blk-throttle.c 68.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181
};

182 183 184 185 186 187 188 189 190 191 192 193 194
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

195 196 197
struct throtl_data
{
	/* service tree for active throtl groups */
198
	struct throtl_service_queue service_queue;
199 200 201 202 203 204

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

205 206
	unsigned int throtl_slice;

207
	/* Work for dispatching throttled bios */
208
	struct work_struct dispatch_work;
209 210
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
211 212 213

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
214 215

	unsigned int scale;
216

217 218 219
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
220
	unsigned long last_calculate_time;
221
	unsigned long filtered_latency;
222 223

	bool track_bio_latency;
224 225
};

226
static void throtl_pending_timer_fn(struct timer_list *t);
227

228 229 230 231 232
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
233
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234
{
235
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 237
}

T
Tejun Heo 已提交
238
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239
{
240
	return pd_to_blkg(&tg->pd);
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
262
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 264 265 266 267 268 269 270 271 272 273 274
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

293 294
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
295
	struct blkcg_gq *blkg = tg_to_blkg(tg);
296
	struct throtl_data *td;
297 298 299 300
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
301 302 303

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
304 305 306 307 308 309 310 311
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
312 313 314 315 316 317 318 319

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
320
	return ret;
321 322 323 324
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
325
	struct blkcg_gq *blkg = tg_to_blkg(tg);
326
	struct throtl_data *td;
327 328 329 330
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
331

332 333
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
334 335 336 337 338 339 340 341
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
342 343 344 345 346 347 348 349 350 351

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
352
	return ret;
353 354
}

355 356 357
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
372 373
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
374
	if ((__tg)) {							\
375 376
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 378 379
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
380
} while (0)
381

382 383 384 385 386 387 388 389
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

473
/* init a service_queue, assumes the caller zeroed it */
474
static void throtl_service_queue_init(struct throtl_service_queue *sq)
475
{
476 477
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
478
	sq->pending_tree = RB_ROOT;
479
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 481
}

482 483
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
484
	struct throtl_grp *tg;
T
Tejun Heo 已提交
485
	int rw;
486 487 488

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
489
		return NULL;
490

491 492 493 494 495 496 497 498
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
499 500 501 502
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
503 504 505 506 507
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
508

509
	tg->latency_target = DFL_LATENCY_TARGET;
510
	tg->latency_target_conf = DFL_LATENCY_TARGET;
511 512
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513

514
	return &tg->pd;
515 516
}

517
static void throtl_pd_init(struct blkg_policy_data *pd)
518
{
519 520
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
521
	struct throtl_data *td = blkg->q->td;
522
	struct throtl_service_queue *sq = &tg->service_queue;
523

524
	/*
525
	 * If on the default hierarchy, we switch to properly hierarchical
526 527 528 529 530
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
531
	 * If not on the default hierarchy, the broken flat hierarchy
532 533 534 535 536
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
537
	sq->parent_sq = &td->service_queue;
538
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540
	tg->td = td;
541 542
}

543 544 545 546 547 548 549 550
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551
	struct throtl_data *td = tg->td;
552 553 554 555
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 557 558
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
559 560
}

561
static void throtl_pd_online(struct blkg_policy_data *pd)
562
{
563
	struct throtl_grp *tg = pd_to_tg(pd);
564 565 566 567
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
568
	tg_update_has_rules(tg);
569 570
}

S
Shaohua Li 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

590
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
591 592 593 594 595 596 597 598 599 600 601
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

602 603
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
604 605
}

606 607
static void throtl_pd_free(struct blkg_policy_data *pd)
{
608 609
	struct throtl_grp *tg = pd_to_tg(pd);

610
	del_timer_sync(&tg->service_queue.pending_timer);
611
	kfree(tg);
612 613
}

614 615
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
616 617
{
	/* Service tree is empty */
618
	if (!parent_sq->nr_pending)
619 620
		return NULL;

621 622
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
623

624 625
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
626 627 628 629 630 631 632 633 634 635

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

636 637
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
638
{
639 640 641 642
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
643 644
}

645
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
646 647 648
{
	struct throtl_grp *tg;

649
	tg = throtl_rb_first(parent_sq);
650 651 652
	if (!tg)
		return;

653
	parent_sq->first_pending_disptime = tg->disptime;
654 655
}

656
static void tg_service_queue_add(struct throtl_grp *tg)
657
{
658
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
659
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
678
		parent_sq->first_pending = &tg->rb_node;
679 680

	rb_link_node(&tg->rb_node, parent, node);
681
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
682 683
}

