intel_pstate.c 37.7 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
28
#include <linux/acpi.h>
29
#include <linux/vmalloc.h>
30 31 32 33 34
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
35
#include <asm/cpufeature.h>
36

37 38 39 40
#if IS_ENABLED(CONFIG_ACPI)
#include <acpi/processor.h>
#endif

41 42 43
#define BYT_RATIOS		0x66a
#define BYT_VIDS		0x66b
#define BYT_TURBO_RATIOS	0x66c
44
#define BYT_TURBO_VIDS		0x66d
45

46
#define FRAC_BITS 8
47 48
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
49

50 51 52 53 54
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

55
static inline int32_t div_fp(s64 x, s64 y)
56
{
57
	return div64_s64((int64_t)x << FRAC_BITS, y);
58 59
}

60 61 62 63 64 65 66 67 68 69 70
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

71
struct sample {
72
	int32_t core_pct_busy;
73 74
	u64 aperf;
	u64 mperf;
75
	u64 tsc;
76
	int freq;
77
	ktime_t time;
78 79 80 81 82 83
};

struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
84
	int	max_pstate_physical;
85
	int	scaling;
86 87 88
	int	turbo_pstate;
};

89
struct vid_data {
90 91 92
	int min;
	int max;
	int turbo;
93 94 95
	int32_t ratio;
};

96 97 98 99 100 101 102
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
103
	int32_t last_err;
104 105 106 107 108 109 110 111
};

struct cpudata {
	int cpu;

	struct timer_list timer;

	struct pstate_data pstate;
112
	struct vid_data vid;
113 114
	struct _pid pid;

115
	ktime_t last_sample_time;
116 117
	u64	prev_aperf;
	u64	prev_mperf;
118
	u64	prev_tsc;
119
	struct sample sample;
120 121 122
#if IS_ENABLED(CONFIG_ACPI)
	struct acpi_processor_performance acpi_perf_data;
#endif
123 124 125 126 127 128 129 130 131 132 133 134
};

static struct cpudata **all_cpu_data;
struct pstate_adjust_policy {
	int sample_rate_ms;
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

135 136
struct pstate_funcs {
	int (*get_max)(void);
137
	int (*get_max_physical)(void);
138 139
	int (*get_min)(void);
	int (*get_turbo)(void);
140
	int (*get_scaling)(void);
141 142
	void (*set)(struct cpudata*, int pstate);
	void (*get_vid)(struct cpudata *);
143 144
};

145 146 147
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
148 149
};

150 151
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
152
static int hwp_active;
153
static int no_acpi_perf;
154

155 156
struct perf_limits {
	int no_turbo;
157
	int turbo_disabled;
158 159 160 161
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
162 163
	int max_policy_pct;
	int max_sysfs_pct;
164 165
	int min_policy_pct;
	int min_sysfs_pct;
166 167
	int max_perf_ctl;
	int min_perf_ctl;
168 169 170 171
};

static struct perf_limits limits = {
	.no_turbo = 0,
172
	.turbo_disabled = 0,
173 174 175 176
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
177 178
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
179 180
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
181 182
	.max_perf_ctl = 0,
	.min_perf_ctl = 0,
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
#if IS_ENABLED(CONFIG_ACPI)
/*
 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
 * target ratio 0x17. The _PSS control value stores in a format which can be
 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
 * This function converts the _PSS control value to intel pstate driver format
 * for comparison and assignment.
 */
static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
{
	return cpu->acpi_perf_data.states[index].control >> 8;
}

static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	bool turbo_absent = false;
	int max_pstate_index;
	int min_pss_ctl, max_pss_ctl, turbo_pss_ctl;
	int i;

	cpu = all_cpu_data[policy->cpu];

	pr_debug("intel_pstate: default limits 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);

	if (!cpu->acpi_perf_data.shared_cpu_map &&
	    zalloc_cpumask_var_node(&cpu->acpi_perf_data.shared_cpu_map,
				    GFP_KERNEL, cpu_to_node(policy->cpu))) {
		return -ENOMEM;
	}

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return ret;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		return -EIO;

	pr_debug("intel_pstate: CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++)
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		return 0;

