blk-throttle.c 66.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25 26 27
#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 29
/* default latency target is 0, eg, guarantee IO latency by default */
#define DFL_LATENCY_TARGET (0)
30

31 32
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)

T
Tejun Heo 已提交
33
static struct blkcg_policy blkcg_policy_throtl;
34

35 36 37
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

67
struct throtl_service_queue {
68 69
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

70 71 72 73
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
74
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
75 76 77 78 79 80
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
81 82 83 84
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
85
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
86 87
};

88 89
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
90
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
91 92
};

93 94
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

95
enum {
S
Shaohua Li 已提交
96
	LIMIT_LOW,
97 98 99 100
	LIMIT_MAX,
	LIMIT_CNT,
};

101
struct throtl_grp {
102 103 104
	/* must be the first member */
	struct blkg_policy_data pd;

105
	/* active throtl group service_queue member */
106 107
	struct rb_node rb_node;

108 109 110
	/* throtl_data this group belongs to */
	struct throtl_data *td;

111 112 113
	/* this group's service queue */
	struct throtl_service_queue service_queue;

114 115 116 117 118 119 120 121 122 123 124
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

125 126 127 128 129 130 131 132 133
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

134 135 136
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
137
	/* internally used bytes per second rate limits */
138
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
139 140
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
141

S
Shaohua Li 已提交
142
	/* internally used IOPS limits */
143
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
144 145
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
146

147 148
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
149 150
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
151

S
Shaohua Li 已提交
152 153 154 155 156 157 158
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

159
	unsigned long latency_target; /* us */
160
	unsigned long latency_target_conf; /* us */
161 162 163
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
164 165 166 167 168

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
169
	unsigned long idletime_threshold_conf; /* us */
170 171 172 173

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

189 190 191
struct throtl_data
{
	/* service tree for active throtl groups */
192
	struct throtl_service_queue service_queue;
193 194 195 196 197 198

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

199 200
	unsigned int throtl_slice;

201
	/* Work for dispatching throttled bios */
202
	struct work_struct dispatch_work;
203 204
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
205

206 207
	unsigned long dft_idletime_threshold; /* us */

S
Shaohua Li 已提交
208 209
	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
210 211

	unsigned int scale;
212 213 214 215 216 217 218

	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets;
	unsigned long last_calculate_time;

	bool track_bio_latency;
219 220
};

221 222
static void throtl_pending_timer_fn(unsigned long arg);

223 224 225 226 227
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
228
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
229
{
230
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
231 232
}

T
Tejun Heo 已提交
233
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
234
{
235
	return pd_to_blkg(&tg->pd);
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
257
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
258 259 260 261 262 263 264 265 266 267 268 269
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

288 289
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
290
	struct blkcg_gq *blkg = tg_to_blkg(tg);
291
	struct throtl_data *td;
292 293 294 295
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
296 297 298 299

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
	if (ret == 0 && td->limit_index == LIMIT_LOW)
300
		return tg->bps[rw][LIMIT_MAX];
301 302 303 304 305 306 307 308

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
309
	return ret;
310 311 312 313
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
314
	struct blkcg_gq *blkg = tg_to_blkg(tg);
315
	struct throtl_data *td;
316 317 318 319
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
320 321
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
322 323
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
324 325 326 327 328 329 330 331 332 333

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
334
	return ret;
335 336
}

337 338 339
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
354 355
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
356 357
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
358
									\
359 360 361 362 363
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
364
} while (0)
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

449
/* init a service_queue, assumes the caller zeroed it */
450
static void throtl_service_queue_init(struct throtl_service_queue *sq)
451
{
452 453
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
454
	sq->pending_tree = RB_ROOT;
455 456 457 458
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

459 460
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
461
	struct throtl_grp *tg;
T
Tejun Heo 已提交
462
	int rw;
463 464 465

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
466
		return NULL;
467

468 469 470 471 472 473 474 475
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
476 477 478 479
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
480 481 482 483 484
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
485

486
	tg->latency_target = DFL_LATENCY_TARGET;
487
	tg->latency_target_conf = DFL_LATENCY_TARGET;
488

