blk-throttle.c 72.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181 182 183 184

	/* total time spent on lower layer: scheduler, device and others */
	struct blkg_rwstat service_time;
	/* total time spent on block throttle */
	struct blkg_rwstat wait_time;
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

200 201 202
struct throtl_data
{
	/* service tree for active throtl groups */
203
	struct throtl_service_queue service_queue;
204 205 206 207 208 209

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

210 211
	unsigned int throtl_slice;

212
	/* Work for dispatching throttled bios */
213
	struct work_struct dispatch_work;
214 215
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
216 217 218

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
219 220

	unsigned int scale;
221

222 223 224
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
225
	unsigned long last_calculate_time;
226
	unsigned long filtered_latency;
227 228

	bool track_bio_latency;
229 230
};

231
static void throtl_pending_timer_fn(struct timer_list *t);
232

233 234 235 236 237
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
238
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
239
{
240
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
241 242
}

T
Tejun Heo 已提交
243
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
244
{
245
	return pd_to_blkg(&tg->pd);
246 247
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
267
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
268 269 270 271 272 273 274 275 276 277 278 279
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

298 299
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
300
	struct blkcg_gq *blkg = tg_to_blkg(tg);
301
	struct throtl_data *td;
302 303 304 305
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
306 307 308

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
309 310 311 312 313 314 315 316
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
317 318 319 320 321 322 323 324

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
325
	return ret;
326 327 328 329
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
330
	struct blkcg_gq *blkg = tg_to_blkg(tg);
331
	struct throtl_data *td;
332 333 334 335
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
336

337 338
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
339 340 341 342 343 344 345 346
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
347 348 349 350 351 352 353 354 355 356

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
357
	return ret;
358 359
}

360 361 362
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
377 378
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
379
	if ((__tg)) {							\
380 381
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
382 383 384
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
385
} while (0)
386

387 388 389 390 391 392 393 394
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

478
/* init a service_queue, assumes the caller zeroed it */
479
static void throtl_service_queue_init(struct throtl_service_queue *sq)
480
{
481 482
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
483
	sq->pending_tree = RB_ROOT;
484
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 486
}

487 488 489
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
490
{
491
	struct throtl_grp *tg;
T
Tejun Heo 已提交
492
	int rw;
493

494
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495
	if (!tg)
496
		return NULL;
497

498 499 500 501
	if (blkg_rwstat_init(&tg->service_time, gfp) ||
	    blkg_rwstat_init(&tg->wait_time, gfp))
		goto err;

502 503 504 505 506 507 508 509
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
510 511 512 513
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
514 515 516 517 518
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
519

520
	tg->latency_target = DFL_LATENCY_TARGET;
521
	tg->latency_target_conf = DFL_LATENCY_TARGET;
522 523
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
524

525
	return &tg->pd;
526 527 528 529 530 531

err:
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
	kfree(tg);
	return NULL;
532 533
}

534
static void throtl_pd_init(struct blkg_policy_data *pd)
535
{
536 537
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
538
	struct throtl_data *td = blkg->q->td;
539
	struct throtl_service_queue *sq = &tg->service_queue;
540

541
	/*
542
	 * If on the default hierarchy, we switch to properly hierarchical
543 544 545 546 547
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
548
	 * If not on the default hierarchy, the broken flat hierarchy
549 550 551 552 553
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
554
	sq->parent_sq = &td->service_queue;
555 556 557

	/* Enable hierarchical throttling even on traditional hierarchy */
	if (blkg->parent)
558
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559
	tg->td = td;
560 561
}

562 563 564 565 566 567 568 569
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570
	struct throtl_data *td = tg->td;
571 572 573 574
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 576 577
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
578 579
}

580
static void throtl_pd_online(struct blkg_policy_data *pd)
581
{
582
	struct throtl_grp *tg = pd_to_tg(pd);
583 584 585 586
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
587
	tg_update_has_rules(tg);
588 589
}