684
static void __throtl_enqueue_tg(struct throtl_grp *tg)
685
{
686
	tg_service_queue_add(tg);
687
	tg->flags |= THROTL_TG_PENDING;
688
	tg->service_queue.parent_sq->nr_pending++;
689 690
}

691
static void throtl_enqueue_tg(struct throtl_grp *tg)
692
{
693
	if (!(tg->flags & THROTL_TG_PENDING))
694
		__throtl_enqueue_tg(tg);
695 696
}

697
static void __throtl_dequeue_tg(struct throtl_grp *tg)
698
{
699
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
700
	tg->flags &= ~THROTL_TG_PENDING;
701 702
}

703
static void throtl_dequeue_tg(struct throtl_grp *tg)
704
{
705
	if (tg->flags & THROTL_TG_PENDING)
706
		__throtl_dequeue_tg(tg);
707 708
}

709
/* Call with queue lock held */
710 711
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
712
{
713
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
714 715 716 717 718 719 720 721 722 723

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
724 725 726
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
727 728
}

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
749
{
750
	/* any pending children left? */
751
	if (!sq->nr_pending)
752
		return true;
753

754
	update_min_dispatch_time(sq);
755

756
	/* is the next dispatch time in the future? */
757
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
758
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
759
		return true;
760 761
	}

762 763
	/* tell the caller to continue dispatching */
	return false;
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

781
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
782 783 784 785 786 787
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

788
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
789 790
{
	tg->bytes_disp[rw] = 0;
791
	tg->io_disp[rw] = 0;
792
	tg->slice_start[rw] = jiffies;
793
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
794 795 796 797
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
798 799
}

800 801
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
802
{
803
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
804 805
}

806 807
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
808
{
809
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
810 811 812 813
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
814 815 816
}

/* Determine if previously allocated or extended slice is complete or not */
817
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
818 819
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
820
		return false;
821 822 823 824 825

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
826
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
827
{
828 829
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
830 831 832 833 834 835 836 837

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
838
	if (throtl_slice_used(tg, rw))
839 840
		return;

841 842 843 844 845 846 847 848
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

849
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
850

851 852
	time_elapsed = jiffies - tg->slice_start[rw];

853
	nr_slices = time_elapsed / tg->td->throtl_slice;
854 855 856

	if (!nr_slices)
		return;
857
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
858 859
	do_div(tmp, HZ);
	bytes_trim = tmp;
860

861 862
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
863

864
	if (!bytes_trim && !io_trim)
865 866 867 868 869 870 871
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

872 873 874 875 876
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

877
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
878

879 880 881 882
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
883 884
}

885 886
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
887 888
{
	bool rw = bio_data_dir(bio);
889
	unsigned int io_allowed;
890
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
891
	u64 tmp;
892

893
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
894

895 896
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
897
		jiffy_elapsed_rnd = tg->td->throtl_slice;
898

899
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
900

901 902 903 904 905 906 907
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

908
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
909 910 911 912 913 914
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
915 916

	if (tg->io_disp[rw] + 1 <= io_allowed) {
917 918
		if (wait)
			*wait = 0;
919
		return true;
920 921
	}

922
	/* Calc approx time to dispatch */
923
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
924 925 926 927 928 929 930 931 932 933 934

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

935 936
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
937 938
{
	bool rw = bio_data_dir(bio);
939
	u64 bytes_allowed, extra_bytes, tmp;
940
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
941
	unsigned int bio_size = throtl_bio_data_size(bio);
942 943 944 945 946

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
947
		jiffy_elapsed_rnd = tg->td->throtl_slice;
948

949
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
950

951
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
952
	do_div(tmp, HZ);
953
	bytes_allowed = tmp;
954

955
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
956 957
		if (wait)
			*wait = 0;
958
		return true;
959 960 961
	}

	/* Calc approx time to dispatch */
962
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
963
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
964 965 966 967 968 969 970 971 972 973 974

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
975 976 977 978 979 980 981
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
982 983
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
984 985 986 987 988 989 990 991 992 993
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
994
	BUG_ON(tg->service_queue.nr_queued[rw] &&
995
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
996

997
	/* If tg->bps = -1, then BW is unlimited */
998 999
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1000 1001
		if (wait)
			*wait = 0;
1002
		return true;
1003 1004 1005 1006 1007
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1008 1009 1010
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1011
	 */
1012
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1013
		throtl_start_new_slice(tg, rw);
1014
	else {
1015 1016 1017 1018
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1019 1020
	}

