blk-throttle.c 74.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81
	unsigned int		nr_queued[2];	/* number of queued bios */
82 83
	long			nr_queued_bytes[2]; /* number of queued bytes */
	wait_queue_head_t	wait[2];
84 85 86 87 88

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
89 90 91 92
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
93
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
94 95
};

96 97
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
98
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
99 100
};

101 102
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

103
enum {
S
Shaohua Li 已提交
104
	LIMIT_LOW,
105 106 107 108
	LIMIT_MAX,
	LIMIT_CNT,
};

109
struct throtl_grp {
110 111 112
	/* must be the first member */
	struct blkg_policy_data pd;

113
	/* active throtl group service_queue member */
114 115
	struct rb_node rb_node;

116 117 118
	/* throtl_data this group belongs to */
	struct throtl_data *td;

119 120 121
	/* this group's service queue */
	struct throtl_service_queue service_queue;

122 123 124 125 126 127 128 129 130 131 132
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

133 134 135 136 137 138 139 140 141
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

142 143 144
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
145
	/* internally used bytes per second rate limits */
146
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
147 148
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
149

S
Shaohua Li 已提交
150
	/* internally used IOPS limits */
151
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
152 153
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
154

155 156
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
157 158
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
159

S
Shaohua Li 已提交
160 161 162 163 164 165 166
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

167
	unsigned long latency_target; /* us */
168
	unsigned long latency_target_conf; /* us */
169 170 171
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
172 173 174 175 176

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
177
	unsigned long idletime_threshold_conf; /* us */
178 179 180 181

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
182 183 184 185 186

	/* total time spent on lower layer: scheduler, device and others */
	struct blkg_rwstat service_time;
	/* total time spent on block throttle */
	struct blkg_rwstat wait_time;
187 188
	/* total IOs completed */
	struct blkg_rwstat completed;
189 190 191 192
	/* total bytes throttled */
	struct blkg_rwstat total_bytes_queued;
	/* total IOs throttled */
	struct blkg_rwstat total_io_queued;
193 194
};

195 196 197 198 199 200 201 202 203 204 205 206 207
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

208 209 210
struct throtl_data
{
	/* service tree for active throtl groups */
211
	struct throtl_service_queue service_queue;
212 213 214 215 216 217

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

218 219
	unsigned int throtl_slice;

220
	/* Work for dispatching throttled bios */
221
	struct work_struct dispatch_work;
222 223
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
224 225 226

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
227 228

	unsigned int scale;
229

230 231 232
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
233
	unsigned long last_calculate_time;
234
	unsigned long filtered_latency;
235 236

	bool track_bio_latency;
237 238
};

239
static void throtl_pending_timer_fn(struct timer_list *t);
240

241 242 243 244 245
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
246
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
247
{
248
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
249 250
}

T
Tejun Heo 已提交
251
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
252
{
253
	return pd_to_blkg(&tg->pd);
254 255
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
275
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
276 277 278 279 280 281 282 283 284 285 286 287
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

306 307
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
308
	struct blkcg_gq *blkg = tg_to_blkg(tg);
309
	struct throtl_data *td;
310 311 312 313
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
314 315 316

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
317 318 319 320 321 322 323 324
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
325 326 327 328 329 330 331 332

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
333
	return ret;
334 335 336 337
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
338
	struct blkcg_gq *blkg = tg_to_blkg(tg);
339
	struct throtl_data *td;
340 341 342 343
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
344

345 346
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
347 348 349 350 351 352 353 354
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
355 356 357 358 359 360 361 362 363 364

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
365
	return ret;
366 367
}

368 369 370
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
385 386
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
387
	if ((__tg)) {							\
388 389
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
390 391 392
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
393
} while (0)
394

395 396 397 398 399 400 401 402
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

486
/* init a service_queue, assumes the caller zeroed it */
487
static void throtl_service_queue_init(struct throtl_service_queue *sq)
488
{
489 490
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
491 492 493 494
	sq->nr_queued_bytes[0] = 0;
	sq->nr_queued_bytes[1] = 0;
	init_waitqueue_head(&sq->wait[0]);
	init_waitqueue_head(&sq->wait[1]);
495
	sq->pending_tree = RB_ROOT;
496
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
497 498
}

499 500 501
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
502
{
503
	struct throtl_grp *tg;
T
Tejun Heo 已提交
504
	int rw;
505

506
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
507
	if (!tg)
508
		return NULL;
509

510
	if (blkg_rwstat_init(&tg->service_time, gfp) ||
511
	    blkg_rwstat_init(&tg->wait_time, gfp) ||
512
	    blkg_rwstat_init(&tg->completed, gfp) ||
513 514
	    blkg_rwstat_init(&tg->total_bytes_queued, gfp) ||
	    blkg_rwstat_init(&tg->total_io_queued, gfp))
515 516
		goto err;

