blk-throttle.c 67.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
26 27
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
28 29
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
30

31 32
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)

T
Tejun Heo 已提交
33
static struct blkcg_policy blkcg_policy_throtl;
34

35 36 37
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

67
struct throtl_service_queue {
68 69
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

70 71 72 73
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
74
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
75 76 77 78 79 80
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
81 82 83 84
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
85
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
86 87
};

88 89
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
90
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
91 92
};

93 94
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

95
enum {
S
Shaohua Li 已提交
96
	LIMIT_LOW,
97 98 99 100
	LIMIT_MAX,
	LIMIT_CNT,
};

101
struct throtl_grp {
102 103 104
	/* must be the first member */
	struct blkg_policy_data pd;

105
	/* active throtl group service_queue member */
106 107
	struct rb_node rb_node;

108 109 110
	/* throtl_data this group belongs to */
	struct throtl_data *td;

111 112 113
	/* this group's service queue */
	struct throtl_service_queue service_queue;

114 115 116 117 118 119 120 121 122 123 124
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

125 126 127 128 129 130 131 132 133
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

134 135 136
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
137
	/* internally used bytes per second rate limits */
138
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
139 140
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
141

S
Shaohua Li 已提交
142
	/* internally used IOPS limits */
143
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
144 145
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
146

147 148
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
149 150
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
151

S
Shaohua Li 已提交
152 153 154 155 156 157 158
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

159
	unsigned long latency_target; /* us */
160
	unsigned long latency_target_conf; /* us */
161 162 163
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
164 165 166 167 168

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
169
	unsigned long idletime_threshold_conf; /* us */
170 171 172 173

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

189 190 191
struct throtl_data
{
	/* service tree for active throtl groups */
192
	struct throtl_service_queue service_queue;
193 194 195 196 197 198

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

199 200
	unsigned int throtl_slice;

201
	/* Work for dispatching throttled bios */
202
	struct work_struct dispatch_work;
203 204
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
205 206 207

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
208 209

	unsigned int scale;
210 211 212 213 214 215 216

	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets;
	unsigned long last_calculate_time;

	bool track_bio_latency;
217 218
};

219 220
static void throtl_pending_timer_fn(unsigned long arg);

221 222 223 224 225
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
226
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
227
{
228
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
229 230
}

T
Tejun Heo 已提交
231
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
232
{
233
	return pd_to_blkg(&tg->pd);
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
255
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
256 257 258 259 260 261 262 263 264 265 266 267
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

286 287
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
288
	struct blkcg_gq *blkg = tg_to_blkg(tg);
289
	struct throtl_data *td;
290 291 292 293
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
294 295 296

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
297 298 299 300 301 302 303 304
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
305 306 307 308 309 310 311 312

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
313
	return ret;
314 315 316 317
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
318
	struct blkcg_gq *blkg = tg_to_blkg(tg);
319
	struct throtl_data *td;
320 321 322 323
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
324

325 326
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
327 328 329 330 331 332 333 334
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
335 336 337 338 339 340 341 342 343 344

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
345
	return ret;
346 347
}

348 349 350
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

351 352 353 354 355 356 357 358 359 360 361 362 363 364
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
365 366
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
367 368
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
369
									\
370 371 372 373 374
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
375
} while (0)
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

460
/* init a service_queue, assumes the caller zeroed it */
461
static void throtl_service_queue_init(struct throtl_service_queue *sq)
462
{
463 464
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
465
	sq->pending_tree = RB_ROOT;
466 467 468 469
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

470 471
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
472
	struct throtl_grp *tg;
T
Tejun Heo 已提交
473
	int rw;
474 475 476

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
477
		return NULL;
478

479 480 481 482 483 484 485 486
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
487 488 489 490
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
491 492 493 494 495
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
496

497
	tg->latency_target = DFL_LATENCY_TARGET;
498
	tg->latency_target_conf = DFL_LATENCY_TARGET;
499 500
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
501

502
	return &tg->pd;
503 504
}

505
static void throtl_pd_init(struct blkg_policy_data *pd)
506
{
507 508
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
509
	struct throtl_data *td = blkg->q->td;
510
	struct throtl_service_queue *sq = &tg->service_queue;
511