489
	return &tg->pd;
490 491
}

492
static void throtl_pd_init(struct blkg_policy_data *pd)
493
{
494 495
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
496
	struct throtl_data *td = blkg->q->td;
497
	struct throtl_service_queue *sq = &tg->service_queue;
498

499
	/*
500
	 * If on the default hierarchy, we switch to properly hierarchical
501 502 503 504 505
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
506
	 * If not on the default hierarchy, the broken flat hierarchy
507 508 509 510 511
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
512
	sq->parent_sq = &td->service_queue;
513
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
514
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
515
	tg->td = td;
516

517
	tg->idletime_threshold = td->dft_idletime_threshold;
518
	tg->idletime_threshold_conf = td->dft_idletime_threshold;
519 520
}

521 522 523 524 525 526 527 528
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
529
	struct throtl_data *td = tg->td;
530 531 532 533
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
534 535 536
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
537 538
}

539
static void throtl_pd_online(struct blkg_policy_data *pd)
540
{
541
	struct throtl_grp *tg = pd_to_tg(pd);
542 543 544 545
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
546
	tg_update_has_rules(tg);
547 548
}

S
Shaohua Li 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

568
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
569 570 571 572 573 574 575 576 577 578 579
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

580 581
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
582 583
}

584 585
static void throtl_pd_free(struct blkg_policy_data *pd)
{
586 587
	struct throtl_grp *tg = pd_to_tg(pd);

588
	del_timer_sync(&tg->service_queue.pending_timer);
589
	kfree(tg);
590 591
}

592 593
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
594 595
{
	/* Service tree is empty */
596
	if (!parent_sq->nr_pending)
597 598
		return NULL;

599 600
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
601

602 603
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
604 605 606 607 608 609 610 611 612 613

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

614 615
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
616
{
617 618 619 620
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
621 622
}

623
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
624 625 626
{
	struct throtl_grp *tg;

627
	tg = throtl_rb_first(parent_sq);
628 629 630
	if (!tg)
		return;

631
	parent_sq->first_pending_disptime = tg->disptime;
632 633
}

634
static void tg_service_queue_add(struct throtl_grp *tg)
635
{
636
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
637
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
656
		parent_sq->first_pending = &tg->rb_node;
657 658

	rb_link_node(&tg->rb_node, parent, node);
659
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
660 661
}

662
static void __throtl_enqueue_tg(struct throtl_grp *tg)
663
{
664
	tg_service_queue_add(tg);
665
	tg->flags |= THROTL_TG_PENDING;
666
	tg->service_queue.parent_sq->nr_pending++;
667 668
}

669
static void throtl_enqueue_tg(struct throtl_grp *tg)
670
{
671
	if (!(tg->flags & THROTL_TG_PENDING))
672
		__throtl_enqueue_tg(tg);
673 674
}

675
static void __throtl_dequeue_tg(struct throtl_grp *tg)
676
{
677
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
678
	tg->flags &= ~THROTL_TG_PENDING;
679 680
}

681
static void throtl_dequeue_tg(struct throtl_grp *tg)
682
{
683
	if (tg->flags & THROTL_TG_PENDING)
684
		__throtl_dequeue_tg(tg);
685 686
}

687
/* Call with queue lock held */
688 689
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
690
{
691
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
692 693 694 695 696 697 698 699 700 701

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
702 703 704
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
727
{
728
	/* any pending children left? */
729
	if (!sq->nr_pending)
730
		return true;
731

732
	update_min_dispatch_time(sq);
733

734
	/* is the next dispatch time in the future? */
735
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
736
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
737
		return true;
738 739
	}

740 741
	/* tell the caller to continue dispatching */
	return false;
742 743
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

759
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
760 761 762 763 764 765
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

766
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
767 768
{
	tg->bytes_disp[rw] = 0;
769
	tg->io_disp[rw] = 0;
770
	tg->slice_start[rw] = jiffies;
771
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
772 773 774 775
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
776 777
}

778 779
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
780
{
781
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
782 783
}

784 785
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
786
{
787
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
788 789 790 791
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
792 793 794
}

/* Determine if previously allocated or extended slice is complete or not */
795
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
796 797
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
798
		return false;
799 800 801 802 803

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
804
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
805
{
806 807
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
808 809 810 811 812 813 814 815

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
816
	if (throtl_slice_used(tg, rw))
817 818
		return;