517 518 519 520 521 522 523 524
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
525 526 527 528
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
529 530 531 532 533
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
534

535
	tg->latency_target = DFL_LATENCY_TARGET;
536
	tg->latency_target_conf = DFL_LATENCY_TARGET;
537 538
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
539

540
	return &tg->pd;
541 542 543 544

err:
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
545
	blkg_rwstat_exit(&tg->completed);
546 547
	blkg_rwstat_exit(&tg->total_bytes_queued);
	blkg_rwstat_exit(&tg->total_io_queued);
548 549
	kfree(tg);
	return NULL;
550 551
}

552
static void throtl_pd_init(struct blkg_policy_data *pd)
553
{
554 555
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
556
	struct throtl_data *td = blkg->q->td;
557
	struct throtl_service_queue *sq = &tg->service_queue;
558

559
	/*
560
	 * If on the default hierarchy, we switch to properly hierarchical
561 562 563 564 565
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
566
	 * If not on the default hierarchy, the broken flat hierarchy
567 568 569 570 571
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
572
	sq->parent_sq = &td->service_queue;
573 574 575

	/* Enable hierarchical throttling even on traditional hierarchy */
	if (blkg->parent)
576
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
577
	tg->td = td;
578 579
}

580 581 582 583 584 585 586 587
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
588
	struct throtl_data *td = tg->td;
589 590 591 592
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
593 594 595
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
596 597
}

598
static void throtl_pd_online(struct blkg_policy_data *pd)
599
{
600
	struct throtl_grp *tg = pd_to_tg(pd);
601 602 603 604
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
605
	tg_update_has_rules(tg);
606 607
}

S
Shaohua Li 已提交
608 609 610 611 612 613 614 615 616 617 618
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
619
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
620
			low_valid = true;
621 622
			break;
		}
S
Shaohua Li 已提交
623 624 625 626 627 628
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

629
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
630 631 632
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);
633 634
	struct blkcg_gq *blkg = pd_to_blkg(pd);
	struct blkcg_gq *parent = blkg->parent;
S
Shaohua Li 已提交
635 636 637 638 639 640 641 642

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

643 644
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
645 646 647 648 649
	if (parent) {
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->service_time,
				    &tg->service_time);
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->wait_time,
				    &tg->wait_time);
650 651
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->completed,
				    &tg->completed);
652 653 654 655
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->total_bytes_queued,
				    &tg->total_bytes_queued);
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->total_io_queued,
				    &tg->total_io_queued);
656
	}
S
Shaohua Li 已提交
657 658
}

659 660
static void throtl_pd_free(struct blkg_policy_data *pd)
{
661 662
	struct throtl_grp *tg = pd_to_tg(pd);

663
	del_timer_sync(&tg->service_queue.pending_timer);
664 665
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
666
	blkg_rwstat_exit(&tg->completed);
667 668
	blkg_rwstat_exit(&tg->total_bytes_queued);
	blkg_rwstat_exit(&tg->total_io_queued);
669
	kfree(tg);
670 671
}

672 673 674 675 676 677
static void throtl_pd_reset(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	blkg_rwstat_reset(&tg->service_time);
	blkg_rwstat_reset(&tg->wait_time);
678
	blkg_rwstat_reset(&tg->completed);
679 680
	blkg_rwstat_reset(&tg->total_bytes_queued);
	blkg_rwstat_reset(&tg->total_io_queued);
681 682
}

683 684
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
685 686
{
	/* Service tree is empty */
687
	if (!parent_sq->nr_pending)
688 689
		return NULL;

690 691
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
692

693 694
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
695 696 697 698 699 700 701 702 703 704

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

705 706
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
707
{
708 709 710 711
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
712 713
}

714
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
715 716 717
{
	struct throtl_grp *tg;

718
	tg = throtl_rb_first(parent_sq);
719 720 721
	if (!tg)
		return;

722
	parent_sq->first_pending_disptime = tg->disptime;
723 724
}

725
static void tg_service_queue_add(struct throtl_grp *tg)
726
{
727
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
728
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
747
		parent_sq->first_pending = &tg->rb_node;
748 749

	rb_link_node(&tg->rb_node, parent, node);
750
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
751 752
}

753
static void __throtl_enqueue_tg(struct throtl_grp *tg)
754
{
755
	tg_service_queue_add(tg);
756
	tg->flags |= THROTL_TG_PENDING;
757
	tg->service_queue.parent_sq->nr_pending++;
758 759
}