512
	/*
513
	 * If on the default hierarchy, we switch to properly hierarchical
514 515 516 517 518
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
519
	 * If not on the default hierarchy, the broken flat hierarchy
520 521 522 523 524
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
525
	sq->parent_sq = &td->service_queue;
526
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
527
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
528
	tg->td = td;
529 530
}

531 532 533 534 535 536 537 538
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
539
	struct throtl_data *td = tg->td;
540 541 542 543
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
544 545 546
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
547 548
}

549
static void throtl_pd_online(struct blkg_policy_data *pd)
550
{
551
	struct throtl_grp *tg = pd_to_tg(pd);
552 553 554 555
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
556
	tg_update_has_rules(tg);
557 558
}

S
Shaohua Li 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

578
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
579 580 581 582 583 584 585 586 587 588 589
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

590 591
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
592 593
}

594 595
static void throtl_pd_free(struct blkg_policy_data *pd)
{
596 597
	struct throtl_grp *tg = pd_to_tg(pd);

598
	del_timer_sync(&tg->service_queue.pending_timer);
599
	kfree(tg);
600 601
}

602 603
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
604 605
{
	/* Service tree is empty */
606
	if (!parent_sq->nr_pending)
607 608
		return NULL;

609 610
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
611

612 613
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
614 615 616 617 618 619 620 621 622 623

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

624 625
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
626
{
627 628 629 630
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
631 632
}

633
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
634 635 636
{
	struct throtl_grp *tg;

637
	tg = throtl_rb_first(parent_sq);
638 639 640
	if (!tg)
		return;

641
	parent_sq->first_pending_disptime = tg->disptime;
642 643
}

644
static void tg_service_queue_add(struct throtl_grp *tg)
645
{
646
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
647
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
666
		parent_sq->first_pending = &tg->rb_node;
667 668

	rb_link_node(&tg->rb_node, parent, node);
669
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
670 671
}

672
static void __throtl_enqueue_tg(struct throtl_grp *tg)
673
{
674
	tg_service_queue_add(tg);
675
	tg->flags |= THROTL_TG_PENDING;
676
	tg->service_queue.parent_sq->nr_pending++;
677 678
}

679
static void throtl_enqueue_tg(struct throtl_grp *tg)
680
{
681
	if (!(tg->flags & THROTL_TG_PENDING))
682
		__throtl_enqueue_tg(tg);
683 684
}

685
static void __throtl_dequeue_tg(struct throtl_grp *tg)
686
{
687
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
688
	tg->flags &= ~THROTL_TG_PENDING;
689 690
}

691
static void throtl_dequeue_tg(struct throtl_grp *tg)
692
{
693
	if (tg->flags & THROTL_TG_PENDING)
694
		__throtl_dequeue_tg(tg);
695 696
}

697
/* Call with queue lock held */
698 699
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
700
{
701
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
702 703 704 705 706 707 708 709 710 711

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
712 713 714
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
715 716
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
737
{
738
	/* any pending children left? */
739
	if (!sq->nr_pending)
740
		return true;
741

742
	update_min_dispatch_time(sq);
743

744
	/* is the next dispatch time in the future? */
745
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
746
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
747
		return true;
748 749
	}

750 751
	/* tell the caller to continue dispatching */
	return false;
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

769
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
770 771 772 773 774 775
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

776
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
777 778
{
	tg->bytes_disp[rw] = 0;
779
	tg->io_disp[rw] = 0;
780
	tg->slice_start[rw] = jiffies;
781
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
782 783 784 785
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
786 787
}

788 789
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
790
{
791
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
792 793
}

794 795
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
796
{
797
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
798 799 800 801
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
802 803 804
}

/* Determine if previously allocated or extended slice is complete or not */
805
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
806 807
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
808
		return false;
809 810 811 812 813

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
814
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
815
{
816 817
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
818 819 820 821 822 823 824 825

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
826
	if (throtl_slice_used(tg, rw))
827 828
		return;

829 830 831 832 833 834 835 836
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