	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
	min_pss_ctl = convert_to_native_pstate_format(cpu,
					cpu->acpi_perf_data.state_count - 1);
	/* Check if there is a turbo freq in _PSS */
	if (turbo_pss_ctl <= cpu->pstate.max_pstate &&
	    turbo_pss_ctl > cpu->pstate.min_pstate) {
		pr_debug("intel_pstate: no turbo range exists in _PSS\n");
		limits.no_turbo = limits.turbo_disabled = 1;
		cpu->pstate.turbo_pstate = cpu->pstate.max_pstate;
		turbo_absent = true;
	}

	/* Check if the max non turbo p state < Intel P state max */
	max_pstate_index = turbo_absent ? 0 : 1;
	max_pss_ctl = convert_to_native_pstate_format(cpu, max_pstate_index);
	if (max_pss_ctl < cpu->pstate.max_pstate &&
	    max_pss_ctl > cpu->pstate.min_pstate)
		cpu->pstate.max_pstate = max_pss_ctl;

	/* check If min perf > Intel P State min */
	if (min_pss_ctl > cpu->pstate.min_pstate &&
	    min_pss_ctl < cpu->pstate.max_pstate) {
		cpu->pstate.min_pstate = min_pss_ctl;
		policy->cpuinfo.min_freq = min_pss_ctl * cpu->pstate.scaling;
	}

	if (turbo_absent)
		policy->cpuinfo.max_freq = cpu->pstate.max_pstate *
						cpu->pstate.scaling;
	else {
		policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate *
						cpu->pstate.scaling;
		/*
		 * The _PSS table doesn't contain whole turbo frequency range.
		 * This just contains +1 MHZ above the max non turbo frequency,
		 * with control value corresponding to max turbo ratio. But
		 * when cpufreq set policy is called, it will call with this
		 * max frequency, which will cause a reduced performance as
		 * this driver uses real max turbo frequency as the max
		 * frequeny. So correct this frequency in _PSS table to
		 * correct max turbo frequency based on the turbo ratio.
		 * Also need to convert to MHz as _PSS freq is in MHz.
		 */
		cpu->acpi_perf_data.states[0].core_frequency =
						turbo_pss_ctl * 100;
	}

	pr_debug("intel_pstate: Updated limits using _PSS 0x%x 0x%x 0x%x\n",
		 cpu->pstate.min_pstate, cpu->pstate.max_pstate,
		 cpu->pstate.turbo_pstate);
	pr_debug("intel_pstate: policy max_freq=%d Khz min_freq = %d KHz\n",
		 policy->cpuinfo.max_freq, policy->cpuinfo.min_freq);

	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	if (!no_acpi_perf)
		return 0;

	cpu = all_cpu_data[policy->cpu];
	acpi_processor_unregister_performance(policy->cpu);
	return 0;
}

#else
static int intel_pstate_init_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}

static int intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	return 0;
}
#endif

332
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
333
			     int deadband, int integral) {
334 335 336
	pid->setpoint = setpoint;
	pid->deadband  = deadband;
	pid->integral  = int_tofp(integral);
337
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
}

355
static signed int pid_calc(struct _pid *pid, int32_t busy)
356
{
357
	signed int result;
358 359 360
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

361
	fp_error = int_tofp(pid->setpoint) - busy;
362

363
	if (abs(fp_error) <= int_tofp(pid->deadband))
364 365 366 367 368 369
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

370 371 372 373 374 375 376 377
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
378 379 380 381 382 383
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

384 385
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
386 387

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
388
	result = result + (1 << (FRAC_BITS-1));
389 390 391 392 393
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
394 395 396
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
397

398
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
399 400 401 402 403
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
404

405 406 407 408 409 410
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

411 412 413 414 415 416 417 418 419 420 421 422
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
	limits.turbo_disabled =
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

D
Dirk Brandewie 已提交
423 424
static void intel_pstate_hwp_set(void)
{
425 426 427 428 429 430 431
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
432 433 434 435 436

	get_online_cpus();

	for_each_online_cpu(cpu) {
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437 438
		adj_range = limits.min_perf_pct * range / 100;
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
439 440 441
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