819 820 821 822 823 824 825 826
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

827
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
828

829 830
	time_elapsed = jiffies - tg->slice_start[rw];

831
	nr_slices = time_elapsed / tg->td->throtl_slice;
832 833 834

	if (!nr_slices)
		return;
835
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
836 837
	do_div(tmp, HZ);
	bytes_trim = tmp;
838

839 840
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
841

842
	if (!bytes_trim && !io_trim)
843 844 845 846 847 848 849
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

850 851 852 853 854
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

855
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
856

857 858 859 860
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
861 862
}

863 864
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
865 866
{
	bool rw = bio_data_dir(bio);
867
	unsigned int io_allowed;
868
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
869
	u64 tmp;
870

871
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
872

873 874
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
875
		jiffy_elapsed_rnd = tg->td->throtl_slice;
876

877
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
878

879 880 881 882 883 884 885
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

886
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
887 888 889 890 891 892
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
893 894

	if (tg->io_disp[rw] + 1 <= io_allowed) {
895 896
		if (wait)
			*wait = 0;
897
		return true;
898 899
	}

900
	/* Calc approx time to dispatch */
901
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
902 903 904 905 906 907 908 909 910 911 912

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

913 914
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
915 916
{
	bool rw = bio_data_dir(bio);
917
	u64 bytes_allowed, extra_bytes, tmp;
918
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
919 920 921 922 923

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
924
		jiffy_elapsed_rnd = tg->td->throtl_slice;
925

926
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
927

928
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
929
	do_div(tmp, HZ);
930
	bytes_allowed = tmp;
931

932
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
933 934
		if (wait)
			*wait = 0;
935
		return true;
936 937 938
	}

	/* Calc approx time to dispatch */
939
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
940
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
941 942 943 944 945 946 947 948 949 950 951

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
952 953 954 955 956 957 958
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
959 960
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
961 962 963 964 965 966 967 968 969 970
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
971
	BUG_ON(tg->service_queue.nr_queued[rw] &&
972
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
973

974
	/* If tg->bps = -1, then BW is unlimited */
975 976
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
977 978
		if (wait)
			*wait = 0;
979
		return true;
980 981 982 983 984
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
985 986 987
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
988
	 */
989
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
990
		throtl_start_new_slice(tg, rw);
991
	else {
992 993 994 995
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
996 997
	}

998 999
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1011
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1012 1013 1014 1015 1016 1017 1018 1019 1020

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
1021
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1022
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
1023 1024
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
1025

1026
	/*
1027
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1028 1029 1030 1031
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1032 1033
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1034 1035
}

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1047
{
1048
	struct throtl_service_queue *sq = &tg->service_queue;
1049 1050
	bool rw = bio_data_dir(bio);

1051 1052 1053
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1054 1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1063 1064
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1065
	sq->nr_queued[rw]++;
1066
	throtl_enqueue_tg(tg);
1067 1068
}

1069
static void tg_update_disptime(struct throtl_grp *tg)
1070
{
1071
	struct throtl_service_queue *sq = &tg->service_queue;
1072 1073 1074
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1075 1076
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1077
		tg_may_dispatch(tg, bio, &read_wait);
1078

1079 1080
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1081
		tg_may_dispatch(tg, bio, &write_wait);
1082 1083 1084 1085 1086

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1087
	throtl_dequeue_tg(tg);
1088
	tg->disptime = disptime;
1089
	throtl_enqueue_tg(tg);
1090 1091 1092

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1093 1094
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1105
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1106
{
1107
	struct throtl_service_queue *sq = &tg->service_queue;
1108 1109
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1110
	struct throtl_grp *tg_to_put = NULL;
1111 1112
	struct bio *bio;

1113 1114 1115 1116 1117 1118 1119
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1120
	sq->nr_queued[rw]--;
1121 1122

	throtl_charge_bio(tg, bio);
1123 1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1132
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1133
		start_parent_slice_with_credit(tg, parent_tg, rw);
1134
	} else {
1135 1136
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1137 1138 1139
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1140