760
static void throtl_enqueue_tg(struct throtl_grp *tg)
761
{
762
	if (!(tg->flags & THROTL_TG_PENDING))
763
		__throtl_enqueue_tg(tg);
764 765
}

766
static void __throtl_dequeue_tg(struct throtl_grp *tg)
767
{
768
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
769
	tg->flags &= ~THROTL_TG_PENDING;
770 771
}

772
static void throtl_dequeue_tg(struct throtl_grp *tg)
773
{
774
	if (tg->flags & THROTL_TG_PENDING)
775
		__throtl_dequeue_tg(tg);
776 777
}

778
/* Call with queue lock held */
779 780
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
781
{
782
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
783 784 785 786 787 788 789 790 791 792

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
793 794 795
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
796 797
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
818
{
819
	/* any pending children left? */
820
	if (!sq->nr_pending)
821
		return true;
822

823
	update_min_dispatch_time(sq);
824

825
	/* is the next dispatch time in the future? */
826
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
827
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
828
		return true;
829 830
	}

831 832
	/* tell the caller to continue dispatching */
	return false;
833 834
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

850
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
851 852 853 854 855 856
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

857
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
858 859
{
	tg->bytes_disp[rw] = 0;
860
	tg->io_disp[rw] = 0;
861
	tg->slice_start[rw] = jiffies;
862
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
863 864 865 866
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
867 868
}

869 870
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
871
{
872
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
873 874
}

875 876
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
877
{
878
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
879 880 881 882
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
883 884 885
}

/* Determine if previously allocated or extended slice is complete or not */
886
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
887 888
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
889
		return false;
890

891
	return true;
892 893 894
}

/* Trim the used slices and adjust slice start accordingly */
895
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
896
{
897 898
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
899 900 901 902 903 904 905 906

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
907
	if (throtl_slice_used(tg, rw))
908 909
		return;

910 911 912 913 914 915 916 917
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

918
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
919

920 921
	time_elapsed = jiffies - tg->slice_start[rw];

922
	nr_slices = time_elapsed / tg->td->throtl_slice;
923 924 925

	if (!nr_slices)
		return;
926
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
927 928
	do_div(tmp, HZ);
	bytes_trim = tmp;
929

930 931
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
932

933
	if (!bytes_trim && !io_trim)
934 935 936 937 938 939 940
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

941 942 943 944 945
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

946
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
947

948 949 950 951
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
952 953
}

954 955
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
956 957
{
	bool rw = bio_data_dir(bio);
958
	unsigned int io_allowed;
959
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
960
	u64 tmp;
961

962
	jiffy_elapsed = jiffies - tg->slice_start[rw];
963

964 965
	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
966

967 968 969 970 971 972 973
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

974
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
975 976 977 978 979 980
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
981 982

	if (tg->io_disp[rw] + 1 <= io_allowed) {
983 984
		if (wait)
			*wait = 0;
985
		return true;
986 987
	}

988
	/* Calc approx time to dispatch */
989
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
990 991 992

	if (wait)
		*wait = jiffy_wait;
993
	return false;
994 995
}

996 997
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
998 999
{
	bool rw = bio_data_dir(bio);
1000
	u64 bytes_allowed, extra_bytes, tmp;
1001
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
1002
	unsigned int bio_size = throtl_bio_data_size(bio);
1003 1004 1005 1006 1007

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
1008
		jiffy_elapsed_rnd = tg->td->throtl_slice;
1009

1010
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
1011

1012
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
1013
	do_div(tmp, HZ);
1014
	bytes_allowed = tmp;
1015

1016
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
1017 1018
		if (wait)
			*wait = 0;
1019
		return true;
1020 1021 1022
	}

	/* Calc approx time to dispatch */
1023
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
1024
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
1036
	return false;
1037 1038 1039 1040 1041 1042
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
1043 1044
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
1055
	BUG_ON(tg->service_queue.nr_queued[rw] &&
1056
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1057

1058
	/* If tg->bps = -1, then BW is unlimited */
1059 1060
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1061 1062
		if (wait)
			*wait = 0;
1063
		return true;
1064 1065 1066 1067 1068
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1069 1070 1071
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1072
	 */
1073
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1074
		throtl_start_new_slice(tg, rw);
1075
	else {
1076 1077 1078 1079
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1080 1081
	}

1082 1083
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1084 1085
		if (wait)
			*wait = 0;
1086
		return true;
1087 1088 1089 1090 1091 1092 1093 1094
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1095
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1096