442 443
		adj_range = limits.max_perf_pct * range / 100;
		max = hw_min + adj_range;
D
Dirk Brandewie 已提交
444
		if (limits.no_turbo) {
445 446 447
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
448 449 450 451 452 453 454 455 456 457
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}

	put_online_cpus();
}

458 459 460 461 462 463 464
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
465

466 467 468 469 470
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
471
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
472 473 474 475 476 477 478

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
479 480 481 482 483 484
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
485 486 487
	{NULL, NULL}
};

488
static void __init intel_pstate_debug_expose_params(void)
489
{
490
	struct dentry *debugfs_parent;
491 492
	int i = 0;

D
Dirk Brandewie 已提交
493 494
	if (hwp_active)
		return;
495 496 497 498 499
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
500 501
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
502 503 504 505 506 507 508 509 510 511 512 513 514 515
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
		return sprintf(buf, "%u\n", limits.object);		\
	}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

532 533 534 535 536 537 538 539 540 541 542
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
	if (limits.turbo_disabled)
		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
	else
		ret = sprintf(buf, "%u\n", limits.no_turbo);

	return ret;
}

557
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
558
			      const char *buf, size_t count)
559 560 561
{
	unsigned int input;
	int ret;
562

563 564 565
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
566 567

	update_turbo_state();
568
	if (limits.turbo_disabled) {
569
		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
570
		return -EPERM;
571
	}
D
Dirk Brandewie 已提交
572

573 574
	limits.no_turbo = clamp_t(int, input, 0, 1);

D
Dirk Brandewie 已提交
575 576 577
	if (hwp_active)
		intel_pstate_hwp_set();

578 579 580 581
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
582
				  const char *buf, size_t count)
583 584 585
{
	unsigned int input;
	int ret;
586

587 588 589 590
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

591 592
	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
593 594
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
	limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
595
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
596

D
Dirk Brandewie 已提交
597 598
	if (hwp_active)
		intel_pstate_hwp_set();
599 600 601 602
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
603
				  const char *buf, size_t count)
604 605 606
{
	unsigned int input;
	int ret;
607

608 609 610
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
611 612 613

	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
614 615
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
616 617
	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));

D
Dirk Brandewie 已提交
618 619
	if (hwp_active)
		intel_pstate_hwp_set();
620 621 622 623 624 625 626 627 628
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
629
define_one_global_ro(turbo_pct);
630
define_one_global_ro(num_pstates);
631 632 633 634 635

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
636
	&turbo_pct.attr,
637
	&num_pstates.attr,
638 639 640 641 642 643 644
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

645
static void __init intel_pstate_sysfs_expose_params(void)
646
{
647
	struct kobject *intel_pstate_kobject;
648 649 650 651 652
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
653
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
654 655 656
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
657

658
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
659
{
660
	pr_info("intel_pstate: HWP enabled\n");
D
Dirk Brandewie 已提交
661

662
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
663 664
}

665 666 667
static int byt_get_min_pstate(void)
{
	u64 value;
668

669
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
670
	return (value >> 8) & 0x7F;
671 672 673 674 675
}

static int byt_get_max_pstate(void)
{
	u64 value;
676

677
	rdmsrl(BYT_RATIOS, value);
D
Dirk Brandewie 已提交
678
	return (value >> 16) & 0x7F;
679
}
680

681 682 683
static int byt_get_turbo_pstate(void)
{
	u64 value;
684

685
	rdmsrl(BYT_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
686
	return value & 0x7F;
687 688
}

689 690 691 692 693 694
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

695
	val = (u64)pstate << 8;
696
	if (limits.no_turbo && !limits.turbo_disabled)
697 698 699 700 701 702 703
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
704
	vid = ceiling_fp(vid_fp);
705

706 707 708
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

709 710
	val |= vid;

711
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
712 713
}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
#define BYT_BCLK_FREQS 5
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};

static int byt_get_scaling(void)
{
	u64 value;
	int i;

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0x3;