S
Shaohua Li 已提交
590 591 592 593 594 595 596 597 598 599 600
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
602
			low_valid = true;
603 604
			break;
		}
S
Shaohua Li 已提交
605 606 607 608 609 610
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

611
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
612 613 614
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);
615 616
	struct blkcg_gq *blkg = pd_to_blkg(pd);
	struct blkcg_gq *parent = blkg->parent;
S
Shaohua Li 已提交
617 618 619 620 621 622 623 624

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

625 626
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
627 628 629 630 631 632
	if (parent) {
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->service_time,
				    &tg->service_time);
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->wait_time,
				    &tg->wait_time);
	}
S
Shaohua Li 已提交
633 634
}

635 636
static void throtl_pd_free(struct blkg_policy_data *pd)
{
637 638
	struct throtl_grp *tg = pd_to_tg(pd);

639
	del_timer_sync(&tg->service_queue.pending_timer);
640 641
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
642
	kfree(tg);
643 644
}

645 646 647 648 649 650 651 652
static void throtl_pd_reset(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	blkg_rwstat_reset(&tg->service_time);
	blkg_rwstat_reset(&tg->wait_time);
}

653 654
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
655 656
{
	/* Service tree is empty */
657
	if (!parent_sq->nr_pending)
658 659
		return NULL;

660 661
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
662

663 664
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
665 666 667 668 669 670 671 672 673 674

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

675 676
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
677
{
678 679 680 681
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
682 683
}

684
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
685 686 687
{
	struct throtl_grp *tg;

688
	tg = throtl_rb_first(parent_sq);
689 690 691
	if (!tg)
		return;

692
	parent_sq->first_pending_disptime = tg->disptime;
693 694
}

695
static void tg_service_queue_add(struct throtl_grp *tg)
696
{
697
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
698
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
717
		parent_sq->first_pending = &tg->rb_node;
718 719

	rb_link_node(&tg->rb_node, parent, node);
720
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
721 722
}

723
static void __throtl_enqueue_tg(struct throtl_grp *tg)
724
{
725
	tg_service_queue_add(tg);
726
	tg->flags |= THROTL_TG_PENDING;
727
	tg->service_queue.parent_sq->nr_pending++;
728 729
}

730
static void throtl_enqueue_tg(struct throtl_grp *tg)
731
{
732
	if (!(tg->flags & THROTL_TG_PENDING))
733
		__throtl_enqueue_tg(tg);
734 735
}

736
static void __throtl_dequeue_tg(struct throtl_grp *tg)
737
{
738
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
739
	tg->flags &= ~THROTL_TG_PENDING;
740 741
}

742
static void throtl_dequeue_tg(struct throtl_grp *tg)
743
{
744
	if (tg->flags & THROTL_TG_PENDING)
745
		__throtl_dequeue_tg(tg);
746 747
}

748
/* Call with queue lock held */
749 750
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
751
{
752
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
753 754 755 756 757 758 759 760 761 762

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
763 764 765
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
788
{
789
	/* any pending children left? */
790
	if (!sq->nr_pending)
791
		return true;
792

793
	update_min_dispatch_time(sq);
794

795
	/* is the next dispatch time in the future? */
796
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
797
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
798
		return true;
799 800
	}

801 802
	/* tell the caller to continue dispatching */
	return false;
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

820
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
821 822 823 824 825 826
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

827
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
828 829
{
	tg->bytes_disp[rw] = 0;
830
	tg->io_disp[rw] = 0;
831
	tg->slice_start[rw] = jiffies;
832
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
833 834 835 836
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
837 838
}

839 840
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
841
{
842
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
843 844
}

845 846
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
847
{
848
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
849 850 851 852
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
853 854 855
}

/* Determine if previously allocated or extended slice is complete or not */
856
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
857 858
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
859
		return false;
860

861
	return true;
862 863 864
}

/* Trim the used slices and adjust slice start accordingly */
865
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
866
{
867 868
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
869 870 871 872 873 874 875 876

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
877
	if (throtl_slice_used(tg, rw))
878 879
		return;

880 881 882 883 884 885 886 887
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