1097
	return false;
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static void throtl_stats_update_completion(struct throtl_grp *tg,
					   uint64_t start_time,
					   uint64_t io_start_time,
					   int op)
{
	unsigned long flags;
	uint64_t now = sched_clock();

	local_irq_save(flags);
	if (time_after64(now, io_start_time))
		blkg_rwstat_add(&tg->service_time, op, now - io_start_time);
	if (time_after64(io_start_time, start_time))
		blkg_rwstat_add(&tg->wait_time, op, io_start_time - start_time);
1113
	blkg_rwstat_add(&tg->completed, op, 1);
1114 1115 1116 1117 1118 1119 1120 1121
	local_irq_restore(flags);
}

static void throtl_bio_end_io(struct bio *bio)
{
	struct throtl_grp *tg;

	rcu_read_lock();
1122
	/* see comments in throtl_bio_stats_start() */
1123
	if (!bio_flagged(bio, BIO_THROTL_STATED))
1124 1125
		goto out;

1126 1127 1128 1129 1130 1131 1132 1133
	tg = (struct throtl_grp *)bio->bi_tg_private;
	if (!tg)
		goto out;

	throtl_stats_update_completion(tg, bio_start_time_ns(bio),
				       bio_io_start_time_ns(bio),
				       bio_op(bio));
	blkg_put(tg_to_blkg(tg));
1134
	bio_clear_flag(bio, BIO_THROTL_STATED);
1135 1136 1137 1138 1139 1140 1141 1142
out:
	rcu_read_unlock();
}

static inline void throtl_bio_stats_start(struct bio *bio, struct throtl_grp *tg)
{
	int op = bio_op(bio);

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	/*
	 * It may happen that end_io will be called twice like dm-thin,
	 * which will save origin end_io first, and call its overwrite
	 * end_io and then the saved end_io. We use bio flag
	 * BIO_THROTL_STATED to do only once statistics.
	 */
	if ((op == REQ_OP_READ || op == REQ_OP_WRITE) &&
	    !bio_flagged(bio, BIO_THROTL_STATED)) {
		blkg_get(tg_to_blkg(tg));
		bio_set_flag(bio, BIO_THROTL_STATED);
1153 1154 1155 1156 1157 1158
		bio->bi_tg_end_io = throtl_bio_end_io;
		bio->bi_tg_private = tg;
		bio_set_start_time_ns(bio);
	}
}

1159 1160 1161
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1162
	unsigned int bio_size = throtl_bio_data_size(bio);
1163 1164

	/* Charge the bio to the group */
1165
	tg->bytes_disp[rw] += bio_size;
1166
	tg->io_disp[rw]++;
1167
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1168
	tg->last_io_disp[rw]++;
1169

1170
	/*
1171
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1172 1173 1174 1175
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1176 1177
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1191
{
1192
	struct throtl_service_queue *sq = &tg->service_queue;
1193 1194
	bool rw = bio_data_dir(bio);

1195 1196 1197
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1198 1199 1200 1201 1202 1203 1204 1205 1206
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1207 1208
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1209
	sq->nr_queued[rw]++;
1210
	sq->nr_queued_bytes[rw] += throtl_bio_data_size(bio);
1211 1212 1213
	blkg_rwstat_add(&tg->total_bytes_queued, bio_op(bio),
			throtl_bio_data_size(bio));
	blkg_rwstat_add(&tg->total_io_queued, bio_op(bio), 1);
1214
	throtl_enqueue_tg(tg);
1215 1216
}

1217
static void tg_update_disptime(struct throtl_grp *tg)
1218
{
1219
	struct throtl_service_queue *sq = &tg->service_queue;
1220 1221 1222
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1223 1224
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1225
		tg_may_dispatch(tg, bio, &read_wait);
1226

1227 1228
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1229
		tg_may_dispatch(tg, bio, &write_wait);
1230 1231 1232 1233 1234

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1235
	throtl_dequeue_tg(tg);
1236
	tg->disptime = disptime;
1237
	throtl_enqueue_tg(tg);
1238 1239 1240

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1253
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1254
{
1255
	struct throtl_service_queue *sq = &tg->service_queue;
1256 1257
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1258
	struct throtl_grp *tg_to_put = NULL;
1259 1260
	struct bio *bio;

1261 1262 1263 1264 1265 1266 1267
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1268
	sq->nr_queued[rw]--;
1269 1270 1271 1272 1273 1274 1275 1276 1277
	sq->nr_queued_bytes[rw] -= throtl_bio_data_size(bio);
	WARN_ON_ONCE(sq->nr_queued_bytes[rw] < 0);

	if (wq_has_sleeper(&sq->wait[rw])) {
		if (sq->nr_queued_bytes[rw] > 0)
			wake_up(&sq->wait[rw]);
		else
			wake_up_all(&sq->wait[rw]);
	}
1278 1279

	throtl_charge_bio(tg, bio);
1280 1281 1282 1283 1284 1285 1286 1287 1288

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1289
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1290
		start_parent_slice_with_credit(tg, parent_tg, rw);
1291
	} else {
1292 1293
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1294 1295 1296
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1297