	BUG_ON(i > BYT_BCLK_FREQS);

	return byt_freq_table[i] * 100;
}

730 731 732 733 734
static void byt_get_vid(struct cpudata *cpudata)
{
	u64 value;

	rdmsrl(BYT_VIDS, value);
D
Dirk Brandewie 已提交
735 736
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
737 738 739 740
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
741 742 743

	rdmsrl(BYT_TURBO_VIDS, value);
	cpudata->vid.turbo = value & 0x7f;
744 745
}

746
static int core_get_min_pstate(void)
747 748
{
	u64 value;
749

750
	rdmsrl(MSR_PLATFORM_INFO, value);
751 752 753
	return (value >> 40) & 0xFF;
}

754
static int core_get_max_pstate_physical(void)
755 756
{
	u64 value;
757

758
	rdmsrl(MSR_PLATFORM_INFO, value);
759 760 761
	return (value >> 8) & 0xFF;
}

762
static int core_get_max_pstate(void)
763
{
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
797

798 799
skip_tar:
	return max_pstate;
800 801
}

802
static int core_get_turbo_pstate(void)
803 804 805
{
	u64 value;
	int nont, ret;
806

807
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
808
	nont = core_get_max_pstate();
809
	ret = (value) & 255;
810 811 812 813 814
	if (ret <= nont)
		ret = nont;
	return ret;
}

815 816 817 818 819
static inline int core_get_scaling(void)
{
	return 100000;
}

820
static void core_set_pstate(struct cpudata *cpudata, int pstate)
821 822 823
{
	u64 val;

824
	val = (u64)pstate << 8;
825
	if (limits.no_turbo && !limits.turbo_disabled)
826 827
		val |= (u64)1 << 32;

828
	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

844 845 846 847 848 849 850 851 852 853 854
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
855
		.get_max_physical = core_get_max_pstate_physical,
856 857
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
858
		.get_scaling = core_get_scaling,
859 860 861 862
		.set = core_set_pstate,
	},
};

863 864 865 866
static struct cpu_defaults byt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
867
		.setpoint = 60,
868 869 870 871 872 873
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = byt_get_max_pstate,
874
		.get_max_physical = byt_get_max_pstate,
875
		.get_min = byt_get_min_pstate,
876
		.get_turbo = byt_get_turbo_pstate,
877
		.set = byt_set_pstate,
878
		.get_scaling = byt_get_scaling,
879
		.get_vid = byt_get_vid,
880 881 882
	},
};

883 884 885 886 887 888 889 890 891 892 893
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
894
		.get_max_physical = core_get_max_pstate_physical,
895 896
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
897
		.get_scaling = core_get_scaling,
898 899 900 901
		.set = core_set_pstate,
	},
};

902 903 904
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
905
	int max_perf_adj;
906
	int min_perf;
907

908
	if (limits.no_turbo || limits.turbo_disabled)
909 910
		max_perf = cpu->pstate.max_pstate;

911 912 913 914 915
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
916 917 918 919 920 921 922 923 924
	if (limits.max_perf_ctl && limits.max_sysfs_pct >=
						limits.max_policy_pct) {
		*max = limits.max_perf_ctl;
	} else {
		max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf),
					limits.max_perf));
		*max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate,
			       cpu->pstate.turbo_pstate);
	}
925

926 927 928 929 930 931 932
	if (limits.min_perf_ctl) {
		*min = limits.min_perf_ctl;
	} else {
		min_perf = fp_toint(mul_fp(int_tofp(max_perf),
				    limits.min_perf));
		*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
	}
933 934
}

935
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
936 937 938
{
	int max_perf, min_perf;

939 940
	if (force) {
		update_turbo_state();
941

942
		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
943

944
		pstate = clamp_t(int, pstate, min_perf, max_perf);
945

946 947 948
		if (pstate == cpu->pstate.current_pstate)
			return;
	}
949
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
950

951 952
	cpu->pstate.current_pstate = pstate;

953
	pstate_funcs.set(cpu, pstate);
954 955 956 957
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
958 959
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
960
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
961
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
962
	cpu->pstate.scaling = pstate_funcs.get_scaling();
963

964 965
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
966
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
967 968
}