888
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
889

890 891
	time_elapsed = jiffies - tg->slice_start[rw];

892
	nr_slices = time_elapsed / tg->td->throtl_slice;
893 894 895

	if (!nr_slices)
		return;
896
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
897 898
	do_div(tmp, HZ);
	bytes_trim = tmp;
899

900 901
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
902

903
	if (!bytes_trim && !io_trim)
904 905 906 907 908 909 910
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

911 912 913 914 915
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

916
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
917

918 919 920 921
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
922 923
}

924 925
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
926 927
{
	bool rw = bio_data_dir(bio);
928
	unsigned int io_allowed;
929
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
930
	u64 tmp;
931

932
	jiffy_elapsed = jiffies - tg->slice_start[rw];
933

934 935
	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
936

937 938 939 940 941 942 943
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

944
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
945 946 947 948 949 950
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
951 952

	if (tg->io_disp[rw] + 1 <= io_allowed) {
953 954
		if (wait)
			*wait = 0;
955
		return true;
956 957
	}

958
	/* Calc approx time to dispatch */
959
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
960 961 962

	if (wait)
		*wait = jiffy_wait;
963
	return false;
964 965
}

966 967
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
968 969
{
	bool rw = bio_data_dir(bio);
970
	u64 bytes_allowed, extra_bytes, tmp;
971
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
972
	unsigned int bio_size = throtl_bio_data_size(bio);
973 974 975 976 977

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
978
		jiffy_elapsed_rnd = tg->td->throtl_slice;
979

980
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
981

982
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
983
	do_div(tmp, HZ);
984
	bytes_allowed = tmp;
985

986
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
987 988
		if (wait)
			*wait = 0;
989
		return true;
990 991 992
	}

	/* Calc approx time to dispatch */
993
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
994
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
995 996 997 998 999 1000 1001 1002 1003 1004 1005

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
1006
	return false;
1007 1008 1009 1010 1011 1012
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
1013 1014
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
1025
	BUG_ON(tg->service_queue.nr_queued[rw] &&
1026
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1027

1028
	/* If tg->bps = -1, then BW is unlimited */
1029 1030
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1031 1032
		if (wait)
			*wait = 0;
1033
		return true;
1034 1035 1036 1037 1038
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1039 1040 1041
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1042
	 */
1043
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1044
		throtl_start_new_slice(tg, rw);
1045
	else {
1046 1047 1048 1049
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1050 1051
	}

1052 1053
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1054 1055
		if (wait)
			*wait = 0;
1056
		return true;
1057 1058 1059 1060 1061 1062 1063 1064
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1065
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1066

1067
	return false;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void throtl_stats_update_completion(struct throtl_grp *tg,
					   uint64_t start_time,
					   uint64_t io_start_time,
					   int op)
{
	unsigned long flags;
	uint64_t now = sched_clock();

	local_irq_save(flags);
	if (time_after64(now, io_start_time))
		blkg_rwstat_add(&tg->service_time, op, now - io_start_time);
	if (time_after64(io_start_time, start_time))
		blkg_rwstat_add(&tg->wait_time, op, io_start_time - start_time);
	local_irq_restore(flags);
}

static void throtl_bio_end_io(struct bio *bio)
{
	struct throtl_grp *tg;

	rcu_read_lock();
1091 1092 1093 1094
	/* see comments in throtl_bio_stats_start() */
	if (bio_flagged(bio, BIO_THROTL_STATED))
		goto out;

1095 1096 1097 1098 1099 1100 1101 1102
	tg = (struct throtl_grp *)bio->bi_tg_private;
	if (!tg)
		goto out;

	throtl_stats_update_completion(tg, bio_start_time_ns(bio),
				       bio_io_start_time_ns(bio),
				       bio_op(bio));
	blkg_put(tg_to_blkg(tg));
1103
	bio_clear_flag(bio, BIO_THROTL_STATED);
1104 1105 1106 1107 1108 1109 1110 1111
out:
	rcu_read_unlock();
}

static inline void throtl_bio_stats_start(struct bio *bio, struct throtl_grp *tg)
{
	int op = bio_op(bio);