837
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
838

839 840
	time_elapsed = jiffies - tg->slice_start[rw];

841
	nr_slices = time_elapsed / tg->td->throtl_slice;
842 843 844

	if (!nr_slices)
		return;
845
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
846 847
	do_div(tmp, HZ);
	bytes_trim = tmp;
848

849 850
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
851

852
	if (!bytes_trim && !io_trim)
853 854 855 856 857 858 859
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

860 861 862 863 864
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

865
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
866

867 868 869 870
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
871 872
}

873 874
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
875 876
{
	bool rw = bio_data_dir(bio);
877
	unsigned int io_allowed;
878
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
879
	u64 tmp;
880

881
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
882

883 884
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
885
		jiffy_elapsed_rnd = tg->td->throtl_slice;
886

887
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
888

889 890 891 892 893 894 895
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

896
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
897 898 899 900 901 902
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
903 904

	if (tg->io_disp[rw] + 1 <= io_allowed) {
905 906
		if (wait)
			*wait = 0;
907
		return true;
908 909
	}

910
	/* Calc approx time to dispatch */
911
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
912 913 914 915 916 917 918 919 920 921 922

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

923 924
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
925 926
{
	bool rw = bio_data_dir(bio);
927
	u64 bytes_allowed, extra_bytes, tmp;
928
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
929 930 931 932 933

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
934
		jiffy_elapsed_rnd = tg->td->throtl_slice;
935

936
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
937

938
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
939
	do_div(tmp, HZ);
940
	bytes_allowed = tmp;
941

942
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
943 944
		if (wait)
			*wait = 0;
945
		return true;
946 947 948
	}

	/* Calc approx time to dispatch */
949
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
950
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
951 952 953 954 955 956 957 958 959 960 961

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
962 963 964 965 966 967 968
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
969 970
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
971 972 973 974 975 976 977 978 979 980
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
981
	BUG_ON(tg->service_queue.nr_queued[rw] &&
982
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
983

984
	/* If tg->bps = -1, then BW is unlimited */
985 986
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
987 988
		if (wait)
			*wait = 0;
989
		return true;
990 991 992 993 994
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
995 996 997
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
998
	 */
999
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1000
		throtl_start_new_slice(tg, rw);
1001
	else {
1002 1003 1004 1005
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1006 1007
	}

1008 1009
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1021
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1022 1023 1024 1025 1026 1027 1028 1029 1030

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
1031
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1032
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
1033 1034
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
1035

1036
	/*
1037
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1038 1039 1040 1041
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1042 1043
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1057
{
1058
	struct throtl_service_queue *sq = &tg->service_queue;
1059 1060
	bool rw = bio_data_dir(bio);

1061 1062 1063
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1064 1065 1066 1067 1068 1069 1070 1071 1072
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1073 1074
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1075
	sq->nr_queued[rw]++;
1076
	throtl_enqueue_tg(tg);
1077 1078
}

1079
static void tg_update_disptime(struct throtl_grp *tg)
1080
{
1081
	struct throtl_service_queue *sq = &tg->service_queue;
1082 1083 1084
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1085 1086
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1087
		tg_may_dispatch(tg, bio, &read_wait);
1088

1089 1090
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1091
		tg_may_dispatch(tg, bio, &write_wait);
1092 1093 1094 1095 1096

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1097
	throtl_dequeue_tg(tg);
1098
	tg->disptime = disptime;
1099
	throtl_enqueue_tg(tg);
1100 1101 1102

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1115
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1116
{
1117
	struct throtl_service_queue *sq = &tg->service_queue;
1118 1119
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1120
	struct throtl_grp *tg_to_put = NULL;
1121 1122
	struct bio *bio;

1123 1124 1125 1126 1127 1128 1129
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1130
	sq->nr_queued[rw]--;
1131 1132

	throtl_charge_bio(tg, bio);
1133 1134 1135 1136 1137 1138 1139 1140 1141

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1142
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1143
		start_parent_slice_with_credit(tg, parent_tg, rw);
1144
	} else {
1145 1146
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1147 1148 1149
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1150