969
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
970
{
971
	struct sample *sample = &cpu->sample;
972
	int64_t core_pct;
973

974
	core_pct = int_tofp(sample->aperf) * int_tofp(100);
975
	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
976

977
	sample->freq = fp_toint(
978
		mul_fp(int_tofp(
979 980
			cpu->pstate.max_pstate_physical *
			cpu->pstate.scaling / 100),
981
			core_pct));
982

983
	sample->core_pct_busy = (int32_t)core_pct;
984 985 986 987 988
}

static inline void intel_pstate_sample(struct cpudata *cpu)
{
	u64 aperf, mperf;
989
	unsigned long flags;
990
	u64 tsc;
991

992
	local_irq_save(flags);
993 994
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
995 996 997 998 999
	if (cpu->prev_mperf == mperf) {
		local_irq_restore(flags);
		return;
	}

1000
	tsc = rdtsc();
1001
	local_irq_restore(flags);
1002

1003 1004
	cpu->last_sample_time = cpu->sample.time;
	cpu->sample.time = ktime_get();
1005 1006
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1007
	cpu->sample.tsc =  tsc;
1008 1009
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1010
	cpu->sample.tsc -= cpu->prev_tsc;
1011

1012
	intel_pstate_calc_busy(cpu);
1013 1014 1015

	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1016
	cpu->prev_tsc = tsc;
1017 1018
}

D
Dirk Brandewie 已提交
1019 1020 1021 1022 1023 1024 1025 1026
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
{
	int delay;

	delay = msecs_to_jiffies(50);
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1027 1028
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
{
1029
	int delay;
1030

1031
	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
1032 1033 1034
	mod_timer_pinned(&cpu->timer, jiffies + delay);
}

1035
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
1036
{
1037
	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1038
	s64 duration_us;
1039
	u32 sample_time;
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * core_busy is the ratio of actual performance to max
	 * max_pstate is the max non turbo pstate available
	 * current_pstate was the pstate that was requested during
	 * 	the last sample period.
	 *
	 * We normalize core_busy, which was our actual percent
	 * performance to what we requested during the last sample
	 * period. The result will be a percentage of busy at a
	 * specified pstate.
	 */
1052
	core_busy = cpu->sample.core_pct_busy;
1053
	max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1054
	current_pstate = int_tofp(cpu->pstate.current_pstate);
1055
	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1056

1057 1058 1059 1060 1061 1062 1063
	/*
	 * Since we have a deferred timer, it will not fire unless
	 * we are in C0.  So, determine if the actual elapsed time
	 * is significantly greater (3x) than our sample interval.  If it
	 * is, then we were idle for a long enough period of time
	 * to adjust our busyness.
	 */
1064
	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
1065 1066
	duration_us = ktime_us_delta(cpu->sample.time,
				     cpu->last_sample_time);
1067 1068
	if (duration_us > sample_time * 3) {
		sample_ratio = div_fp(int_tofp(sample_time),
1069
				      int_tofp(duration_us));
1070 1071 1072
		core_busy = mul_fp(core_busy, sample_ratio);
	}

1073
	return core_busy;
1074 1075 1076 1077
}

static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1078
	int32_t busy_scaled;
1079
	struct _pid *pid;
1080
	signed int ctl;
1081 1082 1083 1084
	int from;
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1085 1086 1087 1088 1089 1090

	pid = &cpu->pid;
	busy_scaled = intel_pstate_get_scaled_busy(cpu);

	ctl = pid_calc(pid, busy_scaled);

1091
	/* Negative values of ctl increase the pstate and vice versa */
1092
	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	sample = &cpu->sample;
	trace_pstate_sample(fp_toint(sample->core_pct_busy),
		fp_toint(busy_scaled),
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		sample->freq);
1103 1104
}

D
Dirk Brandewie 已提交
1105 1106 1107 1108 1109 1110 1111 1112
static void intel_hwp_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
	intel_hwp_set_sample_time(cpu);
}