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/*
	 * It may happen that end_io will be called twice like dm-thin,
	 * which will save origin end_io first, and call its overwrite
	 * end_io and then the saved end_io. We use bio flag
	 * BIO_THROTL_STATED to do only once statistics.
	 */
	if ((op == REQ_OP_READ || op == REQ_OP_WRITE) &&
	    !bio_flagged(bio, BIO_THROTL_STATED)) {
		blkg_get(tg_to_blkg(tg));
		bio_set_flag(bio, BIO_THROTL_STATED);
1122 1123 1124 1125 1126 1127
		bio->bi_tg_end_io = throtl_bio_end_io;
		bio->bi_tg_private = tg;
		bio_set_start_time_ns(bio);
	}
}

1128 1129 1130
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1131
	unsigned int bio_size = throtl_bio_data_size(bio);
1132 1133

	/* Charge the bio to the group */
1134
	tg->bytes_disp[rw] += bio_size;
1135
	tg->io_disp[rw]++;
1136
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1137
	tg->last_io_disp[rw]++;
1138

1139
	/*
1140
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1141 1142 1143 1144
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1145 1146
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1160
{
1161
	struct throtl_service_queue *sq = &tg->service_queue;
1162 1163
	bool rw = bio_data_dir(bio);

1164 1165 1166
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1176 1177
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1178
	sq->nr_queued[rw]++;
1179
	throtl_enqueue_tg(tg);
1180 1181
}

1182
static void tg_update_disptime(struct throtl_grp *tg)
1183
{
1184
	struct throtl_service_queue *sq = &tg->service_queue;
1185 1186 1187
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1188 1189
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1190
		tg_may_dispatch(tg, bio, &read_wait);
1191

1192 1193
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1194
		tg_may_dispatch(tg, bio, &write_wait);
1195 1196 1197 1198 1199

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1200
	throtl_dequeue_tg(tg);
1201
	tg->disptime = disptime;
1202
	throtl_enqueue_tg(tg);
1203 1204 1205

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1218
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1219
{
1220
	struct throtl_service_queue *sq = &tg->service_queue;
1221 1222
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1223
	struct throtl_grp *tg_to_put = NULL;
1224 1225
	struct bio *bio;

1226 1227 1228 1229 1230 1231 1232
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1233
	sq->nr_queued[rw]--;
1234 1235

	throtl_charge_bio(tg, bio);
1236 1237 1238 1239 1240 1241 1242 1243 1244

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1245
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1246
		start_parent_slice_with_credit(tg, parent_tg, rw);
1247
	} else {
1248 1249
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1250 1251 1252
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1253

1254
	throtl_trim_slice(tg, rw);
1255

1256 1257
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1258 1259
}

1260
static int throtl_dispatch_tg(struct throtl_grp *tg)
1261
{
1262
	struct throtl_service_queue *sq = &tg->service_queue;
1263 1264
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1265
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1266 1267 1268 1269
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1270
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1271
	       tg_may_dispatch(tg, bio, NULL)) {
1272

1273
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1274 1275 1276 1277 1278 1279
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1280
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1281
	       tg_may_dispatch(tg, bio, NULL)) {
1282

1283
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1284 1285 1286 1287 1288 1289 1290 1291 1292
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1293
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1294 1295 1296 1297
{
	unsigned int nr_disp = 0;

	while (1) {
1298
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1299
		struct throtl_service_queue *sq;
1300 1301 1302 1303 1304 1305 1306

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1307
		throtl_dequeue_tg(tg);
1308

1309
		nr_disp += throtl_dispatch_tg(tg);
1310

1311
		sq = &tg->service_queue;
1312
		if (sq->nr_queued[0] || sq->nr_queued[1])
1313
			tg_update_disptime(tg);
1314 1315 1316 1317 1318 1319 1320 1321