1141
	throtl_trim_slice(tg, rw);
1142

1143 1144
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1145 1146
}

1147
static int throtl_dispatch_tg(struct throtl_grp *tg)
1148
{
1149
	struct throtl_service_queue *sq = &tg->service_queue;
1150 1151
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1152
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1153 1154 1155 1156
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1157
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1158
	       tg_may_dispatch(tg, bio, NULL)) {
1159

1160
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1161 1162 1163 1164 1165 1166
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1167
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1168
	       tg_may_dispatch(tg, bio, NULL)) {
1169

1170
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1171 1172 1173 1174 1175 1176 1177 1178 1179
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1180
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1181 1182 1183 1184
{
	unsigned int nr_disp = 0;

	while (1) {
1185 1186
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1187 1188 1189 1190 1191 1192 1193

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1194
		throtl_dequeue_tg(tg);
1195

1196
		nr_disp += throtl_dispatch_tg(tg);
1197

1198
		if (sq->nr_queued[0] || sq->nr_queued[1])
1199
			tg_update_disptime(tg);
1200 1201 1202 1203 1204 1205 1206 1207

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1208 1209
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1210 1211 1212 1213 1214 1215 1216
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1217 1218 1219 1220 1221 1222 1223
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1224
 */
1225 1226 1227
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1228
	struct throtl_grp *tg = sq_to_tg(sq);
1229
	struct throtl_data *td = sq_to_td(sq);
1230
	struct request_queue *q = td->queue;
1231 1232
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1233
	int ret;
1234 1235

	spin_lock_irq(q->queue_lock);
1236 1237 1238
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1239 1240 1241
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1242

1243 1244
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1245 1246
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1247 1248 1249 1250 1251 1252

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1253

1254 1255
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1256

1257 1258 1259 1260
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1261
	}
1262

1263 1264
	if (!dispatched)
		goto out_unlock;
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1282
	spin_unlock_irq(q->queue_lock);
1283
}
1284

1285 1286 1287 1288 1289 1290 1291 1292
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1293
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1307 1308 1309
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1310 1311 1312
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1313
		blk_start_plug(&plug);
1314 1315
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1316
		blk_finish_plug(&plug);
1317 1318 1319
	}
}

1320 1321
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1322
{
1323 1324
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1325

1326
	if (v == U64_MAX)
1327
		return 0;
1328
	return __blkg_prfill_u64(sf, pd, v);
1329 1330
}

1331 1332
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1333
{
1334 1335
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1336

1337
	if (v == UINT_MAX)
1338
		return 0;
1339
	return __blkg_prfill_u64(sf, pd, v);
1340 1341
}

1342
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1343
{
1344 1345
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1346
	return 0;
1347 1348
}

1349
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1350
{
1351 1352
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1353
	return 0;
1354 1355
}

1356
static void tg_conf_updated(struct throtl_grp *tg)
1357
{
1358
	struct throtl_service_queue *sq = &tg->service_queue;
1359
	struct cgroup_subsys_state *pos_css;
1360
	struct blkcg_gq *blkg;
1361

1362 1363
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1364 1365
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1366

1367 1368 1369 1370 1371 1372 1373
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg)) {
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1393

1394 1395 1396 1397 1398 1399 1400 1401
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1402 1403
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1404

1405
	if (tg->flags & THROTL_TG_PENDING) {
1406
		tg_update_disptime(tg);
1407
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1408
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1428
		v = U64_MAX;
1429 1430 1431 1432 1433 1434 1435

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1436

1437
	tg_conf_updated(tg);
1438 1439
	ret = 0;
out_finish:
1440
	blkg_conf_finish(&ctx);
1441
	return ret ?: nbytes;
1442 1443
}

1444 1445
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1446
{
1447
	return tg_set_conf(of, buf, nbytes, off, true);
1448 1449
}

1450 1451
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1452
{
1453
	return tg_set_conf(of, buf, nbytes, off, false);
1454 1455
}

