock, flags);
2814 2815 2816 2817 2818 2819 2820
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2821
 */
2822
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2823
{
2824
	struct dwc2_hsotg_req *req, *treq;
2825 2826 2827 2828 2829 2830 2831 2832 2833

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
		/* Clear any pending nak effect interrupt */
2870
		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2871

2872
		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2873 2874 2875

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2876
						GINTSTS_GOUTNAKEFF, 100))
2877
			dev_warn(hsotg->dev,
2878
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
2903
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2904 2905 2906
	}
}

2907
/**
2908
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2909 2910 2911
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2912
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2913
{
2914 2915
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2916
	struct dwc2_hsotg *hs = hs_ep->parent;
2917 2918
	unsigned long flags;

2919
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2920

2921
	spin_lock_irqsave(&hs->lock, flags);
2922 2923

	if (!on_list(hs_ep, hs_req)) {
2924
		spin_unlock_irqrestore(&hs->lock, flags);
2925 2926 2927
		return -EINVAL;
	}

2928 2929 2930 2931
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

2932
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2933
	spin_unlock_irqrestore(&hs->lock, flags);
2934 2935 2936 2937

	return 0;
}

2938
/**
2939
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2940 2941
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
2942 2943 2944 2945 2946
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
2947
 */
2948
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
2949
{
2950
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2951
	struct dwc2_hsotg *hs = hs_ep->parent;
2952 2953 2954
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2955
	u32 xfertype;
2956 2957 2958

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2959 2960
	if (index == 0) {
		if (value)
2961
			dwc2_hsotg_stall_ep0(hs);
2962 2963 2964 2965 2966 2967
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2968 2969 2970 2971 2972
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

2973 2974 2975 2976 2977 2978
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

2979 2980
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
2981
		epctl = dwc2_readl(hs->regs + epreg);
2982 2983

		if (value) {
2984
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2985 2986 2987 2988 2989 2990 2991 2992 2993
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
2994
		dwc2_writel(epctl, hs->regs + epreg);
2995
	} else {
2996

2997
		epreg = DOEPCTL(index);
2998
		epctl = dwc2_readl(hs->regs + epreg);
2999

3000 3001 3002 3003 3004 3005 3006 3007 3008
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3009
		dwc2_writel(epctl, hs->regs + epreg);
3010
	}
3011

3012 3013
	hs_ep->halted = value;

3014 3015 3016
	return 0;
}

3017
/**
3018
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3019 3020 3021
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3022
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3023
{
3024
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3025
	struct dwc2_hsotg *hs = hs_ep->parent;
3026 3027 3028 3029
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3030
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3031 3032 3033 3034 3035
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3036 3037 3038 3039 3040 3041 3042 3043
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3044
	/* note, don't believe we have any call for the fifo routines */
3045 3046
};

3047
/**
3048
 * dwc2_hsotg_init - initalize the usb core
3049 3050
 * @hsotg: The driver state
 */
3051
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3052
{
3053
	u32 trdtim;
3054
	u32 usbcfg;
3055 3056
	/* unmask subset of endpoint interrupts */

3057 3058 3059
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3060

3061 3062 3063
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3064

3065
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3066 3067

	/* Be in disconnected state until gadget is registered */
3068
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3069 3070 3071 3072

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3073 3074
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3075

3076
	dwc2_hsotg_init_fifo(hsotg);
3077

3078 3079 3080 3081 3082
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3083
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3084
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3085 3086 3087
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3088

3089 3090
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3091 3092
}

3093
/**
3094
 * dwc2_hsotg_udc_start - prepare the udc for work
3095 3096 3097 3098 3099 3100
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3101
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3102
			   struct usb_gadget_driver *driver)
3103
{
3104
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3105
	unsigned long flags;
3106 3107 3108
	int ret;

	if (!hsotg) {
3109
		pr_err("%s: called with no device\n", __func__);
3110 3111 3112 3113 3114 3115 3116 3117
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3118
	if (driver->max_speed < USB_SPEED_FULL)
3119 3120
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3121
	if (!driver->setup) {
3122 3123 3124 3125 3126 3127 3128 3129
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3130
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3131 3132
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3133 3134 3135 3136
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3137 3138
	}