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1322 1323
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1324 1325 1326 1327 1328 1329 1330
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1331 1332 1333 1334 1335 1336 1337
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1338
 */
1339
static void throtl_pending_timer_fn(struct timer_list *t)
1340
{
1341
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1342
	struct throtl_grp *tg = sq_to_tg(sq);
1343
	struct throtl_data *td = sq_to_td(sq);
1344
	struct request_queue *q = td->queue;
1345 1346
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1347
	int ret;
1348 1349

	spin_lock_irq(q->queue_lock);
1350 1351 1352
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1353 1354 1355
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1356

1357 1358
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1359 1360
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1361 1362 1363 1364 1365 1366

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1367

1368 1369
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1370

1371 1372 1373 1374
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1375
	}
1376

1377 1378
	if (!dispatched)
		goto out_unlock;
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1396
	spin_unlock_irq(q->queue_lock);
1397
}
1398

1399 1400 1401 1402 1403 1404 1405 1406
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1407
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1421 1422 1423
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1424 1425 1426
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1427
		blk_start_plug(&plug);
1428 1429
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1430
		blk_finish_plug(&plug);
1431 1432 1433
	}
}

1434 1435
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1436
{
1437 1438
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1439

1440
	if (v == U64_MAX)
1441
		return 0;
1442
	return __blkg_prfill_u64(sf, pd, v);
1443 1444
}

1445 1446
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1447
{
1448 1449
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1450

1451
	if (v == UINT_MAX)
1452
		return 0;
1453
	return __blkg_prfill_u64(sf, pd, v);
1454 1455
}

1456
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1457
{
1458 1459
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1460
	return 0;
1461 1462
}

1463
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1464
{
1465 1466
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1467
	return 0;
1468 1469
}

1470
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1471
{
1472
	struct throtl_service_queue *sq = &tg->service_queue;
1473
	struct cgroup_subsys_state *pos_css;
1474
	struct blkcg_gq *blkg;
1475

1476 1477
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1478 1479
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1480

1481 1482 1483 1484 1485 1486 1487
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1488 1489
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1508

1509 1510 1511 1512 1513 1514 1515 1516
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1517 1518
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1519

1520
	if (tg->flags & THROTL_TG_PENDING) {
1521
		tg_update_disptime(tg);
1522
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1523
	}
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1543
		v = U64_MAX;
1544 1545 1546 1547 1548 1549 1550

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1551

1552
	tg_conf_updated(tg, false);
1553 1554
	ret = 0;
out_finish:
1555
	blkg_conf_finish(&ctx);
1556
	return ret ?: nbytes;
1557 1558
}

1559 1560
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1561
{
1562
	return tg_set_conf(of, buf, nbytes, off, true);
1563 1564
}

1565 1566
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1567
{
1568
	return tg_set_conf(of, buf, nbytes, off, false);
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static u64 tg_prfill_rwstat_field(struct seq_file *sf,
				  struct blkg_policy_data *pd,
				  int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkg_rwstat rwstat = blkg_rwstat_read((void *)tg + off);

	return __blkg_prfill_rwstat(sf, pd, &rwstat);
}

static int tg_print_service_time(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_field, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

static int tg_print_wait_time(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_field, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

1597
static struct cftype throtl_legacy_files[] = {
1598 1599
	{
		.name = "throttle.read_bps_device",
1600
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1601
		.seq_show = tg_print_conf_u64,
1602
		.write = tg_set_conf_u64,
1603 1604 1605
	},
	{
		.name = "throttle.write_bps_device",
1606
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1607
		.seq_show = tg_print_conf_u64,
1608
		.write = tg_set_conf_u64,
1609 1610 1611
	},
	{
		.name = "throttle.read_iops_device",
1612
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1613
		.seq_show = tg_print_conf_uint,
1614
		.write = tg_set_conf_uint,
1615 1616 1617
	},
	{
		.name = "throttle.write_iops_device",
1618
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1619
		.seq_show = tg_print_conf_uint,
1620
		.write = tg_set_conf_uint,
1621 1622 1623
	},
	{
		.name = "throttle.io_service_bytes",
1624 1625
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1626
	},
1627 1628 1629 1630 1631
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1632 1633
	{
		.name = "throttle.io_serviced",
1634 1635
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1636
	},
1637 1638 1639 1640 1641
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	{
		.name = "throttle.io_service_time",
		.private = offsetof(struct throtl_grp, service_time),
		.seq_show = tg_print_service_time,
	},
	{
		.name = "throttle.io_wait_time",
		.private = offsetof(struct throtl_grp, wait_time),
		.seq_show = tg_print_wait_time,
	},
1652 1653 1654
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1655
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1656 1657 1658 1659 1660
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1661 1662
	u64 bps_dft;
	unsigned int iops_dft;
1663
	char idle_time[26] = "";
1664
	char latency_time[26] = "";
1665 1666 1667