1298
	throtl_trim_slice(tg, rw);
1299

1300 1301
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1302 1303
}

1304
static int throtl_dispatch_tg(struct throtl_grp *tg)
1305
{
1306
	struct throtl_service_queue *sq = &tg->service_queue;
1307 1308
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1309
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1310 1311 1312 1313
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1314
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1315
	       tg_may_dispatch(tg, bio, NULL)) {
1316

1317
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1318 1319 1320 1321 1322 1323
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1324
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1325
	       tg_may_dispatch(tg, bio, NULL)) {
1326

1327
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1328 1329 1330 1331 1332 1333 1334 1335 1336
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1337
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1338 1339 1340 1341
{
	unsigned int nr_disp = 0;

	while (1) {
1342
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1343
		struct throtl_service_queue *sq;
1344 1345 1346 1347 1348 1349 1350

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1351
		throtl_dequeue_tg(tg);
1352

1353
		nr_disp += throtl_dispatch_tg(tg);
1354

1355
		sq = &tg->service_queue;
1356
		if (sq->nr_queued[0] || sq->nr_queued[1])
1357
			tg_update_disptime(tg);
1358 1359 1360 1361 1362 1363 1364 1365

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1366 1367
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1368 1369 1370 1371 1372 1373 1374
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1375 1376 1377 1378 1379 1380 1381
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1382
 */
1383
static void throtl_pending_timer_fn(struct timer_list *t)
1384
{
1385
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1386
	struct throtl_grp *tg = sq_to_tg(sq);
1387
	struct throtl_data *td = sq_to_td(sq);
1388
	struct request_queue *q = td->queue;
1389 1390
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1391
	int ret;
1392 1393

	spin_lock_irq(q->queue_lock);
1394 1395 1396
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1397 1398 1399
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1400

1401 1402
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1403 1404
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1405 1406 1407 1408 1409 1410

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1411

1412 1413
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1414

1415 1416 1417 1418
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1419
	}
1420

1421 1422
	if (!dispatched)
		goto out_unlock;
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1440
	spin_unlock_irq(q->queue_lock);
1441
}
1442

1443 1444 1445 1446 1447 1448 1449 1450
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1451
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1465 1466 1467
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1468 1469 1470
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1471
		blk_start_plug(&plug);
1472 1473
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1474
		blk_finish_plug(&plug);
1475 1476 1477
	}
}

1478 1479
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1480
{
1481 1482
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1483

1484
	if (v == U64_MAX)
1485
		return 0;
1486
	return __blkg_prfill_u64(sf, pd, v);
1487 1488
}

1489 1490
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1491
{
1492 1493
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1494

1495
	if (v == UINT_MAX)
1496
		return 0;
1497
	return __blkg_prfill_u64(sf, pd, v);
1498 1499
}

1500
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1501
{
1502 1503
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1504
	return 0;
1505 1506
}

1507
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1508
{
1509 1510
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1511
	return 0;
1512 1513
}

1514
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1515
{
1516
	struct throtl_service_queue *sq = &tg->service_queue;
1517
	struct cgroup_subsys_state *pos_css;
1518
	struct blkcg_gq *blkg;
1519

1520 1521
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1522 1523
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1524

1525 1526 1527 1528 1529 1530 1531
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1532 1533
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1552

1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1561 1562
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1563

1564
	if (tg->flags & THROTL_TG_PENDING) {
1565
		tg_update_disptime(tg);
1566
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1567
	}
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1587
		v = U64_MAX;
1588 1589 1590 1591 1592 1593 1594

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1595

1596
	tg_conf_updated(tg, false);
1597 1598
	ret = 0;
out_finish:
1599
	blkg_conf_finish(&ctx);
1600
	return ret ?: nbytes;
1601 1602
}

1603 1604
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1605
{
1606
	return tg_set_conf(of, buf, nbytes, off, true);
1607 1608
}

1609 1610
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1611
{
1612
	return tg_set_conf(of, buf, nbytes, off, false);
1613 1614
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static u64 tg_prfill_rwstat_field(struct seq_file *sf,
				  struct blkg_policy_data *pd,
				  int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkg_rwstat rwstat = blkg_rwstat_read((void *)tg + off);

	return __blkg_prfill_rwstat(sf, pd, &rwstat);
}

J
Jiufei Xue 已提交
1625
static int tg_print_rwstat(struct seq_file *sf, void *v)
1626 1627 1628 1629 1630 1631 1632
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_field, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