3139 3140
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3141

3142
	spin_lock_irqsave(&hsotg->lock, flags);
3143 3144
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3145
	hsotg->enabled = 0;
3146 3147
	spin_unlock_irqrestore(&hsotg->lock, flags);

3148
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3149

3150 3151 3152 3153 3154 3155 3156
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3157
/**
3158
 * dwc2_hsotg_udc_stop - stop the udc
3159 3160 3161 3162 3163
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3164
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3165
{
3166
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3167
	unsigned long flags = 0;
3168 3169 3170 3171 3172 3173
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3174 3175
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3176
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3177
		if (hsotg->eps_out[ep])
3178
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3179
	}
3180

3181 3182
	spin_lock_irqsave(&hsotg->lock, flags);

3183
	hsotg->driver = NULL;
3184
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3185
	hsotg->enabled = 0;
3186

3187 3188
	spin_unlock_irqrestore(&hsotg->lock, flags);

3189 3190
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3191

3192 3193
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3194 3195 3196 3197

	return 0;
}

3198
/**
3199
 * dwc2_hsotg_gadget_getframe - read the frame number
3200 3201 3202 3203
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3204
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3205
{
3206
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3207 3208
}

3209
/**
3210
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3211 3212 3213 3214 3215
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3216
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3217
{
3218
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3219 3220
	unsigned long flags = 0;

3221 3222 3223 3224 3225 3226 3227 3228
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3229 3230 3231

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3232
		hsotg->enabled = 1;
3233 3234
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3235
	} else {
3236 3237
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3238
		hsotg->enabled = 0;
3239 3240 3241 3242 3243 3244 3245 3246
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3247
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3248 3249 3250 3251 3252 3253 3254
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3255 3256 3257 3258 3259 3260 3261
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3262
	if (is_active) {
3263
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3264

3265
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3266
		if (hsotg->enabled)
3267
			dwc2_hsotg_core_connect(hsotg);
3268
	} else {
3269 3270
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3271 3272 3273 3274 3275 3276
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3277
/**
3278
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3279 3280 3281 3282 3283
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3284
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3285 3286 3287 3288 3289 3290 3291 3292
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3293 3294 3295 3296 3297 3298 3299
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3300 3301 3302
};

/**
3303
 * dwc2_hsotg_initep - initialise a single endpoint
3304 3305 3306 3307 3308 3309 3310 3311
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3312 3313
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3314 3315
				       int epnum,
				       bool dir_in)
3316 3317 3318 3319 3320
{
	char *dir;

	if (epnum == 0)
		dir = "";
3321
	else if (dir_in)
3322
		dir = "in";
3323 3324
	else
		dir = "out";
3325

3326
	hs_ep->dir_in = dir_in;
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3340
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3341
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3342

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3356 3357
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3358 3359 3360 3361
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3362
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3363
		if (dir_in)
3364
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3365
		else
3366
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3367 3368 3369
	}
}

3370
/**
3371
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3372 3373 3374 3375
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3376
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3377
{
3378 3379 3380 3381
	u32 cfg;
	u32 ep_type;
	u32 i;

3382
	/* check hardware configuration */
3383

3384 3385
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3386 3387
	/* Add ep0 */
	hsotg->num_of_eps++;
3388

3389
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3390 3391 3392
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3393
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3394 3395
	hsotg->eps_out[0] = hsotg->eps_in[0];

3396
	cfg = hsotg->hw_params.dev_ep_dirs;
3397
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3398 3399 3400 3401
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3402
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3403 3404 3405 3406 3407 3408
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3409
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3410 3411 3412 3413 3414
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3415 3416
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3417

3418 3419 3420 3421
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3422
	return 0;
3423 3424
}