	if (!dname)
		return 0;
1668

S
Shaohua Li 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1680
	    tg->iops_conf[WRITE][off] == iops_dft &&
1681
	    (off != LIMIT_LOW ||
1682
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1683
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1684 1685
		return 0;

1686
	if (tg->bps_conf[READ][off] != U64_MAX)
1687
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1688
			tg->bps_conf[READ][off]);
1689
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1690
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1691
			tg->bps_conf[WRITE][off]);
1692
	if (tg->iops_conf[READ][off] != UINT_MAX)
1693
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1694
			tg->iops_conf[READ][off]);
1695
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1696
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1697
			tg->iops_conf[WRITE][off]);
1698
	if (off == LIMIT_LOW) {
1699
		if (tg->idletime_threshold_conf == ULONG_MAX)
1700 1701 1702
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1703
				tg->idletime_threshold_conf);
1704

1705
		if (tg->latency_target_conf == ULONG_MAX)
1706 1707 1708
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1709
				" latency=%lu", tg->latency_target_conf);
1710
	}
1711

1712 1713 1714
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1715 1716 1717
	return 0;
}

S
Shaohua Li 已提交
1718
static int tg_print_limit(struct seq_file *sf, void *v)
1719
{
S
Shaohua Li 已提交
1720
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1721 1722 1723 1724
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1725
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1726 1727 1728 1729 1730 1731
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1732
	unsigned long idle_time;
1733
	unsigned long latency_time;
1734
	int ret;
S
Shaohua Li 已提交
1735
	int index = of_cft(of)->private;
1736 1737 1738 1739 1740 1741 1742

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1743 1744 1745 1746
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1747

1748 1749
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1750 1751 1752
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1753
		u64 val = U64_MAX;
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1781 1782
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1783 1784
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1785 1786 1787 1788
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1789 1790 1791 1792
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1793

S
Shaohua Li 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1823 1824
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1825
	}
1826 1827 1828 1829 1830 1831 1832

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1833 1834
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1835 1836 1837 1838 1839 1840 1841
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1851 1852 1853
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1854 1855 1856
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1857 1858 1859 1860
	},
	{ }	/* terminate */
};

1861
static void throtl_shutdown_wq(struct request_queue *q)
1862 1863 1864
{
	struct throtl_data *td = q->td;

1865
	cancel_work_sync(&td->dispatch_work);
1866 1867
}

T
Tejun Heo 已提交
1868
static struct blkcg_policy blkcg_policy_throtl = {
1869
	.dfl_cftypes		= throtl_files,
1870
	.legacy_cftypes		= throtl_legacy_files,
1871

1872
	.pd_alloc_fn		= throtl_pd_alloc,
1873
	.pd_init_fn		= throtl_pd_init,
1874
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1875
	.pd_offline_fn		= throtl_pd_offline,
1876
	.pd_free_fn		= throtl_pd_free,
1877
	.pd_reset_stats_fn	= throtl_pd_reset,
1878 1879
};

S
Shaohua Li 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1919 1920 1921 1922 1923
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1924
	 *   configure a too big threshold) or 4 times of idletime threshold
1925
	 * - average think time is more than threshold
1926
	 * - IO latency is largely below threshold
1927
	 */
1928
	unsigned long time;
1929
	bool ret;
1930

