blk-throttle.c 53.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86
enum {
S
Shaohua Li 已提交
87
	LIMIT_LOW,
88 89 90 91
	LIMIT_MAX,
	LIMIT_CNT,
};

92
struct throtl_grp {
93 94 95
	/* must be the first member */
	struct blkg_policy_data pd;

96
	/* active throtl group service_queue member */
97 98
	struct rb_node rb_node;

99 100 101
	/* throtl_data this group belongs to */
	struct throtl_data *td;

102 103 104
	/* this group's service queue */
	struct throtl_service_queue service_queue;

105 106 107 108 109 110 111 112 113 114 115
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

116 117 118 119 120 121 122 123 124
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

125 126 127
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
128
	/* internally used bytes per second rate limits */
129
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
130 131
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
132

S
Shaohua Li 已提交
133
	/* internally used IOPS limits */
134
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
135 136
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
137

138 139
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
140 141
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
142

S
Shaohua Li 已提交
143 144 145 146 147 148 149
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

150 151 152 153 154 155 156 157
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
158
	struct throtl_service_queue service_queue;
159 160 161 162 163 164 165

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* Work for dispatching throttled bios */
166
	struct work_struct dispatch_work;
167 168
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
169 170 171

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
172 173
};

174 175
static void throtl_pending_timer_fn(unsigned long arg);

176 177 178 179 180
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
181
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
182
{
183
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
184 185
}

T
Tejun Heo 已提交
186
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
187
{
188
	return pd_to_blkg(&tg->pd);
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
210
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
211 212 213 214 215 216 217 218 219 220 221 222
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

223 224
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
225 226 227 228 229 230 231 232 233
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
	ret = tg->bps[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->bps[rw][LIMIT_MAX];
	return ret;
234 235 236 237
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
238 239 240 241 242 243 244 245 246
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
	ret = tg->iops[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
	return ret;
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
263 264
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
265 266
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
267
									\
268 269 270 271 272
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
273
} while (0)
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

358
/* init a service_queue, assumes the caller zeroed it */
359
static void throtl_service_queue_init(struct throtl_service_queue *sq)
360
{
361 362
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
363
	sq->pending_tree = RB_ROOT;
364 365 366 367
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

368 369
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
370
	struct throtl_grp *tg;
T
Tejun Heo 已提交
371
	int rw;
372 373 374

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
375
		return NULL;
376

377 378 379 380 381 382 383 384
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
385 386 387 388
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
389 390 391 392 393
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
394

395
	return &tg->pd;
396 397
}

398
static void throtl_pd_init(struct blkg_policy_data *pd)
399
{
400 401
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
402
	struct throtl_data *td = blkg->q->td;
403
	struct throtl_service_queue *sq = &tg->service_queue;
404

405
	/*
406
	 * If on the default hierarchy, we switch to properly hierarchical
407 408 409 410 411
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
412
	 * If not on the default hierarchy, the broken flat hierarchy
413 414 415 416 417
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
418
	sq->parent_sq = &td->service_queue;
419
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
420
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421
	tg->td = td;
422 423
}

424 425 426 427 428 429 430 431
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
432
	struct throtl_data *td = tg->td;
433 434 435 436
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
437 438 439
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
440 441
}

442
static void throtl_pd_online(struct blkg_policy_data *pd)
443 444 445 446 447
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
448
	tg_update_has_rules(pd_to_tg(pd));
449 450
}

S
Shaohua Li 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

470
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
471 472 473 474 475 476 477 478 479 480 481
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

482 483
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
484 485
}

486 487
static void throtl_pd_free(struct blkg_policy_data *pd)
{
488 489
	struct throtl_grp *tg = pd_to_tg(pd);

490
	del_timer_sync(&tg->service_queue.pending_timer);
491
	kfree(tg);
492 493
}

494 495
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
496 497
{
	/* Service tree is empty */
498
	if (!parent_sq->nr_pending)
499 500
		return NULL;

501 502
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
503

504 505
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
506 507 508 509 510 511 512 513 514 515

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

516 517
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
518
{
519 520 521 522
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
523 524
}

525
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
526 527 528
{
	struct throtl_grp *tg;

529
	tg = throtl_rb_first(parent_sq);
530 531 532
	if (!tg)
		return;