1021 1022
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1034
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1035 1036 1037 1038 1039 1040 1041

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1042
	unsigned int bio_size = throtl_bio_data_size(bio);
1043 1044

	/* Charge the bio to the group */
1045
	tg->bytes_disp[rw] += bio_size;
1046
	tg->io_disp[rw]++;
1047
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1048
	tg->last_io_disp[rw]++;
1049

1050
	/*
1051
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1052 1053 1054 1055
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1056 1057
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1071
{
1072
	struct throtl_service_queue *sq = &tg->service_queue;
1073 1074
	bool rw = bio_data_dir(bio);

1075 1076 1077
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1078 1079 1080 1081 1082 1083 1084 1085 1086
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1087 1088
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1089
	sq->nr_queued[rw]++;
1090
	throtl_enqueue_tg(tg);
1091 1092
}

1093
static void tg_update_disptime(struct throtl_grp *tg)
1094
{
1095
	struct throtl_service_queue *sq = &tg->service_queue;
1096 1097 1098
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1099 1100
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1101
		tg_may_dispatch(tg, bio, &read_wait);
1102

1103 1104
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1105
		tg_may_dispatch(tg, bio, &write_wait);
1106 1107 1108 1109 1110

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1111
	throtl_dequeue_tg(tg);
1112
	tg->disptime = disptime;
1113
	throtl_enqueue_tg(tg);
1114 1115 1116

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1129
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1130
{
1131
	struct throtl_service_queue *sq = &tg->service_queue;
1132 1133
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1134
	struct throtl_grp *tg_to_put = NULL;
1135 1136
	struct bio *bio;

1137 1138 1139 1140 1141 1142 1143
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1144
	sq->nr_queued[rw]--;
1145 1146

	throtl_charge_bio(tg, bio);
1147 1148 1149 1150 1151 1152 1153 1154 1155

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1156
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1157
		start_parent_slice_with_credit(tg, parent_tg, rw);
1158
	} else {
1159 1160
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1161 1162 1163
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1164

1165
	throtl_trim_slice(tg, rw);
1166

1167 1168
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1169 1170
}

1171
static int throtl_dispatch_tg(struct throtl_grp *tg)
1172
{
1173
	struct throtl_service_queue *sq = &tg->service_queue;
1174 1175
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1176
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1177 1178 1179 1180
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1181
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1182
	       tg_may_dispatch(tg, bio, NULL)) {
1183

1184
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1185 1186 1187 1188 1189 1190
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1191
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1192
	       tg_may_dispatch(tg, bio, NULL)) {
1193

1194
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1195 1196 1197 1198 1199 1200 1201 1202 1203
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1204
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1205 1206 1207 1208
{
	unsigned int nr_disp = 0;

	while (1) {
1209 1210
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1211 1212 1213 1214 1215 1216 1217

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1218
		throtl_dequeue_tg(tg);
1219

1220
		nr_disp += throtl_dispatch_tg(tg);
1221

1222
		if (sq->nr_queued[0] || sq->nr_queued[1])
1223
			tg_update_disptime(tg);
1224 1225 1226 1227 1228 1229 1230 1231

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1232 1233
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1234 1235 1236 1237 1238 1239 1240
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1241 1242 1243 1244 1245 1246 1247
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1248
 */
1249
static void throtl_pending_timer_fn(struct timer_list *t)
1250
{
1251
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1252
	struct throtl_grp *tg = sq_to_tg(sq);
1253
	struct throtl_data *td = sq_to_td(sq);
1254
	struct request_queue *q = td->queue;
1255 1256
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1257
	int ret;
1258 1259

	spin_lock_irq(q->queue_lock);
1260 1261 1262
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1263 1264 1265
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1266

1267 1268
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1269 1270
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1271 1272 1273 1274 1275 1276

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1277

1278 1279
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1280

1281 1282 1283 1284
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1285
	}
1286

1287 1288
	if (!dispatched)
		goto out_unlock;
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1306
	spin_unlock_irq(q->queue_lock);
1307
}
1308

1309 1310 1311 1312 1313 1314 1315 1316
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1317
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1331 1332 1333
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1334 1335 1336
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1337
		blk_start_plug(&plug);
1338 1339
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1340
		blk_finish_plug(&plug);
1341 1342 1343
	}
}

1344 1345
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1346
{
1347 1348
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1349

1350
	if (v == U64_MAX)
1351
		return 0;
1352
	return __blkg_prfill_u64(sf, pd, v);
1353 1354
}