1931 1932 1933 1934 1935 1936
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1937
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1938 1939 1940 1941 1942
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1964 1965

	if (time_after_eq(jiffies,
1966 1967
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1968
		return true;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1993
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1994 1995
		return false;

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

2033 2034 2035 2036 2037
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

2038
	throtl_log(&td->service_queue, "upgrade to max");
2039
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2040
	td->low_upgrade_time = jiffies;
2041
	td->scale = 0;
2042 2043 2044 2045 2046 2047 2048
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
2049
		throtl_schedule_next_dispatch(sq, true);
2050 2051 2052
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
2053
	throtl_schedule_next_dispatch(&td->service_queue, true);
2054 2055 2056
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
2057 2058
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
2059 2060
	td->scale /= 2;

2061
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2062 2063 2064 2065 2066
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
2080 2081
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2082 2083 2084
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
2113
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
2114 2115 2116 2117 2118
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

2119 2120
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2175 2176 2177
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2178 2179 2180 2181
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2182 2183 2184 2185 2186 2187 2188 2189

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2205

2206 2207
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2208

2209
				latency[rw] = tmp->total_latency;
2210

2211 2212 2213 2214 2215 2216 2217
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2218 2219 2220
		}
	}

2221 2222 2223 2224 2225 2226 2227 2228
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2229

2230 2231 2232 2233 2234
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2235

2236 2237 2238 2239 2240
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2241
	}
2242 2243 2244

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2245 2246 2247 2248 2249 2250
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2251 2252 2253 2254 2255 2256 2257
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2258 2259 2260
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2261 2262 2263
	/* fallback to root_blkg if we fail to get a blkg ref */
	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2264
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2265 2266 2267
#endif
}

2268 2269
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2270
{
2271
	struct throtl_qnode *qn = NULL;
2272
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2273
	struct throtl_service_queue *sq;
2274
	bool rw = bio_data_dir(bio);
2275
	bool throttled = false;
2276
	struct throtl_data *td = tg->td;
2277

2278 2279
	WARN_ON_ONCE(!rcu_read_lock_held());

2280
	/* see throtl_charge_bio() */
2281 2282 2283 2284 2285 2286
	if (bio_flagged(bio, BIO_THROTTLED))
		goto out;

	throtl_bio_stats_start(bio, tg);

	if (!tg->has_rules[rw])
2287
		goto out;
2288 2289

	spin_lock_irq(q->queue_lock);
2290

2291 2292
	throtl_update_latency_buckets(td);

2293
	if (unlikely(blk_queue_bypass(q)))
2294
		goto out_unlock;
2295

2296
	blk_throtl_assoc_bio(tg, bio);
2297 2298
	blk_throtl_update_idletime(tg);

2299 2300
	sq = &tg->service_queue;

2301
again:
2302
	while (true) {
S
Shaohua Li 已提交
2303 2304 2305
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2306
		throtl_upgrade_check(tg);
2307 2308 2309
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2310

2311
		/* if above limits, break to queue */
2312
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2313
			tg->last_low_overflow_time[rw] = jiffies;
2314 2315
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2316 2317
				goto again;
			}
2318
			break;
2319
		}
2320 2321

		/* within limits, let's charge and dispatch directly */
2322
		throtl_charge_bio(tg, bio);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2335
		throtl_trim_slice(tg, rw);
2336 2337 2338 2339 2340 2341

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2342
		qn = &tg->qnode_on_parent[rw];
2343 2344 2345 2346
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2347 2348
	}

2349
	/* out-of-limit, queue to @tg */
2350 2351
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2352 2353 2354
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2355
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2356

S
Shaohua Li 已提交
2357 2358
	tg->last_low_overflow_time[rw] = jiffies;

2359
	td->nr_queued[rw]++;
2360
	throtl_add_bio_tg(bio, qn, tg);
2361
	throttled = true;
2362