533
	parent_sq->first_pending_disptime = tg->disptime;
534 535
}

536
static void tg_service_queue_add(struct throtl_grp *tg)
537
{
538
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
539
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
558
		parent_sq->first_pending = &tg->rb_node;
559 560

	rb_link_node(&tg->rb_node, parent, node);
561
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
562 563
}

564
static void __throtl_enqueue_tg(struct throtl_grp *tg)
565
{
566
	tg_service_queue_add(tg);
567
	tg->flags |= THROTL_TG_PENDING;
568
	tg->service_queue.parent_sq->nr_pending++;
569 570
}

571
static void throtl_enqueue_tg(struct throtl_grp *tg)
572
{
573
	if (!(tg->flags & THROTL_TG_PENDING))
574
		__throtl_enqueue_tg(tg);
575 576
}

577
static void __throtl_dequeue_tg(struct throtl_grp *tg)
578
{
579
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
580
	tg->flags &= ~THROTL_TG_PENDING;
581 582
}

583
static void throtl_dequeue_tg(struct throtl_grp *tg)
584
{
585
	if (tg->flags & THROTL_TG_PENDING)
586
		__throtl_dequeue_tg(tg);
587 588
}

589
/* Call with queue lock held */
590 591
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
592
{
593 594 595
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
618
{
619
	/* any pending children left? */
620
	if (!sq->nr_pending)
621
		return true;
622

623
	update_min_dispatch_time(sq);
624

625
	/* is the next dispatch time in the future? */
626
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
627
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
628
		return true;
629 630
	}

631 632
	/* tell the caller to continue dispatching */
	return false;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

657
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
658 659
{
	tg->bytes_disp[rw] = 0;
660
	tg->io_disp[rw] = 0;
661 662
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
663 664 665 666
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
667 668
}

669 670
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
671 672 673 674
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

675 676
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
677 678
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
679 680 681 682
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
683 684 685
}

/* Determine if previously allocated or extended slice is complete or not */
686
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
687 688
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
689
		return false;
690 691 692 693 694

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
695
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
696
{
697 698
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
699 700 701 702 703 704 705 706

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
707
	if (throtl_slice_used(tg, rw))
708 709
		return;

710 711 712 713 714 715 716 717
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

718
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
719

720 721 722 723 724 725
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
726
	tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
727 728
	do_div(tmp, HZ);
	bytes_trim = tmp;
729

730
	io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
731

732
	if (!bytes_trim && !io_trim)
733 734 735 736 737 738 739
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

740 741 742 743 744
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

745 746
	tg->slice_start[rw] += nr_slices * throtl_slice;

747 748 749 750
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
751 752
}

753 754
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
755 756
{
	bool rw = bio_data_dir(bio);
757
	unsigned int io_allowed;
758
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
759
	u64 tmp;
760

761
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
762

763 764 765 766 767 768
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

769 770 771 772 773 774 775
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

776
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
777 778 779 780 781 782
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
783 784

	if (tg->io_disp[rw] + 1 <= io_allowed) {
785 786
		if (wait)
			*wait = 0;
787
		return true;
788 789
	}

790
	/* Calc approx time to dispatch */
791
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
792 793 794 795 796 797 798 799 800 801 802

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

803 804
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
805 806
{
	bool rw = bio_data_dir(bio);
807
	u64 bytes_allowed, extra_bytes, tmp;
808
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
809 810 811 812 813 814 815 816 817

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

818
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
819
	do_div(tmp, HZ);
820
	bytes_allowed = tmp;
821

822
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
823 824
		if (wait)
			*wait = 0;
825
		return true;
826 827 828
	}

	/* Calc approx time to dispatch */
829
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
830
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
831 832 833 834 835 836 837 838 839 840 841

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
842 843 844 845 846 847 848
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
849 850
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
851 852 853 854 855 856 857 858 859 860
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
861
	BUG_ON(tg->service_queue.nr_queued[rw] &&
862
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
863

864
	/* If tg->bps = -1, then BW is unlimited */
865 866
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
867 868
		if (wait)
			*wait = 0;
869
		return true;
870 871 872 873 874
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
875 876 877
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
878
	 */
879
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
880
		throtl_start_new_slice(tg, rw);
881 882
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
883
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
884 885
	}

886 887
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
888 889 890 891 892 893 894 895 896 897 898
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
899
		throtl_extend_slice(tg, rw, jiffies + max_wait);
900 901 902 903 904 905 906 907 908

