blk-throttle.c 54.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
22 23
#define DFL_THROTL_SLICE (HZ / 10)
#define MAX_THROTL_SLICE (HZ)
24

T
Tejun Heo 已提交
25
static struct blkcg_policy blkcg_policy_throtl;
26

27 28 29
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

59
struct throtl_service_queue {
60 61
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

62 63 64 65
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
66
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
67 68 69 70 71 72
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
73 74 75 76
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
77
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
78 79
};

80 81
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
82
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
83 84
};

85 86
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

87
enum {
S
Shaohua Li 已提交
88
	LIMIT_LOW,
89 90 91 92
	LIMIT_MAX,
	LIMIT_CNT,
};

93
struct throtl_grp {
94 95 96
	/* must be the first member */
	struct blkg_policy_data pd;

97
	/* active throtl group service_queue member */
98 99
	struct rb_node rb_node;

100 101 102
	/* throtl_data this group belongs to */
	struct throtl_data *td;

103 104 105
	/* this group's service queue */
	struct throtl_service_queue service_queue;

106 107 108 109 110 111 112 113 114 115 116
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

117 118 119 120 121 122 123 124 125
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

126 127 128
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
129
	/* internally used bytes per second rate limits */
130
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
131 132
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
133

S
Shaohua Li 已提交
134
	/* internally used IOPS limits */
135
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
136 137
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
138

139 140
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
141 142
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
143

S
Shaohua Li 已提交
144 145 146 147 148 149 150
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

151 152 153 154 155 156 157 158
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
159
	struct throtl_service_queue service_queue;
160 161 162 163 164 165

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

166 167
	unsigned int throtl_slice;

168
	/* Work for dispatching throttled bios */
169
	struct work_struct dispatch_work;
170 171
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
172 173 174

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
175 176
};

177 178
static void throtl_pending_timer_fn(unsigned long arg);

179 180 181 182 183
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
184
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
185
{
186
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
187 188
}

T
Tejun Heo 已提交
189
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
190
{
191
	return pd_to_blkg(&tg->pd);
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
213
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
214 215 216 217 218 219 220 221 222 223 224 225
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

226 227
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
228 229 230 231 232 233 234 235 236
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
	ret = tg->bps[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->bps[rw][LIMIT_MAX];
	return ret;
237 238 239 240
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
241 242 243 244 245 246 247 248 249
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
	ret = tg->iops[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
	return ret;
250 251
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
266 267
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
268 269
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
270
									\
271 272 273 274 275
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
276
} while (0)
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

361
/* init a service_queue, assumes the caller zeroed it */
362
static void throtl_service_queue_init(struct throtl_service_queue *sq)
363
{
364 365
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
366
	sq->pending_tree = RB_ROOT;
367 368 369 370
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

371 372
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
373
	struct throtl_grp *tg;
T
Tejun Heo 已提交
374
	int rw;
375 376 377

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
378
		return NULL;
379

380 381 382 383 384 385 386 387
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
388 389 390 391
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
392 393 394 395 396
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
397

398
	return &tg->pd;
399 400
}

401
static void throtl_pd_init(struct blkg_policy_data *pd)
402
{
403 404
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
405
	struct throtl_data *td = blkg->q->td;
406
	struct throtl_service_queue *sq = &tg->service_queue;
407

408
	/*
409
	 * If on the default hierarchy, we switch to properly hierarchical
410 411 412 413 414
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
415
	 * If not on the default hierarchy, the broken flat hierarchy
416 417 418 419 420
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
421
	sq->parent_sq = &td->service_queue;
422
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
423
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
424
	tg->td = td;
425 426
}

427 428 429 430 431 432 433 434
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
435
	struct throtl_data *td = tg->td;
436 437 438 439
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
440 441 442
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
443 444
}

445
static void throtl_pd_online(struct blkg_policy_data *pd)
446 447 448 449 450
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
451
	tg_update_has_rules(pd_to_tg(pd));
452 453
}

S
Shaohua Li 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

473
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
474 475 476 477 478 479 480 481 482 483 484
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

485 486
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
487 488
}

489 490
static void throtl_pd_free(struct blkg_policy_data *pd)
{
491 492
	struct throtl_grp *tg = pd_to_tg(pd);

493
	del_timer_sync(&tg->service_queue.pending_timer);
494
	kfree(tg);
495 496
}

497 498
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
499 500
{
	/* Service tree is empty */
501
	if (!parent_sq->nr_pending)
502 503
		return NULL;