2363 2364 2365 2366 2367 2368
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2369
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2370
		tg_update_disptime(tg);
2371
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2372 2373
	}

2374
out_unlock:
2375
	spin_unlock_irq(q->queue_lock);
2376
out:
2377 2378
	if (!throttled)
		bio_set_io_start_time_ns(bio);
S
Shaohua Li 已提交
2379
	bio_set_flag(bio, BIO_THROTTLED);
2380 2381 2382

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2383
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2384
#endif
2385
	return throttled;
2386 2387
}

2388
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2389 2390 2391 2392 2393 2394
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2395 2396
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2397 2398 2399 2400 2401
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2402
	latency = get_cpu_ptr(td->latency_buckets[op]);
2403 2404
	latency[index].total_latency += time;
	latency[index].samples++;
2405
	put_cpu_ptr(td->latency_buckets[op]);
2406 2407 2408 2409 2410 2411 2412
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2413
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2414 2415
}

2416 2417
void blk_throtl_bio_endio(struct bio *bio)
{
2418
	struct blkcg_gq *blkg;
2419
	struct throtl_grp *tg;
2420 2421 2422 2423
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2424
	int rw = bio_data_dir(bio);
2425

2426 2427
	blkg = bio->bi_blkg;
	if (!blkg)
2428
		return;
2429
	tg = blkg_to_tg(blkg);
2430

2431 2432 2433
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2434 2435
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2436
	if (!start_time || finish_time <= start_time)
2437 2438 2439
		return;

	lat = finish_time - start_time;
2440
	/* this is only for bio based driver */
2441 2442 2443
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2444

2445
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2446 2447 2448
		int bucket;
		unsigned int threshold;

2449
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2450
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2465
	}
2466 2467 2468
}
#endif

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2484
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2485
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2486
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2487 2488 2489 2490
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2501
	struct blkcg_gq *blkg;
2502
	struct cgroup_subsys_state *pos_css;
2503
	struct bio *bio;
2504
	int rw;
2505

2506
	queue_lockdep_assert_held(q);
2507
	rcu_read_lock();
2508

2509 2510 2511 2512 2513 2514
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2515
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2516
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2517

2518 2519 2520 2521
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2522 2523
	spin_unlock_irq(q->queue_lock);

2524
	/* all bios now should be in td->service_queue, issue them */
2525
	for (rw = READ; rw <= WRITE; rw++)
2526 2527
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2528
			generic_make_request(bio);
2529 2530 2531 2532

	spin_lock_irq(q->queue_lock);
}

2533 2534 2535
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2536
	int ret;
2537 2538 2539 2540

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2541
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2542
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2543 2544 2545 2546 2547
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2548
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2549 2550
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2551 2552 2553
		kfree(td);
		return -ENOMEM;
	}
2554

2555
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2556
	throtl_service_queue_init(&td->service_queue);
2557

2558
	q->td = td;
2559
	td->queue = q;
V
Vivek Goyal 已提交
2560

2561
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2562
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2563 2564
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2565

2566
	/* activate policy */
T
Tejun Heo 已提交
2567
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2568
	if (ret) {
2569 2570
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2571
		kfree(td);
2572
	}
2573
	return ret;
2574 2575 2576 2577
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2578
	BUG_ON(!q->td);
2579
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2580
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2581 2582
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2583
	kfree(q->td);
2584 2585
}

2586 2587 2588
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2589
	int i;
2590 2591 2592 2593

	td = q->td;
	BUG_ON(!td);

2594
	if (blk_queue_nonrot(q)) {
2595
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2596 2597
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2598
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2599
		td->filtered_latency = LATENCY_FILTERED_HD;
2600 2601 2602 2603
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2604
	}
2605 2606 2607 2608
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2609

2610
	td->track_bio_latency = !queue_is_rq_based(q);
2611 2612
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2613 2614
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2641 2642
static int __init throtl_init(void)
{
2643 2644 2645 2646
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2647
	return blkcg_policy_register(&blkcg_policy_throtl);
2648 2649 2650
}

module_init(throtl_init);