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
909
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
910
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
911 912
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
913

914
	/*
915
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
916 917 918 919
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
920 921
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
922 923
}

924 925 926 927 928 929 930 931 932 933 934
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
935
{
936
	struct throtl_service_queue *sq = &tg->service_queue;
937 938
	bool rw = bio_data_dir(bio);

939 940 941
	if (!qn)
		qn = &tg->qnode_on_self[rw];

942 943 944 945 946 947 948 949 950
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

951 952
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

953
	sq->nr_queued[rw]++;
954
	throtl_enqueue_tg(tg);
955 956
}

957
static void tg_update_disptime(struct throtl_grp *tg)
958
{
959
	struct throtl_service_queue *sq = &tg->service_queue;
960 961 962
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

963 964
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
965
		tg_may_dispatch(tg, bio, &read_wait);
966

967 968
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
969
		tg_may_dispatch(tg, bio, &write_wait);
970 971 972 973 974

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
975
	throtl_dequeue_tg(tg);
976
	tg->disptime = disptime;
977
	throtl_enqueue_tg(tg);
978 979 980

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
981 982
}

983 984 985 986 987 988 989 990 991 992
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

993
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
994
{
995
	struct throtl_service_queue *sq = &tg->service_queue;
996 997
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
998
	struct throtl_grp *tg_to_put = NULL;
999 1000
	struct bio *bio;

1001 1002 1003 1004 1005 1006 1007
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1008
	sq->nr_queued[rw]--;
1009 1010

	throtl_charge_bio(tg, bio);
1011 1012 1013 1014 1015 1016 1017 1018 1019

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1020
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1021
		start_parent_slice_with_credit(tg, parent_tg, rw);
1022
	} else {
1023 1024
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1025 1026 1027
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1028

1029
	throtl_trim_slice(tg, rw);
1030

1031 1032
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1033 1034
}

1035
static int throtl_dispatch_tg(struct throtl_grp *tg)
1036
{
1037
	struct throtl_service_queue *sq = &tg->service_queue;
1038 1039
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1040
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1041 1042 1043 1044
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1045
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1046
	       tg_may_dispatch(tg, bio, NULL)) {
1047

1048
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1049 1050 1051 1052 1053 1054
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1055
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1056
	       tg_may_dispatch(tg, bio, NULL)) {
1057

1058
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1059 1060 1061 1062 1063 1064 1065 1066 1067
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1068
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1069 1070 1071 1072
{
	unsigned int nr_disp = 0;

	while (1) {
1073 1074
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1075 1076 1077 1078 1079 1080 1081

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1082
		throtl_dequeue_tg(tg);
1083

1084
		nr_disp += throtl_dispatch_tg(tg);
1085

1086
		if (sq->nr_queued[0] || sq->nr_queued[1])
1087
			tg_update_disptime(tg);
1088 1089 1090 1091 1092 1093 1094 1095

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1096 1097
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1098 1099 1100 1101 1102 1103 1104
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1105 1106 1107 1108 1109 1110 1111
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1112
 */
1113 1114 1115
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1116
	struct throtl_grp *tg = sq_to_tg(sq);
1117
	struct throtl_data *td = sq_to_td(sq);
1118
	struct request_queue *q = td->queue;
1119 1120
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1121
	int ret;
1122 1123

	spin_lock_irq(q->queue_lock);
1124 1125 1126
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1127 1128 1129
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1130

1131 1132
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1133 1134
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1135 1136 1137 1138 1139 1140

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1141

1142 1143
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1144

1145 1146 1147 1148
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1149
	}
1150

1151 1152
	if (!dispatched)
		goto out_unlock;
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1170
	spin_unlock_irq(q->queue_lock);
1171
}
1172

1173 1174 1175 1176 1177 1178 1179 1180
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1181
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1195 1196 1197
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1198 1199 1200
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1201
		blk_start_plug(&plug);
1202 1203
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1204
		blk_finish_plug(&plug);
1205 1206 1207
	}
}

1208 1209
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1210
{
1211 1212
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1213

1214
	if (v == U64_MAX)
1215
		return 0;
1216
	return __blkg_prfill_u64(sf, pd, v);
1217 1218
}

1219 1220
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1221
{
1222 1223
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1224

1225
	if (v == UINT_MAX)
1226
		return 0;
1227
	return __blkg_prfill_u64(sf, pd, v);
1228 1229
}