504 505
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
506

507 508
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
509 510 511 512 513 514 515 516 517 518

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

519 520
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
521
{
522 523 524 525
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
526 527
}

528
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
529 530 531
{
	struct throtl_grp *tg;

532
	tg = throtl_rb_first(parent_sq);
533 534 535
	if (!tg)
		return;

536
	parent_sq->first_pending_disptime = tg->disptime;
537 538
}

539
static void tg_service_queue_add(struct throtl_grp *tg)
540
{
541
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
542
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
561
		parent_sq->first_pending = &tg->rb_node;
562 563

	rb_link_node(&tg->rb_node, parent, node);
564
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
565 566
}

567
static void __throtl_enqueue_tg(struct throtl_grp *tg)
568
{
569
	tg_service_queue_add(tg);
570
	tg->flags |= THROTL_TG_PENDING;
571
	tg->service_queue.parent_sq->nr_pending++;
572 573
}

574
static void throtl_enqueue_tg(struct throtl_grp *tg)
575
{
576
	if (!(tg->flags & THROTL_TG_PENDING))
577
		__throtl_enqueue_tg(tg);
578 579
}

580
static void __throtl_dequeue_tg(struct throtl_grp *tg)
581
{
582
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
583
	tg->flags &= ~THROTL_TG_PENDING;
584 585
}

586
static void throtl_dequeue_tg(struct throtl_grp *tg)
587
{
588
	if (tg->flags & THROTL_TG_PENDING)
589
		__throtl_dequeue_tg(tg);
590 591
}

592
/* Call with queue lock held */
593 594
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
595
{
596
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
597 598 599 600 601 602 603 604 605 606

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
607 608 609
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
610 611
}

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
632
{
633
	/* any pending children left? */
634
	if (!sq->nr_pending)
635
		return true;
636

637
	update_min_dispatch_time(sq);
638

639
	/* is the next dispatch time in the future? */
640
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
641
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
642
		return true;
643 644
	}

645 646
	/* tell the caller to continue dispatching */
	return false;
647 648
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

664
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665 666 667 668 669 670
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

671
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
672 673
{
	tg->bytes_disp[rw] = 0;
674
	tg->io_disp[rw] = 0;
675
	tg->slice_start[rw] = jiffies;
676
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
677 678 679 680
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
681 682
}

683 684
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
685
{
686
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
687 688
}

689 690
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
691
{
692
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
693 694 695 696
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
697 698 699
}

/* Determine if previously allocated or extended slice is complete or not */
700
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
701 702
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
703
		return false;
704 705 706 707 708

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
709
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
710
{
711 712
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
713 714 715 716 717 718 719 720

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
721
	if (throtl_slice_used(tg, rw))
722 723
		return;

724 725 726 727 728 729 730 731
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

732
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
733

734 735
	time_elapsed = jiffies - tg->slice_start[rw];

736
	nr_slices = time_elapsed / tg->td->throtl_slice;
737 738 739

	if (!nr_slices)
		return;
740
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
741 742
	do_div(tmp, HZ);
	bytes_trim = tmp;
743

744 745
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
746

747
	if (!bytes_trim && !io_trim)
748 749 750 751 752 753 754
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

755 756 757 758 759
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

760
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
761

762 763 764 765
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
766 767
}

768 769
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
770 771
{
	bool rw = bio_data_dir(bio);
772
	unsigned int io_allowed;
773
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
774
	u64 tmp;
775

776
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
777

778 779
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
780
		jiffy_elapsed_rnd = tg->td->throtl_slice;
781

782
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
783

784 785 786 787 788 789 790
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

791
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
792 793 794 795 796 797
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
798 799

	if (tg->io_disp[rw] + 1 <= io_allowed) {
800 801
		if (wait)
			*wait = 0;
802
		return true;
803 804
	}

805
	/* Calc approx time to dispatch */
806
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
807 808 809 810 811 812 813 814 815 816 817

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

818 819
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
820 821
{
	bool rw = bio_data_dir(bio);
822
	u64 bytes_allowed, extra_bytes, tmp;
823
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
824 825 826 827 828

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
829
		jiffy_elapsed_rnd = tg->td->throtl_slice;
830

831
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
832

833
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
834
	do_div(tmp, HZ);
835
	bytes_allowed = tmp;
836

837
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
838 839
		if (wait)
			*wait = 0;
840
		return true;
841 842 843
	}

	/* Calc approx time to dispatch */
844
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
845
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
846 847 848 849 850 851 852 853 854 855 856