1355 1356
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1357
{
1358 1359
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1360

1361
	if (v == UINT_MAX)
1362
		return 0;
1363
	return __blkg_prfill_u64(sf, pd, v);
1364 1365
}

1366
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1367
{
1368 1369
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1370
	return 0;
1371 1372
}

1373
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1374
{
1375 1376
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1377
	return 0;
1378 1379
}

1380
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1381
{
1382
	struct throtl_service_queue *sq = &tg->service_queue;
1383
	struct cgroup_subsys_state *pos_css;
1384
	struct blkcg_gq *blkg;
1385

1386 1387
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1388 1389
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1390

1391 1392 1393 1394 1395 1396 1397
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1398 1399
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1418

1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1427 1428
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1429

1430
	if (tg->flags & THROTL_TG_PENDING) {
1431
		tg_update_disptime(tg);
1432
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1433
	}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1453
		v = U64_MAX;
1454 1455 1456 1457 1458 1459 1460

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1461

1462
	tg_conf_updated(tg, false);
1463 1464
	ret = 0;
out_finish:
1465
	blkg_conf_finish(&ctx);
1466
	return ret ?: nbytes;
1467 1468
}

1469 1470
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1471
{
1472
	return tg_set_conf(of, buf, nbytes, off, true);
1473 1474
}

1475 1476
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1477
{
1478
	return tg_set_conf(of, buf, nbytes, off, false);
1479 1480
}

1481
static struct cftype throtl_legacy_files[] = {
1482 1483
	{
		.name = "throttle.read_bps_device",
1484
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1485
		.seq_show = tg_print_conf_u64,
1486
		.write = tg_set_conf_u64,
1487 1488 1489
	},
	{
		.name = "throttle.write_bps_device",
1490
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1491
		.seq_show = tg_print_conf_u64,
1492
		.write = tg_set_conf_u64,
1493 1494 1495
	},
	{
		.name = "throttle.read_iops_device",
1496
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1497
		.seq_show = tg_print_conf_uint,
1498
		.write = tg_set_conf_uint,
1499 1500 1501
	},
	{
		.name = "throttle.write_iops_device",
1502
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1503
		.seq_show = tg_print_conf_uint,
1504
		.write = tg_set_conf_uint,
1505 1506 1507
	},
	{
		.name = "throttle.io_service_bytes",
1508 1509
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1510
	},
1511 1512 1513 1514 1515
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1516 1517
	{
		.name = "throttle.io_serviced",
1518 1519
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1520
	},
1521 1522 1523 1524 1525
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1526 1527 1528
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1529
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1530 1531 1532 1533 1534
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1535 1536
	u64 bps_dft;
	unsigned int iops_dft;
1537
	char idle_time[26] = "";
1538
	char latency_time[26] = "";
1539 1540 1541

	if (!dname)
		return 0;
1542

S
Shaohua Li 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1554
	    tg->iops_conf[WRITE][off] == iops_dft &&
1555
	    (off != LIMIT_LOW ||
1556
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1557
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1558 1559
		return 0;

1560
	if (tg->bps_conf[READ][off] != U64_MAX)
1561
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1562
			tg->bps_conf[READ][off]);
1563
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1564
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1565
			tg->bps_conf[WRITE][off]);
1566
	if (tg->iops_conf[READ][off] != UINT_MAX)
1567
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1568
			tg->iops_conf[READ][off]);
1569
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1570
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1571
			tg->iops_conf[WRITE][off]);
1572
	if (off == LIMIT_LOW) {
1573
		if (tg->idletime_threshold_conf == ULONG_MAX)
1574 1575 1576
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1577
				tg->idletime_threshold_conf);
1578

1579
		if (tg->latency_target_conf == ULONG_MAX)
1580 1581 1582
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1583
				" latency=%lu", tg->latency_target_conf);
1584
	}
1585

1586 1587 1588
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1589 1590 1591
	return 0;
}

S
Shaohua Li 已提交
1592
static int tg_print_limit(struct seq_file *sf, void *v)
1593
{
S
Shaohua Li 已提交
1594
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1595 1596 1597 1598
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1599
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1600 1601 1602 1603 1604 1605
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1606
	unsigned long idle_time;
1607
	unsigned long latency_time;
1608
	int ret;
S
Shaohua Li 已提交
1609
	int index = of_cft(of)->private;
1610 1611 1612 1613 1614 1615 1616

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1617 1618 1619 1620
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1621