1230
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1231
{
1232 1233
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1234
	return 0;
1235 1236
}

1237
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1238
{
1239 1240
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1241
	return 0;
1242 1243
}

1244
static void tg_conf_updated(struct throtl_grp *tg)
1245
{
1246
	struct throtl_service_queue *sq = &tg->service_queue;
1247
	struct cgroup_subsys_state *pos_css;
1248
	struct blkcg_gq *blkg;
1249

1250 1251
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1252 1253
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1254

1255 1256 1257 1258 1259 1260 1261
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1262
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1263 1264
		tg_update_has_rules(blkg_to_tg(blkg));

1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1273 1274
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1275

1276
	if (tg->flags & THROTL_TG_PENDING) {
1277
		tg_update_disptime(tg);
1278
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1279
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1299
		v = U64_MAX;
1300 1301 1302 1303 1304 1305 1306

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1307

1308
	tg_conf_updated(tg);
1309 1310
	ret = 0;
out_finish:
1311
	blkg_conf_finish(&ctx);
1312
	return ret ?: nbytes;
1313 1314
}

1315 1316
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1317
{
1318
	return tg_set_conf(of, buf, nbytes, off, true);
1319 1320
}

1321 1322
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1323
{
1324
	return tg_set_conf(of, buf, nbytes, off, false);
1325 1326
}

1327
static struct cftype throtl_legacy_files[] = {
1328 1329
	{
		.name = "throttle.read_bps_device",
1330
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1331
		.seq_show = tg_print_conf_u64,
1332
		.write = tg_set_conf_u64,
1333 1334 1335
	},
	{
		.name = "throttle.write_bps_device",
1336
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1337
		.seq_show = tg_print_conf_u64,
1338
		.write = tg_set_conf_u64,
1339 1340 1341
	},
	{
		.name = "throttle.read_iops_device",
1342
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1343
		.seq_show = tg_print_conf_uint,
1344
		.write = tg_set_conf_uint,
1345 1346 1347
	},
	{
		.name = "throttle.write_iops_device",
1348
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1349
		.seq_show = tg_print_conf_uint,
1350
		.write = tg_set_conf_uint,
1351 1352 1353
	},
	{
		.name = "throttle.io_service_bytes",
1354 1355
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1356 1357 1358
	},
	{
		.name = "throttle.io_serviced",
1359 1360
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1361 1362 1363 1364
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1365
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1366 1367 1368 1369 1370
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1371 1372
	u64 bps_dft;
	unsigned int iops_dft;
1373 1374 1375

	if (!dname)
		return 0;
1376

S
Shaohua Li 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1389 1390
		return 0;

S
Shaohua Li 已提交
1391
	if (tg->bps_conf[READ][off] != bps_dft)
1392
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1393 1394
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1395
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1396 1397
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1398
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1399 1400
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1401
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1402
			tg->iops_conf[WRITE][off]);
1403 1404 1405 1406 1407 1408

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1409
static int tg_print_limit(struct seq_file *sf, void *v)
1410
{
S
Shaohua Li 已提交
1411
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1412 1413 1414 1415
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1416
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1417 1418 1419 1420 1421 1422 1423
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1424
	int index = of_cft(of)->private;
1425 1426 1427 1428 1429 1430 1431

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1432 1433 1434 1435
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1436 1437 1438 1439

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1440
		u64 val = U64_MAX;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1472 1473 1474 1475
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1476

S
Shaohua Li 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1497 1498 1499 1500 1501 1502 1503 1504
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1514 1515 1516
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1517 1518 1519
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1520 1521 1522 1523
	},
	{ }	/* terminate */
};

1524
static void throtl_shutdown_wq(struct request_queue *q)
1525 1526 1527
{
	struct throtl_data *td = q->td;

1528
	cancel_work_sync(&td->dispatch_work);
1529 1530
}

T
Tejun Heo 已提交
1531
static struct blkcg_policy blkcg_policy_throtl = {
1532
	.dfl_cftypes		= throtl_files,
1533
	.legacy_cftypes		= throtl_legacy_files,
1534

1535
	.pd_alloc_fn		= throtl_pd_alloc,
1536
	.pd_init_fn		= throtl_pd_init,
1537
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1538
	.pd_offline_fn		= throtl_pd_offline,
1539
	.pd_free_fn		= throtl_pd_free,
1540 1541
};