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
857 858 859 860 861 862 863
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
864 865
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
866 867 868 869 870 871 872 873 874 875
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
876
	BUG_ON(tg->service_queue.nr_queued[rw] &&
877
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
878

879
	/* If tg->bps = -1, then BW is unlimited */
880 881
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
882 883
		if (wait)
			*wait = 0;
884
		return true;
885 886 887 888 889
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
890 891 892
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
893
	 */
894
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
895
		throtl_start_new_slice(tg, rw);
896
	else {
897 898 899 900
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
901 902
	}

903 904
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
905 906 907 908 909 910 911 912 913 914 915
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
916
		throtl_extend_slice(tg, rw, jiffies + max_wait);
917 918 919 920 921 922 923 924 925

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
926
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
927
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
928 929
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
930

931
	/*
932
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
933 934 935 936
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
937 938
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
939 940
}

941 942 943 944 945 946 947 948 949 950 951
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
952
{
953
	struct throtl_service_queue *sq = &tg->service_queue;
954 955
	bool rw = bio_data_dir(bio);

956 957 958
	if (!qn)
		qn = &tg->qnode_on_self[rw];

959 960 961 962 963 964 965 966 967
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

968 969
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

970
	sq->nr_queued[rw]++;
971
	throtl_enqueue_tg(tg);
972 973
}

974
static void tg_update_disptime(struct throtl_grp *tg)
975
{
976
	struct throtl_service_queue *sq = &tg->service_queue;
977 978 979
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

980 981
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
982
		tg_may_dispatch(tg, bio, &read_wait);
983

984 985
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
986
		tg_may_dispatch(tg, bio, &write_wait);
987 988 989 990 991

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
992
	throtl_dequeue_tg(tg);
993
	tg->disptime = disptime;
994
	throtl_enqueue_tg(tg);
995 996 997

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
998 999
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1010
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1011
{
1012
	struct throtl_service_queue *sq = &tg->service_queue;
1013 1014
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1015
	struct throtl_grp *tg_to_put = NULL;
1016 1017
	struct bio *bio;

1018 1019 1020 1021 1022 1023 1024
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1025
	sq->nr_queued[rw]--;
1026 1027

	throtl_charge_bio(tg, bio);
1028 1029 1030 1031 1032 1033 1034 1035 1036

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1037
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1038
		start_parent_slice_with_credit(tg, parent_tg, rw);
1039
	} else {
1040 1041
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1042 1043 1044
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1045

1046
	throtl_trim_slice(tg, rw);
1047

1048 1049
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1050 1051
}

1052
static int throtl_dispatch_tg(struct throtl_grp *tg)
1053
{
1054
	struct throtl_service_queue *sq = &tg->service_queue;
1055 1056
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1057
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1058 1059 1060 1061
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1062
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1063
	       tg_may_dispatch(tg, bio, NULL)) {
1064

1065
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1066 1067 1068 1069 1070 1071
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1072
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1073
	       tg_may_dispatch(tg, bio, NULL)) {
1074

1075
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1076 1077 1078 1079 1080 1081 1082 1083 1084
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1085
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1086 1087 1088 1089
{
	unsigned int nr_disp = 0;

	while (1) {
1090 1091
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1092 1093 1094 1095 1096 1097 1098

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1099
		throtl_dequeue_tg(tg);
1100

1101
		nr_disp += throtl_dispatch_tg(tg);
1102

1103
		if (sq->nr_queued[0] || sq->nr_queued[1])
1104
			tg_update_disptime(tg);
1105 1106 1107 1108 1109 1110 1111 1112

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1113 1114
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1115 1116 1117 1118 1119 1120 1121
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1122 1123 1124 1125 1126 1127 1128
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1129
 */
1130 1131 1132
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1133
	struct throtl_grp *tg = sq_to_tg(sq);
1134
	struct throtl_data *td = sq_to_td(sq);
1135
	struct request_queue *q = td->queue;
1136 1137
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1138
	int ret;
1139 1140

	spin_lock_irq(q->queue_lock);
1141 1142 1143
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1144 1145 1146
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1147

1148 1149
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1150 1151
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1152 1153 1154 1155 1156 1157

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1158

1159 1160
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1161

1162 1163 1164 1165
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1166
	}
1167

1168 1169
	if (!dispatched)
		goto out_unlock;
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1187
	spin_unlock_irq(q->queue_lock);
1188
}
1189

1190 1191 1192 1193 1194 1195 1196 1197
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1198
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1212 1213 1214
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1215 1216 1217
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1218
		blk_start_plug(&plug);
1219 1220
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1221
		blk_finish_plug(&plug);
1222 1223 1224
	}
}