1113 1114 1115 1116 1117
static void intel_pstate_timer_func(unsigned long __data)
{
	struct cpudata *cpu = (struct cpudata *) __data;

	intel_pstate_sample(cpu);
1118

1119
	intel_pstate_adjust_busy_pstate(cpu);
1120

1121 1122 1123 1124
	intel_pstate_set_sample_time(cpu);
}

#define ICPU(model, policy) \
1125 1126
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1127 1128

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1129 1130
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1131
	ICPU(0x37, byt_params),
1132 1133
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1134
	ICPU(0x3d, core_params),
1135 1136 1137 1138
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1139
	ICPU(0x47, core_params),
1140
	ICPU(0x4c, byt_params),
1141
	ICPU(0x4e, core_params),
1142
	ICPU(0x4f, core_params),
1143
	ICPU(0x5e, core_params),
1144
	ICPU(0x56, core_params),
1145
	ICPU(0x57, knl_params),
1146 1147 1148 1149
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1150 1151 1152 1153 1154
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1155 1156 1157 1158
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1159 1160 1161
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1162 1163 1164 1165 1166 1167
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1168 1169 1170 1171

	if (hwp_active)
		intel_pstate_hwp_enable(cpu);

1172
	intel_pstate_get_cpu_pstates(cpu);
1173

1174
	init_timer_deferrable(&cpu->timer);
1175
	cpu->timer.data = (unsigned long)cpu;
1176
	cpu->timer.expires = jiffies + HZ/100;
D
Dirk Brandewie 已提交
1177 1178 1179 1180 1181 1182

	if (!hwp_active)
		cpu->timer.function = intel_pstate_timer_func;
	else
		cpu->timer.function = intel_hwp_timer_func;

1183 1184 1185 1186 1187
	intel_pstate_busy_pid_reset(cpu);
	intel_pstate_sample(cpu);

	add_timer_on(&cpu->timer, cpunum);

1188
	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
	struct sample *sample;
	struct cpudata *cpu;

	cpu = all_cpu_data[cpu_num];
	if (!cpu)
		return 0;
1201
	sample = &cpu->sample;
1202 1203 1204 1205 1206
	return sample->freq;
}

static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1207 1208 1209 1210 1211 1212
#if IS_ENABLED(CONFIG_ACPI)
	struct cpudata *cpu;
	int i;
#endif
	pr_debug("intel_pstate: %s max %u policy->max %u\n", __func__,
		 policy->cpuinfo.max_freq, policy->max);
1213 1214 1215
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1216 1217
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
	    policy->max >= policy->cpuinfo.max_freq) {
1218
		limits.min_policy_pct = 100;
1219 1220
		limits.min_perf_pct = 100;
		limits.min_perf = int_tofp(1);
1221
		limits.max_policy_pct = 100;
1222 1223
		limits.max_perf_pct = 100;
		limits.max_perf = int_tofp(1);
1224
		limits.no_turbo = 0;
1225 1226
		limits.max_perf_ctl = 0;
		limits.min_perf_ctl = 0;
1227
		return 0;
1228
	}
D
Dirk Brandewie 已提交
1229

1230 1231
	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
1232
	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1233
	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
1234 1235 1236 1237

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1238
	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1239 1240 1241 1242 1243 1244
	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);

	/* Make sure min_perf_pct <= max_perf_pct */
	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);

	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1245
	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#if IS_ENABLED(CONFIG_ACPI)
	cpu = all_cpu_data[policy->cpu];
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		int control;

		control = convert_to_native_pstate_format(cpu, i);
		if (control * cpu->pstate.scaling == policy->max)
			limits.max_perf_ctl = control;
		if (control * cpu->pstate.scaling == policy->min)
			limits.min_perf_ctl = control;
	}

	pr_debug("intel_pstate: max %u policy_max %u perf_ctl [0x%x-0x%x]\n",
		 policy->cpuinfo.max_freq, policy->max, limits.min_perf_ctl,
		 limits.max_perf_ctl);
#endif

D
Dirk Brandewie 已提交
1264 1265 1266
	if (hwp_active)
		intel_pstate_hwp_set();

1267 1268 1269 1270 1271
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1272
	cpufreq_verify_within_cpu_limits(policy);
1273

1274
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1275
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1276 1277 1278 1279 1280
		return -EINVAL;

	return 0;
}

1281
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1282
{
1283 1284
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1285