1622 1623
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1624 1625 1626
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1627
		u64 val = U64_MAX;
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1655 1656
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1657 1658
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1659 1660 1661 1662
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1663 1664 1665 1666
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1667

S
Shaohua Li 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1697 1698
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1699
	}
1700 1701 1702 1703 1704 1705 1706

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1707 1708
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1709 1710 1711 1712 1713 1714 1715
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1725 1726 1727
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1728 1729 1730
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1731 1732 1733 1734
	},
	{ }	/* terminate */
};

1735
static void throtl_shutdown_wq(struct request_queue *q)
1736 1737 1738
{
	struct throtl_data *td = q->td;

1739
	cancel_work_sync(&td->dispatch_work);
1740 1741
}

T
Tejun Heo 已提交
1742
static struct blkcg_policy blkcg_policy_throtl = {
1743
	.dfl_cftypes		= throtl_files,
1744
	.legacy_cftypes		= throtl_legacy_files,
1745

1746
	.pd_alloc_fn		= throtl_pd_alloc,
1747
	.pd_init_fn		= throtl_pd_init,
1748
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1749
	.pd_offline_fn		= throtl_pd_offline,
1750
	.pd_free_fn		= throtl_pd_free,
1751 1752
};

S
Shaohua Li 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1792 1793 1794 1795 1796
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1797
	 *   configure a too big threshold) or 4 times of idletime threshold
1798
	 * - average think time is more than threshold
1799
	 * - IO latency is largely below threshold
1800
	 */
1801
	unsigned long time;
1802
	bool ret;
1803

1804 1805 1806 1807 1808 1809
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1810
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1811 1812 1813 1814 1815
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1837 1838

	if (time_after_eq(jiffies,
1839 1840
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1841
		return true;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1866
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1867 1868
		return false;

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1906 1907 1908 1909 1910
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1911
	throtl_log(&td->service_queue, "upgrade to max");
1912
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1913
	td->low_upgrade_time = jiffies;
1914
	td->scale = 0;
1915 1916 1917 1918 1919 1920 1921
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1922
		throtl_schedule_next_dispatch(sq, true);
1923 1924 1925
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1926
	throtl_schedule_next_dispatch(&td->service_queue, true);
1927 1928 1929
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1930 1931
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1932 1933
	td->scale /= 2;

1934
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1935 1936 1937 1938 1939
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1953 1954
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1955 1956 1957
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1986
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1987 1988 1989 1990 1991
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1992 1993
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2048 2049 2050
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2051 2052 2053 2054
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2055 2056 2057 2058 2059 2060 2061 2062

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2078

2079 2080
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2081

2082
				latency[rw] = tmp->total_latency;
2083

2084 2085 2086 2087 2088 2089 2090
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2091 2092 2093
		}
	}

2094 2095 2096 2097 2098 2099 2100 2101
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2102

2103 2104 2105 2106 2107
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2108

2109 2110 2111 2112 2113
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2114
	}
2115 2116 2117

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2118 2119 2120 2121 2122 2123
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2124 2125 2126 2127 2128 2129 2130
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2131 2132 2133
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2134 2135 2136
	if (bio->bi_css) {
		if (bio->bi_cg_private)
			blkg_put(tg_to_blkg(bio->bi_cg_private));
2137
		bio->bi_cg_private = tg;
2138 2139
		blkg_get(tg_to_blkg(tg));
	}
2140
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2141 2142 2143
#endif
}

2144 2145
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2146
{
2147
	struct throtl_qnode *qn = NULL;
2148
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2149
	struct throtl_service_queue *sq;
2150
	bool rw = bio_data_dir(bio);
2151
	bool throttled = false;
2152
	struct throtl_data *td = tg->td;
2153

2154 2155
	WARN_ON_ONCE(!rcu_read_lock_held());

2156
	/* see throtl_charge_bio() */
2157
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2158
		goto out;
2159 2160

	spin_lock_irq(q->queue_lock);
2161

2162 2163
	throtl_update_latency_buckets(td);

2164
	if (unlikely(blk_queue_bypass(q)))
2165
		goto out_unlock;
2166

2167
	blk_throtl_assoc_bio(tg, bio);
2168 2169
	blk_throtl_update_idletime(tg);

2170 2171
	sq = &tg->service_queue;

2172
again:
2173
	while (true) {
S
Shaohua Li 已提交
2174 2175 2176
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2177
		throtl_upgrade_check(tg);
2178 2179 2180
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2181

2182
		/* if above limits, break to queue */
2183
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2184
			tg->last_low_overflow_time[rw] = jiffies;
2185 2186
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2187 2188
				goto again;
			}
2189
			break;
2190
		}
2191 2192