1456
static struct cftype throtl_legacy_files[] = {
1457 1458
	{
		.name = "throttle.read_bps_device",
1459
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1460
		.seq_show = tg_print_conf_u64,
1461
		.write = tg_set_conf_u64,
1462 1463 1464
	},
	{
		.name = "throttle.write_bps_device",
1465
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1466
		.seq_show = tg_print_conf_u64,
1467
		.write = tg_set_conf_u64,
1468 1469 1470
	},
	{
		.name = "throttle.read_iops_device",
1471
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1472
		.seq_show = tg_print_conf_uint,
1473
		.write = tg_set_conf_uint,
1474 1475 1476
	},
	{
		.name = "throttle.write_iops_device",
1477
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1478
		.seq_show = tg_print_conf_uint,
1479
		.write = tg_set_conf_uint,
1480 1481 1482
	},
	{
		.name = "throttle.io_service_bytes",
1483 1484
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1485 1486 1487
	},
	{
		.name = "throttle.io_serviced",
1488 1489
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1490 1491 1492 1493
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1494
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1495 1496 1497 1498 1499
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1500 1501
	u64 bps_dft;
	unsigned int iops_dft;
1502
	char idle_time[26] = "";
1503
	char latency_time[26] = "";
1504 1505 1506

	if (!dname)
		return 0;
1507

S
Shaohua Li 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1519
	    tg->iops_conf[WRITE][off] == iops_dft &&
1520
	    (off != LIMIT_LOW ||
1521 1522
	     (tg->idletime_threshold_conf == tg->td->dft_idletime_threshold &&
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1523 1524
		return 0;

S
Shaohua Li 已提交
1525
	if (tg->bps_conf[READ][off] != bps_dft)
1526
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1527 1528
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1529
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1530 1531
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1532
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1533 1534
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1535
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1536
			tg->iops_conf[WRITE][off]);
1537
	if (off == LIMIT_LOW) {
1538
		if (tg->idletime_threshold_conf == ULONG_MAX)
1539 1540 1541
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1542
				tg->idletime_threshold_conf);
1543

1544
		if (tg->latency_target_conf == ULONG_MAX)
1545 1546 1547
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1548
				" latency=%lu", tg->latency_target_conf);
1549
	}
1550

1551 1552 1553
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1554 1555 1556
	return 0;
}

S
Shaohua Li 已提交
1557
static int tg_print_limit(struct seq_file *sf, void *v)
1558
{
S
Shaohua Li 已提交
1559
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1560 1561 1562 1563
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1564
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1565 1566 1567 1568 1569 1570
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1571
	unsigned long idle_time;
1572
	unsigned long latency_time;
1573
	int ret;
S
Shaohua Li 已提交
1574
	int index = of_cft(of)->private;
1575 1576 1577 1578 1579 1580 1581

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1582 1583 1584 1585
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1586

1587 1588
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1589 1590 1591
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1592
		u64 val = U64_MAX;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1620 1621
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1622 1623
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1624 1625 1626 1627
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1628 1629 1630 1631
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1632

S
Shaohua Li 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
1652 1653 1654 1655
		tg->idletime_threshold_conf = idle_time;
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target_conf = latency_time;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1656
	}
1657 1658 1659 1660 1661 1662 1663 1664
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1674 1675 1676
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1677 1678 1679
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1680 1681 1682 1683
	},
	{ }	/* terminate */
};

1684
static void throtl_shutdown_wq(struct request_queue *q)
1685 1686 1687
{
	struct throtl_data *td = q->td;

1688
	cancel_work_sync(&td->dispatch_work);
1689 1690
}

T
Tejun Heo 已提交
1691
static struct blkcg_policy blkcg_policy_throtl = {
1692
	.dfl_cftypes		= throtl_files,
1693
	.legacy_cftypes		= throtl_legacy_files,
1694

1695
	.pd_alloc_fn		= throtl_pd_alloc,
1696
	.pd_init_fn		= throtl_pd_init,
1697
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1698
	.pd_offline_fn		= throtl_pd_offline,
1699
	.pd_free_fn		= throtl_pd_free,
1700 1701
};

S
Shaohua Li 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1741 1742 1743 1744 1745 1746 1747
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
	 *   configure a too big threshold) or 4 times of slice
	 * - average think time is more than threshold
1748
	 * - IO latency is largely below threshold
1749 1750
	 */
	unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1751
	bool ret;
1752 1753

	time = min_t(unsigned long, MAX_IDLE_TIME, time);
1754
	ret = (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1755 1756 1757
	       tg->avg_idletime > tg->idletime_threshold ||
	       (tg->latency_target && tg->bio_cnt &&
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1758 1759 1760 1761 1762
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1784 1785

	if (time_after_eq(jiffies,
1786 1787
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1788
		return true;
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1813
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1814 1815
		return false;