1286
	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1287

1288
	del_timer_sync(&all_cpu_data[cpu_num]->timer);
D
Dirk Brandewie 已提交
1289 1290 1291
	if (hwp_active)
		return;

1292
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1293 1294
}

1295
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1296 1297
{
	struct cpudata *cpu;
1298
	int rc;
1299 1300 1301 1302 1303 1304 1305

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1306
	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1307 1308 1309 1310
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1311 1312
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1313 1314

	/* cpuinfo and default policy values */
1315 1316 1317
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->cpuinfo.max_freq =
		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1318 1319 1320 1321 1322 1323
	if (!no_acpi_perf)
		intel_pstate_init_perf_limits(policy);
	/*
	 * If there is no acpi perf data or error, we ignore and use Intel P
	 * state calculated limits, So this is not fatal error.
	 */
1324 1325 1326 1327 1328 1329
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1330 1331 1332 1333 1334
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	return intel_pstate_exit_perf_limits(policy);
}

1335 1336 1337 1338 1339 1340
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1341
	.exit		= intel_pstate_cpu_exit,
1342
	.stop_cpu	= intel_pstate_stop_cpu,
1343 1344 1345
	.name		= "intel_pstate",
};

1346
static int __initdata no_load;
D
Dirk Brandewie 已提交
1347
static int __initdata no_hwp;
1348
static int __initdata hwp_only;
1349
static unsigned int force_load;
1350

1351 1352
static int intel_pstate_msrs_not_valid(void)
{
1353
	if (!pstate_funcs.get_max() ||
1354 1355
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1356 1357 1358 1359
		return -ENODEV;

	return 0;
}
1360

1361
static void copy_pid_params(struct pstate_adjust_policy *policy)
1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1371
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1372 1373
{
	pstate_funcs.get_max   = funcs->get_max;
1374
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1375 1376
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1377
	pstate_funcs.get_scaling = funcs->get_scaling;
1378
	pstate_funcs.set       = funcs->set;
1379
	pstate_funcs.get_vid   = funcs->get_vid;
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
#if IS_ENABLED(CONFIG_ACPI)

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1433 1434 1435 1436
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1437
	int  oem_pwr_table;
1438 1439 1440 1441
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1453 1454 1455 1456
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1457 1458 1459 1460 1461 1462 1463
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1473

1474 1475
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1476 1477 1478
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1479
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1480 1481 1482 1483 1484 1485
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1486 1487
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1488
			}
1489 1490 1491 1492 1493 1494
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1495
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1496 1497
#endif /* CONFIG_ACPI */

1498 1499
static int __init intel_pstate_init(void)
{
1500
	int cpu, rc = 0;
1501
	const struct x86_cpu_id *id;
1502
	struct cpu_defaults *cpu_def;
1503

1504 1505 1506
	if (no_load)
		return -ENODEV;

1507 1508 1509 1510
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1511 1512 1513 1514 1515 1516 1517
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

1518
	cpu_def = (struct cpu_defaults *)id->driver_data;
1519

1520 1521
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1522

1523 1524 1525
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1526 1527
	pr_info("Intel P-state driver initializing.\n");

1528
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1529 1530 1531
	if (!all_cpu_data)
		return -ENOMEM;

1532
	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1533
		hwp_active++;
D
Dirk Brandewie 已提交
1534

1535 1536 1537
	if (!hwp_active && hwp_only)
		goto out;

1538 1539 1540 1541 1542 1543
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1544

1545 1546
	return rc;
out:
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			del_timer_sync(&all_cpu_data[cpu]->timer);
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1557 1558 1559 1560
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1561 1562 1563 1564 1565 1566 1567
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
D
Dirk Brandewie 已提交
1568 1569
	if (!strcmp(str, "no_hwp"))
		no_hwp = 1;
1570 1571
	if (!strcmp(str, "force"))
		force_load = 1;
1572 1573
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1574 1575 1576
	if (!strcmp(str, "no_acpi"))
		no_acpi_perf = 1;

1577 1578 1579 1580
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1581 1582 1583
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");