1151
	throtl_trim_slice(tg, rw);
1152

1153 1154
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1155 1156
}

1157
static int throtl_dispatch_tg(struct throtl_grp *tg)
1158
{
1159
	struct throtl_service_queue *sq = &tg->service_queue;
1160 1161
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1162
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1163 1164 1165 1166
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1167
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1168
	       tg_may_dispatch(tg, bio, NULL)) {
1169

1170
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1171 1172 1173 1174 1175 1176
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1177
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1178
	       tg_may_dispatch(tg, bio, NULL)) {
1179

1180
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1181 1182 1183 1184 1185 1186 1187 1188 1189
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1190
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1191 1192 1193 1194
{
	unsigned int nr_disp = 0;

	while (1) {
1195 1196
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1197 1198 1199 1200 1201 1202 1203

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1204
		throtl_dequeue_tg(tg);
1205

1206
		nr_disp += throtl_dispatch_tg(tg);
1207

1208
		if (sq->nr_queued[0] || sq->nr_queued[1])
1209
			tg_update_disptime(tg);
1210 1211 1212 1213 1214 1215 1216 1217

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1218 1219
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1220 1221 1222 1223 1224 1225 1226
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1227 1228 1229 1230 1231 1232 1233
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1234
 */
1235 1236 1237
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1238
	struct throtl_grp *tg = sq_to_tg(sq);
1239
	struct throtl_data *td = sq_to_td(sq);
1240
	struct request_queue *q = td->queue;
1241 1242
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1243
	int ret;
1244 1245

	spin_lock_irq(q->queue_lock);
1246 1247 1248
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1249 1250 1251
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1252

1253 1254
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1255 1256
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1257 1258 1259 1260 1261 1262

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1263

1264 1265
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1266

1267 1268 1269 1270
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1271
	}
1272

1273 1274
	if (!dispatched)
		goto out_unlock;
1275

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1292
	spin_unlock_irq(q->queue_lock);
1293
}
1294

1295 1296 1297 1298 1299 1300 1301 1302
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1303
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1317 1318 1319
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1320 1321 1322
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1323
		blk_start_plug(&plug);
1324 1325
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1326
		blk_finish_plug(&plug);
1327 1328 1329
	}
}

1330 1331
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1332
{
1333 1334
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1335

1336
	if (v == U64_MAX)
1337
		return 0;
1338
	return __blkg_prfill_u64(sf, pd, v);
1339 1340
}

1341 1342
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1343
{
1344 1345
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1346

1347
	if (v == UINT_MAX)
1348
		return 0;
1349
	return __blkg_prfill_u64(sf, pd, v);
1350 1351
}

1352
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1353
{
1354 1355
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1356
	return 0;
1357 1358
}

1359
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1360
{
1361 1362
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1363
	return 0;
1364 1365
}

1366
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1367
{
1368
	struct throtl_service_queue *sq = &tg->service_queue;
1369
	struct cgroup_subsys_state *pos_css;
1370
	struct blkcg_gq *blkg;
1371

1372 1373
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1374 1375
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1376

1377 1378 1379 1380 1381 1382 1383
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1384 1385
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1404

1405 1406 1407 1408 1409 1410 1411 1412
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1413 1414
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1415

1416
	if (tg->flags & THROTL_TG_PENDING) {
1417
		tg_update_disptime(tg);
1418
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1419
	}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1439
		v = U64_MAX;
1440 1441 1442 1443 1444 1445 1446

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1447

1448
	tg_conf_updated(tg, false);
1449 1450
	ret = 0;
out_finish:
1451
	blkg_conf_finish(&ctx);
1452
	return ret ?: nbytes;
1453 1454
}

1455 1456
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1457
{
1458
	return tg_set_conf(of, buf, nbytes, off, true);
1459 1460
}

1461 1462
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1463
{
1464
	return tg_set_conf(of, buf, nbytes, off, false);
1465 1466
}