S
Shaohua Li 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

S
Shaohua Li 已提交
1624 1625 1626
	if (time_before(jiffies, td->low_downgrade_time + throtl_slice))
		return false;

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1650
	td->low_upgrade_time = jiffies;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (time_after_eq(now, td->low_upgrade_time + throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) + throtl_slice))
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
	if (time_after(tg->last_check_time + throtl_slice, now))
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

	if (time_before(now, tg_last_low_overflow_time(tg) + throtl_slice))
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1759 1760
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1761
{
1762
	struct throtl_qnode *qn = NULL;
1763
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1764
	struct throtl_service_queue *sq;
1765
	bool rw = bio_data_dir(bio);
1766
	bool throttled = false;
1767

1768 1769
	WARN_ON_ONCE(!rcu_read_lock_held());

1770
	/* see throtl_charge_bio() */
1771
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1772
		goto out;
1773 1774

	spin_lock_irq(q->queue_lock);
1775 1776

	if (unlikely(blk_queue_bypass(q)))
1777
		goto out_unlock;
1778

1779 1780
	sq = &tg->service_queue;

1781
again:
1782
	while (true) {
S
Shaohua Li 已提交
1783 1784 1785
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
1786 1787 1788
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1789

1790
		/* if above limits, break to queue */
1791
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
1792
			tg->last_low_overflow_time[rw] = jiffies;
1793 1794 1795 1796
			if (throtl_can_upgrade(tg->td, tg)) {
				throtl_upgrade_state(tg->td);
				goto again;
			}
1797
			break;
1798
		}
1799 1800

		/* within limits, let's charge and dispatch directly */
1801
		throtl_charge_bio(tg, bio);
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1814
		throtl_trim_slice(tg, rw);
1815 1816 1817 1818 1819 1820

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1821
		qn = &tg->qnode_on_parent[rw];
1822 1823 1824 1825
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1826 1827
	}

1828
	/* out-of-limit, queue to @tg */
1829 1830
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1831 1832 1833
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1834
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1835

S
Shaohua Li 已提交
1836 1837
	tg->last_low_overflow_time[rw] = jiffies;

1838
	bio_associate_current(bio);
1839
	tg->td->nr_queued[rw]++;
1840
	throtl_add_bio_tg(bio, qn, tg);
1841
	throttled = true;
1842

1843 1844 1845 1846 1847 1848
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1849
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1850
		tg_update_disptime(tg);
1851
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1852 1853
	}

1854
out_unlock:
1855
	spin_unlock_irq(q->queue_lock);
1856
out:
1857 1858 1859 1860 1861 1862
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1863
		bio_clear_flag(bio, BIO_THROTTLED);
1864
	return throttled;
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1882
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1883
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1884
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1885 1886 1887 1888
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1899
	struct blkcg_gq *blkg;
1900
	struct cgroup_subsys_state *pos_css;
1901
	struct bio *bio;
1902
	int rw;
1903

1904
	queue_lockdep_assert_held(q);
1905
	rcu_read_lock();
1906

1907 1908 1909 1910 1911 1912
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1913
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1914
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1915

1916 1917 1918 1919
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1920 1921
	spin_unlock_irq(q->queue_lock);

1922
	/* all bios now should be in td->service_queue, issue them */
1923
	for (rw = READ; rw <= WRITE; rw++)
1924 1925
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1926
			generic_make_request(bio);
1927 1928 1929 1930

	spin_lock_irq(q->queue_lock);
}

1931 1932 1933
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1934
	int ret;
1935 1936 1937 1938 1939

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1940
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1941
	throtl_service_queue_init(&td->service_queue);
1942

1943
	q->td = td;
1944
	td->queue = q;
V
Vivek Goyal 已提交
1945

1946
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1947
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1948 1949
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
1950
	/* activate policy */
T
Tejun Heo 已提交
1951
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1952
	if (ret)
1953
		kfree(td);
1954
	return ret;
1955 1956 1957 1958
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1959
	BUG_ON(!q->td);
1960
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1961
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1962
	kfree(q->td);
1963 1964 1965 1966
}

static int __init throtl_init(void)
{
1967 1968 1969 1970
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1971
	return blkcg_policy_register(&blkcg_policy_throtl);
1972 1973 1974
}

module_init(throtl_init);