		/* within limits, let's charge and dispatch directly */
2193
		throtl_charge_bio(tg, bio);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2206
		throtl_trim_slice(tg, rw);
2207 2208 2209 2210 2211 2212

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2213
		qn = &tg->qnode_on_parent[rw];
2214 2215 2216 2217
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2218 2219
	}

2220
	/* out-of-limit, queue to @tg */
2221 2222
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2223 2224 2225
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2226
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2227

S
Shaohua Li 已提交
2228 2229
	tg->last_low_overflow_time[rw] = jiffies;

2230
	td->nr_queued[rw]++;
2231
	throtl_add_bio_tg(bio, qn, tg);
2232
	throttled = true;
2233

2234 2235 2236 2237 2238 2239
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2240
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2241
		tg_update_disptime(tg);
2242
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2243 2244
	}

2245
out_unlock:
2246
	spin_unlock_irq(q->queue_lock);
2247
out:
S
Shaohua Li 已提交
2248
	bio_set_flag(bio, BIO_THROTTLED);
2249 2250 2251

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2252
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2253
#endif
2254
	return throttled;
2255 2256
}

2257
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2258 2259 2260 2261 2262 2263
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2264 2265
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2266 2267 2268 2269 2270
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2271
	latency = get_cpu_ptr(td->latency_buckets[op]);
2272 2273
	latency[index].total_latency += time;
	latency[index].samples++;
2274
	put_cpu_ptr(td->latency_buckets[op]);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2286 2287 2288
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2289 2290 2291 2292
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2293
	int rw = bio_data_dir(bio);
2294 2295 2296 2297 2298 2299

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2300 2301 2302
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2303 2304
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2305 2306
	if (!start_time || finish_time <= start_time) {
		blkg_put(tg_to_blkg(tg));
2307
		return;
2308
	}
2309 2310

	lat = finish_time - start_time;
2311
	/* this is only for bio based driver */
2312 2313 2314
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2315

2316
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2317 2318 2319
		int bucket;
		unsigned int threshold;

2320
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2321
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2336
	}
2337 2338

	blkg_put(tg_to_blkg(tg));
2339 2340 2341
}
#endif

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2357
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2358
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2359
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2360 2361 2362 2363
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2374
	struct blkcg_gq *blkg;
2375
	struct cgroup_subsys_state *pos_css;
2376
	struct bio *bio;
2377
	int rw;
2378

2379
	queue_lockdep_assert_held(q);
2380
	rcu_read_lock();
2381

2382 2383 2384 2385 2386 2387
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2388
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2389
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2390

2391 2392 2393 2394
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2395 2396
	spin_unlock_irq(q->queue_lock);

2397
	/* all bios now should be in td->service_queue, issue them */
2398
	for (rw = READ; rw <= WRITE; rw++)
2399 2400
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2401
			generic_make_request(bio);
2402 2403 2404 2405

	spin_lock_irq(q->queue_lock);
}

2406 2407 2408
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2409
	int ret;
2410 2411 2412 2413

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2414
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2415
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2416 2417 2418 2419 2420
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2421
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2422 2423
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2424 2425 2426
		kfree(td);
		return -ENOMEM;
	}
2427

2428
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2429
	throtl_service_queue_init(&td->service_queue);
2430

2431
	q->td = td;
2432
	td->queue = q;
V
Vivek Goyal 已提交
2433

2434
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2435
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2436 2437
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2438

2439
	/* activate policy */
T
Tejun Heo 已提交
2440
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2441
	if (ret) {
2442 2443
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2444
		kfree(td);
2445
	}
2446
	return ret;
2447 2448 2449 2450
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2451
	BUG_ON(!q->td);
2452
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2453
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2454 2455
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2456
	kfree(q->td);
2457 2458
}

2459 2460 2461
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2462
	int i;
2463 2464 2465 2466

	td = q->td;
	BUG_ON(!td);

2467
	if (blk_queue_nonrot(q)) {
2468
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2469 2470
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2471
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2472
		td->filtered_latency = LATENCY_FILTERED_HD;
2473 2474 2475 2476
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2477
	}
2478 2479 2480 2481
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2482

2483
	td->track_bio_latency = !queue_is_rq_based(q);
2484 2485
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2514 2515
static int __init throtl_init(void)
{
2516 2517 2518 2519
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2520
	return blkcg_policy_register(&blkcg_policy_throtl);
2521 2522 2523
}

module_init(throtl_init);