1467
static struct cftype throtl_legacy_files[] = {
1468 1469
	{
		.name = "throttle.read_bps_device",
1470
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1471
		.seq_show = tg_print_conf_u64,
1472
		.write = tg_set_conf_u64,
1473 1474 1475
	},
	{
		.name = "throttle.write_bps_device",
1476
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1477
		.seq_show = tg_print_conf_u64,
1478
		.write = tg_set_conf_u64,
1479 1480 1481
	},
	{
		.name = "throttle.read_iops_device",
1482
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1483
		.seq_show = tg_print_conf_uint,
1484
		.write = tg_set_conf_uint,
1485 1486 1487
	},
	{
		.name = "throttle.write_iops_device",
1488
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1489
		.seq_show = tg_print_conf_uint,
1490
		.write = tg_set_conf_uint,
1491 1492 1493
	},
	{
		.name = "throttle.io_service_bytes",
1494 1495
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1496 1497 1498
	},
	{
		.name = "throttle.io_serviced",
1499 1500
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1501 1502 1503 1504
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1505
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1506 1507 1508 1509 1510
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1511 1512
	u64 bps_dft;
	unsigned int iops_dft;
1513
	char idle_time[26] = "";
1514
	char latency_time[26] = "";
1515 1516 1517

	if (!dname)
		return 0;
1518

S
Shaohua Li 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1530
	    tg->iops_conf[WRITE][off] == iops_dft &&
1531
	    (off != LIMIT_LOW ||
1532
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1533
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1534 1535
		return 0;

1536
	if (tg->bps_conf[READ][off] != U64_MAX)
1537
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1538
			tg->bps_conf[READ][off]);
1539
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1540
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1541
			tg->bps_conf[WRITE][off]);
1542
	if (tg->iops_conf[READ][off] != UINT_MAX)
1543
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1544
			tg->iops_conf[READ][off]);
1545
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1546
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1547
			tg->iops_conf[WRITE][off]);
1548
	if (off == LIMIT_LOW) {
1549
		if (tg->idletime_threshold_conf == ULONG_MAX)
1550 1551 1552
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1553
				tg->idletime_threshold_conf);
1554

1555
		if (tg->latency_target_conf == ULONG_MAX)
1556 1557 1558
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1559
				" latency=%lu", tg->latency_target_conf);
1560
	}
1561

1562 1563 1564
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1565 1566 1567
	return 0;
}

S
Shaohua Li 已提交
1568
static int tg_print_limit(struct seq_file *sf, void *v)
1569
{
S
Shaohua Li 已提交
1570
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1571 1572 1573 1574
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1575
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1576 1577 1578 1579 1580 1581
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1582
	unsigned long idle_time;
1583
	unsigned long latency_time;
1584
	int ret;
S
Shaohua Li 已提交
1585
	int index = of_cft(of)->private;
1586 1587 1588 1589 1590 1591 1592

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1593 1594 1595 1596
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1597

1598 1599
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1600 1601 1602
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1603
		u64 val = U64_MAX;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1631 1632
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1633 1634
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1635 1636 1637 1638
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1639 1640 1641 1642
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1643

S
Shaohua Li 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1673 1674
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1675
	}
1676 1677 1678 1679 1680 1681 1682

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1683 1684
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1685 1686 1687 1688 1689 1690 1691
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1701 1702 1703
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1704 1705 1706
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1707 1708 1709 1710
	},
	{ }	/* terminate */
};

1711
static void throtl_shutdown_wq(struct request_queue *q)
1712 1713 1714
{
	struct throtl_data *td = q->td;

1715
	cancel_work_sync(&td->dispatch_work);
1716 1717
}

T
Tejun Heo 已提交
1718
static struct blkcg_policy blkcg_policy_throtl = {
1719
	.dfl_cftypes		= throtl_files,
1720
	.legacy_cftypes		= throtl_legacy_files,
1721

1722
	.pd_alloc_fn		= throtl_pd_alloc,
1723
	.pd_init_fn		= throtl_pd_init,
1724
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1725
	.pd_offline_fn		= throtl_pd_offline,
1726
	.pd_free_fn		= throtl_pd_free,
1727 1728
};

S
Shaohua Li 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1768 1769 1770 1771 1772
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1773
	 *   configure a too big threshold) or 4 times of idletime threshold
1774
	 * - average think time is more than threshold
1775
	 * - IO latency is largely below threshold
1776
	 */
1777
	unsigned long time;
1778
	bool ret;
1779