1633
static struct cftype throtl_legacy_files[] = {
1634 1635
	{
		.name = "throttle.read_bps_device",
1636
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1637
		.seq_show = tg_print_conf_u64,
1638
		.write = tg_set_conf_u64,
1639 1640 1641
	},
	{
		.name = "throttle.write_bps_device",
1642
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1643
		.seq_show = tg_print_conf_u64,
1644
		.write = tg_set_conf_u64,
1645 1646 1647
	},
	{
		.name = "throttle.read_iops_device",
1648
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1649
		.seq_show = tg_print_conf_uint,
1650
		.write = tg_set_conf_uint,
1651 1652 1653
	},
	{
		.name = "throttle.write_iops_device",
1654
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1655
		.seq_show = tg_print_conf_uint,
1656
		.write = tg_set_conf_uint,
1657 1658 1659
	},
	{
		.name = "throttle.io_service_bytes",
1660 1661
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1662
	},
1663 1664 1665 1666 1667
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1668 1669
	{
		.name = "throttle.io_serviced",
1670 1671
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1672
	},
1673 1674 1675 1676 1677
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1678 1679 1680
	{
		.name = "throttle.io_service_time",
		.private = offsetof(struct throtl_grp, service_time),
J
Jiufei Xue 已提交
1681
		.seq_show = tg_print_rwstat,
1682 1683 1684 1685
	},
	{
		.name = "throttle.io_wait_time",
		.private = offsetof(struct throtl_grp, wait_time),
J
Jiufei Xue 已提交
1686
		.seq_show = tg_print_rwstat,
1687
	},
1688 1689 1690 1691 1692
	{
		.name = "throttle.io_completed",
		.private = offsetof(struct throtl_grp, completed),
		.seq_show = tg_print_rwstat,
	},
1693 1694 1695
	{
		.name = "throttle.total_bytes_queued",
		.private = offsetof(struct throtl_grp, total_bytes_queued),
J
Jiufei Xue 已提交
1696
		.seq_show = tg_print_rwstat,
1697 1698 1699 1700
	},
	{
		.name = "throttle.total_io_queued",
		.private = offsetof(struct throtl_grp, total_io_queued),
J
Jiufei Xue 已提交
1701
		.seq_show = tg_print_rwstat,
1702
	},
1703 1704 1705
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1706
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1707 1708 1709 1710 1711
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1712 1713
	u64 bps_dft;
	unsigned int iops_dft;
1714
	char idle_time[26] = "";
1715
	char latency_time[26] = "";
1716 1717 1718

	if (!dname)
		return 0;
1719

S
Shaohua Li 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1731
	    tg->iops_conf[WRITE][off] == iops_dft &&
1732
	    (off != LIMIT_LOW ||
1733
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1734
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1735 1736
		return 0;

1737
	if (tg->bps_conf[READ][off] != U64_MAX)
1738
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1739
			tg->bps_conf[READ][off]);
1740
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1741
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1742
			tg->bps_conf[WRITE][off]);
1743
	if (tg->iops_conf[READ][off] != UINT_MAX)
1744
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1745
			tg->iops_conf[READ][off]);
1746
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1747
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1748
			tg->iops_conf[WRITE][off]);
1749
	if (off == LIMIT_LOW) {
1750
		if (tg->idletime_threshold_conf == ULONG_MAX)
1751 1752 1753
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1754
				tg->idletime_threshold_conf);
1755

1756
		if (tg->latency_target_conf == ULONG_MAX)
1757 1758 1759
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1760
				" latency=%lu", tg->latency_target_conf);
1761
	}
1762

1763 1764 1765
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1766 1767 1768
	return 0;
}

S
Shaohua Li 已提交
1769
static int tg_print_limit(struct seq_file *sf, void *v)
1770
{
S
Shaohua Li 已提交
1771
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1772 1773 1774 1775
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1776
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1777 1778 1779 1780 1781 1782
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1783
	unsigned long idle_time;
1784
	unsigned long latency_time;
1785
	int ret;
S
Shaohua Li 已提交
1786
	int index = of_cft(of)->private;
1787 1788 1789 1790 1791 1792 1793

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1794 1795 1796 1797
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1798

1799 1800
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1801 1802 1803
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1804
		u64 val = U64_MAX;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1832 1833
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1834 1835
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1836 1837 1838 1839
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1840 1841 1842 1843
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1844

S
Shaohua Li 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1874 1875
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1876
	}
1877 1878 1879 1880 1881 1882 1883

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1884 1885
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1886 1887 1888 1889 1890 1891 1892
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1902 1903 1904
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1905 1906 1907
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1908 1909 1910 1911
	},
	{ }	/* terminate */
};