1225 1226
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1227
{
1228 1229
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1230

1231
	if (v == U64_MAX)
1232
		return 0;
1233
	return __blkg_prfill_u64(sf, pd, v);
1234 1235
}

1236 1237
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1238
{
1239 1240
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1241

1242
	if (v == UINT_MAX)
1243
		return 0;
1244
	return __blkg_prfill_u64(sf, pd, v);
1245 1246
}

1247
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1248
{
1249 1250
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1251
	return 0;
1252 1253
}

1254
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1255
{
1256 1257
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1258
	return 0;
1259 1260
}

1261
static void tg_conf_updated(struct throtl_grp *tg)
1262
{
1263
	struct throtl_service_queue *sq = &tg->service_queue;
1264
	struct cgroup_subsys_state *pos_css;
1265
	struct blkcg_gq *blkg;
1266

1267 1268
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1269 1270
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1271

1272 1273 1274 1275 1276 1277 1278
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1279
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1280 1281
		tg_update_has_rules(blkg_to_tg(blkg));

1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1290 1291
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1292

1293
	if (tg->flags & THROTL_TG_PENDING) {
1294
		tg_update_disptime(tg);
1295
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1296
	}
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1316
		v = U64_MAX;
1317 1318 1319 1320 1321 1322 1323

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1324

1325
	tg_conf_updated(tg);
1326 1327
	ret = 0;
out_finish:
1328
	blkg_conf_finish(&ctx);
1329
	return ret ?: nbytes;
1330 1331
}

1332 1333
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1334
{
1335
	return tg_set_conf(of, buf, nbytes, off, true);
1336 1337
}

1338 1339
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1340
{
1341
	return tg_set_conf(of, buf, nbytes, off, false);
1342 1343
}

1344
static struct cftype throtl_legacy_files[] = {
1345 1346
	{
		.name = "throttle.read_bps_device",
1347
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1348
		.seq_show = tg_print_conf_u64,
1349
		.write = tg_set_conf_u64,
1350 1351 1352
	},
	{
		.name = "throttle.write_bps_device",
1353
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1354
		.seq_show = tg_print_conf_u64,
1355
		.write = tg_set_conf_u64,
1356 1357 1358
	},
	{
		.name = "throttle.read_iops_device",
1359
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1360
		.seq_show = tg_print_conf_uint,
1361
		.write = tg_set_conf_uint,
1362 1363 1364
	},
	{
		.name = "throttle.write_iops_device",
1365
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1366
		.seq_show = tg_print_conf_uint,
1367
		.write = tg_set_conf_uint,
1368 1369 1370
	},
	{
		.name = "throttle.io_service_bytes",
1371 1372
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1373 1374 1375
	},
	{
		.name = "throttle.io_serviced",
1376 1377
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1378 1379 1380 1381
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1382
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1383 1384 1385 1386 1387
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1388 1389
	u64 bps_dft;
	unsigned int iops_dft;
1390 1391 1392

	if (!dname)
		return 0;
1393

S
Shaohua Li 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1406 1407
		return 0;

S
Shaohua Li 已提交
1408
	if (tg->bps_conf[READ][off] != bps_dft)
1409
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1410 1411
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1412
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1413 1414
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1415
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1416 1417
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1418
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1419
			tg->iops_conf[WRITE][off]);
1420 1421 1422 1423 1424 1425

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1426
static int tg_print_limit(struct seq_file *sf, void *v)
1427
{
S
Shaohua Li 已提交
1428
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1429 1430 1431 1432
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1433
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1434 1435 1436 1437 1438 1439 1440
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1441
	int index = of_cft(of)->private;
1442 1443 1444 1445 1446 1447 1448

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1449 1450 1451 1452
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1453 1454 1455 1456

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1457
		u64 val = U64_MAX;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1489 1490 1491 1492
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1493

S
Shaohua Li 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1514 1515 1516 1517 1518 1519 1520 1521
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1531 1532 1533
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1534 1535 1536
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1537 1538 1539 1540
	},
	{ }	/* terminate */
};

1541
static void throtl_shutdown_wq(struct request_queue *q)
1542 1543 1544
{
	struct throtl_data *td = q->td;

1545
	cancel_work_sync(&td->dispatch_work);
1546 1547
}

T
Tejun Heo 已提交
1548
static struct blkcg_policy blkcg_policy_throtl = {
1549
	.dfl_cftypes		= throtl_files,
1550
	.legacy_cftypes		= throtl_legacy_files,
1551