1780 1781 1782 1783 1784 1785
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1786
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1787 1788 1789 1790 1791
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1813 1814

	if (time_after_eq(jiffies,
1815 1816
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1817
		return true;
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1842
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1843 1844
		return false;

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1882 1883 1884 1885 1886
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1887
	throtl_log(&td->service_queue, "upgrade to max");
1888
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1889
	td->low_upgrade_time = jiffies;
1890
	td->scale = 0;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1906 1907
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1908 1909
	td->scale /= 2;

1910
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1911 1912 1913 1914 1915
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1929 1930
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1931 1932 1933
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1962
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1963 1964 1965 1966 1967
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1968 1969
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
	int i, cpu;
	unsigned long last_latency = 0;
	unsigned long latency;

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		struct latency_bucket *tmp = &td->tmp_buckets[i];

		for_each_possible_cpu(cpu) {
			struct latency_bucket *bucket;

			/* this isn't race free, but ok in practice */
			bucket = per_cpu_ptr(td->latency_buckets, cpu);
			tmp->total_latency += bucket[i].total_latency;
			tmp->samples += bucket[i].samples;
			bucket[i].total_latency = 0;
			bucket[i].samples = 0;
		}

		if (tmp->samples >= 32) {
			int samples = tmp->samples;

			latency = tmp->total_latency;

			tmp->total_latency = 0;
			tmp->samples = 0;
			latency /= samples;
			if (latency == 0)
				continue;
			avg_latency[i].latency = latency;
		}
	}

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		if (!avg_latency[i].latency) {
			if (td->avg_buckets[i].latency < last_latency)
				td->avg_buckets[i].latency = last_latency;
			continue;
		}

		if (!td->avg_buckets[i].valid)
			latency = avg_latency[i].latency;
		else
			latency = (td->avg_buckets[i].latency * 7 +
				avg_latency[i].latency) >> 3;

		td->avg_buckets[i].latency = max(latency, last_latency);
		td->avg_buckets[i].valid = true;
		last_latency = td->avg_buckets[i].latency;
	}
2084 2085 2086 2087 2088

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
			"Latency bucket %d: latency=%ld, valid=%d", i,
			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2089 2090 2091 2092 2093 2094 2095
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	int ret;

	ret = bio_associate_current(bio);
	if (ret == 0 || ret == -EBUSY)
		bio->bi_cg_private = tg;
	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
#else
	bio_associate_current(bio);
#endif
}

2110 2111
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2112
{
2113
	struct throtl_qnode *qn = NULL;
2114
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2115
	struct throtl_service_queue *sq;
2116
	bool rw = bio_data_dir(bio);
2117
	bool throttled = false;
2118
	struct throtl_data *td = tg->td;
2119

2120 2121
	WARN_ON_ONCE(!rcu_read_lock_held());

2122
	/* see throtl_charge_bio() */
2123
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2124
		goto out;
2125 2126

	spin_lock_irq(q->queue_lock);
2127

2128 2129
	throtl_update_latency_buckets(td);

2130
	if (unlikely(blk_queue_bypass(q)))
2131
		goto out_unlock;
2132

2133
	blk_throtl_assoc_bio(tg, bio);
2134 2135
	blk_throtl_update_idletime(tg);

2136 2137
	sq = &tg->service_queue;

2138
again:
2139
	while (true) {
S
Shaohua Li 已提交
2140 2141 2142
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2143
		throtl_upgrade_check(tg);
2144 2145 2146
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2147

2148
		/* if above limits, break to queue */
2149
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2150
			tg->last_low_overflow_time[rw] = jiffies;
2151 2152
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2153 2154
				goto again;
			}
2155
			break;
2156
		}
2157 2158

		/* within limits, let's charge and dispatch directly */
2159
		throtl_charge_bio(tg, bio);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2172
		throtl_trim_slice(tg, rw);
2173 2174 2175 2176 2177 2178

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2179
		qn = &tg->qnode_on_parent[rw];
2180 2181 2182 2183
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2184 2185
	}