1912
static void throtl_shutdown_wq(struct request_queue *q)
1913 1914 1915
{
	struct throtl_data *td = q->td;

1916
	cancel_work_sync(&td->dispatch_work);
1917 1918
}

T
Tejun Heo 已提交
1919
static struct blkcg_policy blkcg_policy_throtl = {
1920
	.dfl_cftypes		= throtl_files,
1921
	.legacy_cftypes		= throtl_legacy_files,
1922

1923
	.pd_alloc_fn		= throtl_pd_alloc,
1924
	.pd_init_fn		= throtl_pd_init,
1925
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1926
	.pd_offline_fn		= throtl_pd_offline,
1927
	.pd_free_fn		= throtl_pd_free,
1928
	.pd_reset_stats_fn	= throtl_pd_reset,
1929 1930
};

S
Shaohua Li 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1970 1971 1972 1973 1974
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1975
	 *   configure a too big threshold) or 4 times of idletime threshold
1976
	 * - average think time is more than threshold
1977
	 * - IO latency is largely below threshold
1978
	 */
1979
	unsigned long time;
1980
	bool ret;
1981

1982 1983 1984 1985 1986 1987
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1988
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1989 1990 1991 1992 1993
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
2015 2016

	if (time_after_eq(jiffies,
2017 2018
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
2019
		return true;
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

2044
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
2045 2046
		return false;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

2084 2085 2086 2087 2088
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

2089
	throtl_log(&td->service_queue, "upgrade to max");
2090
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2091
	td->low_upgrade_time = jiffies;
2092
	td->scale = 0;
2093 2094 2095 2096 2097 2098 2099
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
2100
		throtl_schedule_next_dispatch(sq, true);
2101 2102 2103
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
2104
	throtl_schedule_next_dispatch(&td->service_queue, true);
2105 2106 2107
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
2108 2109
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
2110 2111
	td->scale /= 2;

2112
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2113 2114 2115 2116 2117
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
2131 2132
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2133 2134 2135
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
2164
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
2165 2166 2167 2168 2169
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

2170 2171
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2226 2227 2228
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2229 2230 2231 2232
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2233 2234 2235 2236 2237 2238 2239 2240

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2256

2257 2258
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2259

2260
				latency[rw] = tmp->total_latency;
2261

2262 2263 2264 2265 2266 2267 2268
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2269 2270 2271
		}
	}

2272 2273 2274 2275 2276 2277 2278 2279
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2280

2281 2282 2283 2284 2285
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2286

2287 2288 2289 2290 2291
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2292
	}
2293 2294 2295

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2296 2297 2298 2299 2300 2301
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2302 2303 2304 2305 2306 2307 2308
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2309 2310 2311
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2312 2313 2314
	/* fallback to root_blkg if we fail to get a blkg ref */
	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2315
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2316 2317 2318
#endif
}

2319
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2320
		    struct bio *bio, wait_queue_head_t **wait)
2321
{
2322
	struct throtl_qnode *qn = NULL;
2323
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2324
	struct throtl_service_queue *sq;
2325
	bool rw = bio_data_dir(bio);
2326
	bool throttled = false;
2327
	struct throtl_data *td = tg->td;
2328

2329 2330
	WARN_ON_ONCE(!rcu_read_lock_held());

2331
	/* see throtl_charge_bio() */
2332 2333 2334 2335 2336 2337
	if (bio_flagged(bio, BIO_THROTTLED))
		goto out;

	throtl_bio_stats_start(bio, tg);

	if (!tg->has_rules[rw])
2338
		goto out;
2339 2340

	spin_lock_irq(q->queue_lock);
2341

2342 2343
	throtl_update_latency_buckets(td);

2344
	if (unlikely(blk_queue_bypass(q)))
2345
		goto out_unlock;
2346

2347
	blk_throtl_assoc_bio(tg, bio);
2348 2349
	blk_throtl_update_idletime(tg);

2350 2351
	sq = &tg->service_queue;

2352
again:
2353
	while (true) {
S
Shaohua Li 已提交
2354 2355 2356
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2357
		throtl_upgrade_check(tg);
2358 2359 2360
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2361

2362
		/* if above limits, break to queue */
2363
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2364
			tg->last_low_overflow_time[rw] = jiffies;
2365 2366
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2367 2368
				goto again;
			}
2369
			break;
2370
		}
2371 2372

		/* within limits, let's charge and dispatch directly */
2373
		throtl_charge_bio(tg, bio);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2386
		throtl_trim_slice(tg, rw);
2387 2388 2389 2390 2391 2392

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2393
		qn = &tg->qnode_on_parent[rw];
2394 2395 2396 2397
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2398 2399
	}

2400
	/* out-of-limit, queue to @tg */
2401 2402
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2403 2404 2405
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2406
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2407