1552
	.pd_alloc_fn		= throtl_pd_alloc,
1553
	.pd_init_fn		= throtl_pd_init,
1554
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1555
	.pd_offline_fn		= throtl_pd_offline,
1556
	.pd_free_fn		= throtl_pd_free,
1557 1558
};

S
Shaohua Li 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1641
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1642 1643
		return false;

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1667
	td->low_upgrade_time = jiffies;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1698 1699 1700
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
					td->throtl_slice))
S
Shaohua Li 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1729
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1730 1731 1732 1733 1734
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1735 1736
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1778 1779
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1780
{
1781
	struct throtl_qnode *qn = NULL;
1782
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1783
	struct throtl_service_queue *sq;
1784
	bool rw = bio_data_dir(bio);
1785
	bool throttled = false;
1786

1787 1788
	WARN_ON_ONCE(!rcu_read_lock_held());

1789
	/* see throtl_charge_bio() */
1790
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1791
		goto out;
1792 1793

	spin_lock_irq(q->queue_lock);
1794 1795

	if (unlikely(blk_queue_bypass(q)))
1796
		goto out_unlock;
1797

1798 1799
	sq = &tg->service_queue;

1800
again:
1801
	while (true) {
S
Shaohua Li 已提交
1802 1803 1804
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
1805 1806 1807
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1808

1809
		/* if above limits, break to queue */
1810
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
1811
			tg->last_low_overflow_time[rw] = jiffies;
1812 1813 1814 1815
			if (throtl_can_upgrade(tg->td, tg)) {
				throtl_upgrade_state(tg->td);
				goto again;
			}
1816
			break;
1817
		}
1818 1819

		/* within limits, let's charge and dispatch directly */
1820
		throtl_charge_bio(tg, bio);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1833
		throtl_trim_slice(tg, rw);
1834 1835 1836 1837 1838 1839

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1840
		qn = &tg->qnode_on_parent[rw];
1841 1842 1843 1844
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1845 1846
	}

1847
	/* out-of-limit, queue to @tg */
1848 1849
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1850 1851 1852
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1853
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1854

S
Shaohua Li 已提交
1855 1856
	tg->last_low_overflow_time[rw] = jiffies;

1857
	bio_associate_current(bio);
1858
	tg->td->nr_queued[rw]++;
1859
	throtl_add_bio_tg(bio, qn, tg);
1860
	throttled = true;
1861

1862 1863 1864 1865 1866 1867
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1868
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1869
		tg_update_disptime(tg);
1870
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1871 1872
	}

1873
out_unlock:
1874
	spin_unlock_irq(q->queue_lock);
1875
out:
1876 1877 1878 1879 1880 1881
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1882
		bio_clear_flag(bio, BIO_THROTTLED);
1883
	return throttled;
1884 1885
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1901
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1902
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1903
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1904 1905 1906 1907
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1918
	struct blkcg_gq *blkg;
1919
	struct cgroup_subsys_state *pos_css;
1920
	struct bio *bio;
1921
	int rw;
1922

1923
	queue_lockdep_assert_held(q);
1924
	rcu_read_lock();
1925

1926 1927 1928 1929 1930 1931
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1932
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1933
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1934

1935 1936 1937 1938
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1939 1940
	spin_unlock_irq(q->queue_lock);

1941
	/* all bios now should be in td->service_queue, issue them */
1942
	for (rw = READ; rw <= WRITE; rw++)
1943 1944
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1945
			generic_make_request(bio);
1946 1947 1948 1949

	spin_lock_irq(q->queue_lock);
}

1950 1951 1952
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1953
	int ret;
1954 1955 1956 1957 1958

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1959
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1960
	throtl_service_queue_init(&td->service_queue);
1961

1962
	q->td = td;
1963
	td->queue = q;
1964
	td->throtl_slice = DFL_THROTL_SLICE;
V
Vivek Goyal 已提交
1965

1966
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1967
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1968 1969
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
1970
	/* activate policy */
T
Tejun Heo 已提交
1971
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1972
	if (ret)
1973
		kfree(td);
1974
	return ret;
1975 1976 1977 1978
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1979
	BUG_ON(!q->td);
1980
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1981
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1982
	kfree(q->td);
1983 1984
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2011 2012
static int __init throtl_init(void)
{
2013 2014 2015 2016
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2017
	return blkcg_policy_register(&blkcg_policy_throtl);
2018 2019 2020
}

module_init(throtl_init);