2186
	/* out-of-limit, queue to @tg */
2187 2188
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2189 2190 2191
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2192
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2193

S
Shaohua Li 已提交
2194 2195
	tg->last_low_overflow_time[rw] = jiffies;

2196
	td->nr_queued[rw]++;
2197
	throtl_add_bio_tg(bio, qn, tg);
2198
	throttled = true;
2199

2200 2201 2202 2203 2204 2205
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2206
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2207
		tg_update_disptime(tg);
2208
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2209 2210
	}

2211
out_unlock:
2212
	spin_unlock_irq(q->queue_lock);
2213
out:
2214 2215 2216 2217 2218 2219
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
2220
		bio_clear_flag(bio, BIO_THROTTLED);
2221 2222 2223 2224 2225

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
		bio->bi_issue_stat.stat |= SKIP_LATENCY;
#endif
2226
	return throttled;
2227 2228
}

2229
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

	latency = get_cpu_ptr(td->latency_buckets);
	latency[index].total_latency += time;
	latency[index].samples++;
	put_cpu_ptr(td->latency_buckets);
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2257 2258 2259
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2260 2261 2262 2263
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2264 2265 2266 2267 2268 2269

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2270 2271 2272 2273 2274
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2275 2276 2277 2278
	if (!start_time || finish_time <= start_time)
		return;

	lat = finish_time - start_time;
2279
	/* this is only for bio based driver */
2280
	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2281 2282
		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
			bio_op(bio), lat);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

	if (tg->latency_target) {
		int bucket;
		unsigned int threshold;

		bucket = request_bucket_index(
			blk_stat_size(&bio->bi_issue_stat));
		threshold = tg->td->avg_buckets[bucket].latency +
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2305
	}
2306 2307 2308
}
#endif

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2324
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2325
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2326
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2327 2328 2329 2330
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2341
	struct blkcg_gq *blkg;
2342
	struct cgroup_subsys_state *pos_css;
2343
	struct bio *bio;
2344
	int rw;
2345

2346
	queue_lockdep_assert_held(q);
2347
	rcu_read_lock();
2348

2349 2350 2351 2352 2353 2354
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2355
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2356
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2357

2358 2359 2360 2361
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2362 2363
	spin_unlock_irq(q->queue_lock);

2364
	/* all bios now should be in td->service_queue, issue them */
2365
	for (rw = READ; rw <= WRITE; rw++)
2366 2367
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2368
			generic_make_request(bio);
2369 2370 2371 2372

	spin_lock_irq(q->queue_lock);
}

2373 2374 2375
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2376
	int ret;
2377 2378 2379 2380

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2381 2382 2383 2384 2385 2386
	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
		LATENCY_BUCKET_SIZE, __alignof__(u64));
	if (!td->latency_buckets) {
		kfree(td);
		return -ENOMEM;
	}
2387

2388
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2389
	throtl_service_queue_init(&td->service_queue);
2390

2391
	q->td = td;
2392
	td->queue = q;
V
Vivek Goyal 已提交
2393

2394
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2395
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2396 2397
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2398

2399
	/* activate policy */
T
Tejun Heo 已提交
2400
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2401 2402
	if (ret) {
		free_percpu(td->latency_buckets);
2403
		kfree(td);
2404
	}
2405
	return ret;
2406 2407 2408 2409
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2410
	BUG_ON(!q->td);
2411
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2412
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2413
	free_percpu(q->td->latency_buckets);
2414
	kfree(q->td);
2415 2416
}

2417 2418 2419 2420 2421 2422 2423
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;

	td = q->td;
	BUG_ON(!td);

2424
	if (blk_queue_nonrot(q))
2425
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2426
	else
2427 2428 2429 2430 2431
		td->throtl_slice = DFL_THROTL_SLICE_HD;
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2432

2433 2434 2435
	td->track_bio_latency = !q->mq_ops && !q->request_fn;
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2464 2465
static int __init throtl_init(void)
{
2466 2467 2468 2469
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2470
	return blkcg_policy_register(&blkcg_policy_throtl);
2471 2472 2473
}

module_init(throtl_init);