3425
/**
3426
 * dwc2_hsotg_dump - dump state of the udc
3427 3428
 * @param: The device state
 */
3429
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3430
{
M
Mark Brown 已提交
3431
#ifdef DEBUG
3432 3433 3434 3435 3436 3437
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3438 3439
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3440

3441
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3442
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3443 3444

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3445
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3446 3447 3448

	/* show periodic fifo settings */

3449
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3450
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3451
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3452 3453
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3454 3455
	}

3456
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3457 3458
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3459 3460 3461
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3462

3463
		val = dwc2_readl(regs + DOEPCTL(idx));
3464 3465
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3466 3467 3468
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3469 3470 3471 3472

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3473
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3474
#endif
3475 3476
}

3477
#ifdef CONFIG_OF
3478
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3479 3480
{
	struct device_node *np = hsotg->dev->of_node;
3481 3482
	u32 len = 0;
	u32 i = 0;
3483 3484 3485

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3517 3518
}
#else
3519
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3520 3521
#endif

3522
/**
3523 3524 3525
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3526
 */
3527
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3528
{
3529
	struct device *dev = hsotg->dev;
3530 3531
	int epnum;
	int ret;
3532
	int i;
3533
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3534

3535 3536 3537 3538 3539
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3540
	dwc2_hsotg_of_probe(hsotg);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3552 3553 3554 3555 3556 3557 3558
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3559

3560
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3561
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3562
	hsotg->gadget.name = dev_name(dev);
3563 3564
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3565 3566
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3567

3568
	ret = dwc2_hsotg_hw_cfg(hsotg);
3569 3570
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3571
		return ret;
3572 3573
	}

3574 3575 3576 3577
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
3578
		return -ENOMEM;
3579 3580 3581 3582 3583 3584
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
3585
		return -ENOMEM;
3586 3587
	}

3588
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3589
				dev_name(hsotg->dev), hsotg);
3590
	if (ret < 0) {
3591
		dev_err(dev, "cannot claim IRQ for gadget\n");
3592
		return ret;
3593 3594
	}

3595 3596 3597 3598
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3599
		return -EINVAL;
3600 3601 3602 3603 3604
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3605
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3606 3607 3608

	/* allocate EP0 request */

3609
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3610 3611 3612
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3613
		return -ENOMEM;
3614
	}
3615 3616

	/* initialise the endpoints now the core has been initialised */
3617 3618
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3619
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3620 3621
								epnum, 1);
		if (hsotg->eps_out[epnum])
3622
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3623 3624
								epnum, 0);
	}
3625

3626
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3627
	if (ret)
3628
		return ret;
3629

3630
	dwc2_hsotg_dump(hsotg);
3631 3632 3633 3634

	return 0;
}

3635
/**
3636
 * dwc2_hsotg_remove - remove function for hsotg driver
3637 3638
 * @pdev: The platform information for the driver
 */
3639
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3640
{
3641
	usb_del_gadget_udc(&hsotg->gadget);
3642

3643 3644 3645
	return 0;
}

3646
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3647 3648 3649
{
	unsigned long flags;

3650
	if (hsotg->lx_state != DWC2_L0)
3651
		return 0;
3652

3653 3654 3655
	if (hsotg->driver) {
		int ep;

3656 3657 3658
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3659 3660
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3661 3662
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3663 3664
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3665

3666 3667
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3668
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3669
			if (hsotg->eps_out[ep])
3670
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3671
		}
3672 3673
	}

3674
	return 0;
3675 3676
}

3677
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3678 3679 3680
{
	unsigned long flags;

3681
	if (hsotg->lx_state == DWC2_L2)
3682
		return 0;
3683

3684 3685 3686
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3687

3688
		spin_lock_irqsave(&hsotg->lock, flags);
3689
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3690
		if (hsotg->enabled)
3691
			dwc2_hsotg_core_connect(hsotg);
3692 3693
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3694

3695
	return 0;
3696
}
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}