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1853 1854 1855 1856 1857
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1858
	throtl_log(&td->service_queue, "upgrade to max");
1859
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1860
	td->low_upgrade_time = jiffies;
1861
	td->scale = 0;
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1877 1878
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1879 1880
	td->scale /= 2;

1881
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1882 1883 1884 1885 1886
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1900 1901
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1902 1903 1904
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1933
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1934 1935 1936 1937 1938
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1939 1940
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
	int i, cpu;
	unsigned long last_latency = 0;
	unsigned long latency;

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		struct latency_bucket *tmp = &td->tmp_buckets[i];

		for_each_possible_cpu(cpu) {
			struct latency_bucket *bucket;

			/* this isn't race free, but ok in practice */
			bucket = per_cpu_ptr(td->latency_buckets, cpu);
			tmp->total_latency += bucket[i].total_latency;
			tmp->samples += bucket[i].samples;
			bucket[i].total_latency = 0;
			bucket[i].samples = 0;
		}

		if (tmp->samples >= 32) {
			int samples = tmp->samples;

			latency = tmp->total_latency;

			tmp->total_latency = 0;
			tmp->samples = 0;
			latency /= samples;
			if (latency == 0)
				continue;
			avg_latency[i].latency = latency;
		}
	}

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		if (!avg_latency[i].latency) {
			if (td->avg_buckets[i].latency < last_latency)
				td->avg_buckets[i].latency = last_latency;
			continue;
		}

		if (!td->avg_buckets[i].valid)
			latency = avg_latency[i].latency;
		else
			latency = (td->avg_buckets[i].latency * 7 +
				avg_latency[i].latency) >> 3;

		td->avg_buckets[i].latency = max(latency, last_latency);
		td->avg_buckets[i].valid = true;
		last_latency = td->avg_buckets[i].latency;
	}
2055 2056 2057 2058 2059

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
			"Latency bucket %d: latency=%ld, valid=%d", i,
			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2060 2061 2062 2063 2064 2065 2066
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	int ret;

	ret = bio_associate_current(bio);
	if (ret == 0 || ret == -EBUSY)
		bio->bi_cg_private = tg;
	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
#else
	bio_associate_current(bio);
#endif
}

2081 2082
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2083
{
2084
	struct throtl_qnode *qn = NULL;
2085
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2086
	struct throtl_service_queue *sq;
2087
	bool rw = bio_data_dir(bio);
2088
	bool throttled = false;
2089
	struct throtl_data *td = tg->td;
2090

2091 2092
	WARN_ON_ONCE(!rcu_read_lock_held());

2093
	/* see throtl_charge_bio() */
2094
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2095
		goto out;
2096 2097

	spin_lock_irq(q->queue_lock);
2098

2099 2100
	throtl_update_latency_buckets(td);

2101
	if (unlikely(blk_queue_bypass(q)))
2102
		goto out_unlock;
2103

2104
	blk_throtl_assoc_bio(tg, bio);
2105 2106
	blk_throtl_update_idletime(tg);

2107 2108
	sq = &tg->service_queue;

2109
again:
2110
	while (true) {
S
Shaohua Li 已提交
2111 2112 2113
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2114
		throtl_upgrade_check(tg);
2115 2116 2117
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2118

2119
		/* if above limits, break to queue */
2120
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2121
			tg->last_low_overflow_time[rw] = jiffies;
2122 2123
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2124 2125
				goto again;
			}
2126
			break;
2127
		}
2128 2129

		/* within limits, let's charge and dispatch directly */
2130
		throtl_charge_bio(tg, bio);
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2143
		throtl_trim_slice(tg, rw);
2144 2145 2146 2147 2148 2149

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2150
		qn = &tg->qnode_on_parent[rw];
2151 2152 2153 2154
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2155 2156
	}

2157
	/* out-of-limit, queue to @tg */
2158 2159
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2160 2161 2162
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2163
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2164

S
Shaohua Li 已提交
2165 2166
	tg->last_low_overflow_time[rw] = jiffies;