S
Shaohua Li 已提交
2408 2409
	tg->last_low_overflow_time[rw] = jiffies;

2410
	td->nr_queued[rw]++;
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420

	if (rw == WRITE) {
		u64 bps_limit = tg_bps_limit(tg, rw);

		if (bps_limit != U64_MAX &&
		    (wq_has_sleeper(&sq->wait[rw]) ||
		     sq->nr_queued_bytes[rw] > div_u64(bps_limit, 2)))
			*wait = &sq->wait[rw];
	}

2421
	throtl_add_bio_tg(bio, qn, tg);
2422
	throttled = true;
2423

2424 2425 2426 2427 2428 2429
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2430
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2431
		tg_update_disptime(tg);
2432
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2433 2434
	}

2435
out_unlock:
2436
	spin_unlock_irq(q->queue_lock);
2437
out:
2438 2439
	if (!throttled)
		bio_set_io_start_time_ns(bio);
S
Shaohua Li 已提交
2440
	bio_set_flag(bio, BIO_THROTTLED);
2441 2442 2443

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2444
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2445
#endif
2446
	return throttled;
2447 2448
}

2449
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2450 2451 2452 2453 2454 2455
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2456 2457
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2458 2459 2460 2461 2462
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2463
	latency = get_cpu_ptr(td->latency_buckets[op]);
2464 2465
	latency[index].total_latency += time;
	latency[index].samples++;
2466
	put_cpu_ptr(td->latency_buckets[op]);
2467 2468 2469 2470 2471 2472 2473
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2474
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2475 2476
}

2477 2478
void blk_throtl_bio_endio(struct bio *bio)
{
2479
	struct blkcg_gq *blkg;
2480
	struct throtl_grp *tg;
2481 2482 2483 2484
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2485
	int rw = bio_data_dir(bio);
2486

2487 2488
	blkg = bio->bi_blkg;
	if (!blkg)
2489
		return;
2490
	tg = blkg_to_tg(blkg);
2491

2492 2493 2494
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2495 2496
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2497
	if (!start_time || finish_time <= start_time)
2498 2499 2500
		return;

	lat = finish_time - start_time;
2501
	/* this is only for bio based driver */
2502 2503 2504
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2505

2506
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2507 2508 2509
		int bucket;
		unsigned int threshold;

2510
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2511
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2526
	}
2527 2528 2529
}
#endif

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2545
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2546
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2547
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2548 2549 2550 2551
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2562
	struct blkcg_gq *blkg;
2563
	struct cgroup_subsys_state *pos_css;
2564
	struct bio *bio;
2565
	int rw;
2566

2567
	queue_lockdep_assert_held(q);
2568
	rcu_read_lock();
2569

2570 2571 2572 2573 2574 2575
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2576
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2577
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2578

2579 2580 2581 2582
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2583 2584
	spin_unlock_irq(q->queue_lock);

2585
	/* all bios now should be in td->service_queue, issue them */
2586
	for (rw = READ; rw <= WRITE; rw++)
2587 2588
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2589
			generic_make_request(bio);
2590 2591 2592 2593

	spin_lock_irq(q->queue_lock);
}

2594 2595 2596
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2597
	int ret;
2598 2599 2600 2601

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2602
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2603
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2604 2605 2606 2607 2608
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2609
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2610 2611
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2612 2613 2614
		kfree(td);
		return -ENOMEM;
	}
2615

2616
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2617
	throtl_service_queue_init(&td->service_queue);
2618

2619
	q->td = td;
2620
	td->queue = q;
V
Vivek Goyal 已提交
2621

2622
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2623
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2624 2625
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2626

2627
	/* activate policy */
T
Tejun Heo 已提交
2628
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2629
	if (ret) {
2630 2631
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2632
		kfree(td);
2633
	}
2634
	return ret;
2635 2636 2637 2638
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2639
	BUG_ON(!q->td);
2640
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2641
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2642 2643
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2644
	kfree(q->td);
2645 2646
}

2647 2648 2649
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2650
	int i;
2651 2652 2653 2654

	td = q->td;
	BUG_ON(!td);

2655
	if (blk_queue_nonrot(q)) {
2656
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2657 2658
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2659
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2660
		td->filtered_latency = LATENCY_FILTERED_HD;
2661 2662 2663 2664
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2665
	}
2666 2667 2668 2669
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2670

2671
	td->track_bio_latency = !queue_is_rq_based(q);
2672 2673
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2702 2703
static int __init throtl_init(void)
{
2704 2705 2706 2707
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2708
	return blkcg_policy_register(&blkcg_policy_throtl);
2709 2710 2711
}

module_init(throtl_init);