2167
	td->nr_queued[rw]++;
2168
	throtl_add_bio_tg(bio, qn, tg);
2169
	throttled = true;
2170

2171 2172 2173 2174 2175 2176
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2177
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2178
		tg_update_disptime(tg);
2179
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2180 2181
	}

2182
out_unlock:
2183
	spin_unlock_irq(q->queue_lock);
2184
out:
2185 2186 2187 2188 2189 2190
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
2191
		bio_clear_flag(bio, BIO_THROTTLED);
2192 2193 2194 2195 2196

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
		bio->bi_issue_stat.stat |= SKIP_LATENCY;
#endif
2197
	return throttled;
2198 2199
}

2200
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

	latency = get_cpu_ptr(td->latency_buckets);
	latency[index].total_latency += time;
	latency[index].samples++;
	put_cpu_ptr(td->latency_buckets);
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2228 2229 2230
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2231 2232 2233 2234
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2235 2236 2237 2238 2239 2240

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2241 2242 2243 2244 2245
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2246 2247 2248 2249
	if (!start_time || finish_time <= start_time)
		return;

	lat = finish_time - start_time;
2250
	/* this is only for bio based driver */
2251
	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2252 2253
		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
			bio_op(bio), lat);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	if (tg->latency_target) {
		int bucket;
		unsigned int threshold;

		bucket = request_bucket_index(
			blk_stat_size(&bio->bi_issue_stat));
		threshold = tg->td->avg_buckets[bucket].latency +
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2276
	}
2277 2278 2279
}
#endif

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2295
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2296
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2297
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2298 2299 2300 2301
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2312
	struct blkcg_gq *blkg;
2313
	struct cgroup_subsys_state *pos_css;
2314
	struct bio *bio;
2315
	int rw;
2316

2317
	queue_lockdep_assert_held(q);
2318
	rcu_read_lock();
2319

2320 2321 2322 2323 2324 2325
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2326
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2327
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2328

2329 2330 2331 2332
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2333 2334
	spin_unlock_irq(q->queue_lock);

2335
	/* all bios now should be in td->service_queue, issue them */
2336
	for (rw = READ; rw <= WRITE; rw++)
2337 2338
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2339
			generic_make_request(bio);
2340 2341 2342 2343

	spin_lock_irq(q->queue_lock);
}

2344 2345 2346
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2347
	int ret;
2348 2349 2350 2351

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2352 2353 2354 2355 2356 2357
	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
		LATENCY_BUCKET_SIZE, __alignof__(u64));
	if (!td->latency_buckets) {
		kfree(td);
		return -ENOMEM;
	}
2358

2359
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2360
	throtl_service_queue_init(&td->service_queue);
2361

2362
	q->td = td;
2363
	td->queue = q;
V
Vivek Goyal 已提交
2364

2365
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2366
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2367 2368
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2369

2370
	/* activate policy */
T
Tejun Heo 已提交
2371
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2372 2373
	if (ret) {
		free_percpu(td->latency_buckets);
2374
		kfree(td);
2375
	}
2376
	return ret;
2377 2378 2379 2380
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2381
	BUG_ON(!q->td);
2382
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2383
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2384
	free_percpu(q->td->latency_buckets);
2385
	kfree(q->td);
2386 2387
}

2388 2389 2390
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2391 2392
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
2393 2394 2395 2396

	td = q->td;
	BUG_ON(!td);

2397
	if (blk_queue_nonrot(q)) {
2398
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2399 2400
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
	} else {
2401
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2402 2403
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
	}
2404 2405 2406 2407
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2408

2409 2410 2411 2412
	td->track_bio_latency = !q->mq_ops && !q->request_fn;
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);

2413 2414 2415 2416 2417 2418 2419 2420
	/*
	 * some tg are created before queue is fully initialized, eg, nonrot
	 * isn't initialized yet
	 */
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

2421
		tg->idletime_threshold = td->dft_idletime_threshold;
2422
		tg->idletime_threshold_conf = td->dft_idletime_threshold;
2423 2424
	}
	rcu_read_unlock();
2425 2426
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2453 2454
static int __init throtl_init(void)
{
2455 2456 2457 2458
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2459
	return blkcg_policy_register(&blkcg_policy_throtl);
2460 2461 2462
}

module_init(throtl_init);