blk-throttle.c 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85 86
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
87 88 89
	/* must be the first member */
	struct blkg_policy_data pd;

90
	/* active throtl group service_queue member */
91 92
	struct rb_node rb_node;

93 94 95
	/* throtl_data this group belongs to */
	struct throtl_data *td;

96 97 98
	/* this group's service queue */
	struct throtl_service_queue service_queue;

99 100 101 102 103 104 105 106 107 108 109
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

110 111 112 113 114 115 116 117 118
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

119 120 121
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

122 123 124
	/* bytes per second rate limits */
	uint64_t bps[2];

125 126 127
	/* IOPS limits */
	unsigned int iops[2];

128 129
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
130 131
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
132 133 134 135 136 137 138 139 140

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
141
	struct throtl_service_queue service_queue;
142 143 144 145 146 147 148

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* Work for dispatching throttled bios */
149
	struct work_struct dispatch_work;
150 151
};

152 153
static void throtl_pending_timer_fn(unsigned long arg);

154 155 156 157 158
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
159
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
160
{
161
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
162 163
}

T
Tejun Heo 已提交
164
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
165
{
166
	return pd_to_blkg(&tg->pd);
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
215 216
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
217 218
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
219
									\
220 221 222 223 224
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
225
} while (0)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

310
/* init a service_queue, assumes the caller zeroed it */
311
static void throtl_service_queue_init(struct throtl_service_queue *sq)
312
{
313 314
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
315
	sq->pending_tree = RB_ROOT;
316 317 318 319
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

320 321
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
322
	struct throtl_grp *tg;
T
Tejun Heo 已提交
323
	int rw;
324 325 326

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
327
		return NULL;
328

329 330 331 332 333 334 335 336 337 338 339 340 341
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;

342
	return &tg->pd;
343 344
}

345
static void throtl_pd_init(struct blkg_policy_data *pd)
346
{
347 348
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
349
	struct throtl_data *td = blkg->q->td;
350
	struct throtl_service_queue *sq = &tg->service_queue;
351

352
	/*
353
	 * If on the default hierarchy, we switch to properly hierarchical
354 355 356 357 358
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
359
	 * If not on the default hierarchy, the broken flat hierarchy
360 361 362 363 364
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
365
	sq->parent_sq = &td->service_queue;
366
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
367
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
368
	tg->td = td;
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

386
static void throtl_pd_online(struct blkg_policy_data *pd)
387 388 389 390 391
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
392
	tg_update_has_rules(pd_to_tg(pd));
393 394
}

395 396
static void throtl_pd_free(struct blkg_policy_data *pd)
{
397 398
	struct throtl_grp *tg = pd_to_tg(pd);

399
	del_timer_sync(&tg->service_queue.pending_timer);
400
	kfree(tg);
401 402
}

403 404
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
405 406
{
	/* Service tree is empty */
407
	if (!parent_sq->nr_pending)
408 409
		return NULL;

410 411
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
412

413 414
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
415 416 417 418 419 420 421 422 423 424

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

425 426
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
427
{
428 429 430 431
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
432 433
}

434
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
435 436 437
{
	struct throtl_grp *tg;

438
	tg = throtl_rb_first(parent_sq);
439 440 441
	if (!tg)
		return;

442
	parent_sq->first_pending_disptime = tg->disptime;
443 444
}

445
static void tg_service_queue_add(struct throtl_grp *tg)
446
{
447
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
448
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
467
		parent_sq->first_pending = &tg->rb_node;
468 469

	rb_link_node(&tg->rb_node, parent, node);
470
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
471 472
}

473
static void __throtl_enqueue_tg(struct throtl_grp *tg)
474
{
475
	tg_service_queue_add(tg);
476
	tg->flags |= THROTL_TG_PENDING;
477
	tg->service_queue.parent_sq->nr_pending++;
478 479
}

480
static void throtl_enqueue_tg(struct throtl_grp *tg)
481
{
482
	if (!(tg->flags & THROTL_TG_PENDING))
483
		__throtl_enqueue_tg(tg);
484 485
}

486
static void __throtl_dequeue_tg(struct throtl_grp *tg)
487
{
488
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
489
	tg->flags &= ~THROTL_TG_PENDING;
490 491
}

492
static void throtl_dequeue_tg(struct throtl_grp *tg)
493
{
494
	if (tg->flags & THROTL_TG_PENDING)
495
		__throtl_dequeue_tg(tg);
496 497
}

498
/* Call with queue lock held */
499 500
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
501
{
502 503 504
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
505 506
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
527
{
528
	/* any pending children left? */
529
	if (!sq->nr_pending)
530
		return true;
531

532
	update_min_dispatch_time(sq);
533

534
	/* is the next dispatch time in the future? */
535
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
536
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
537
		return true;
538 539
	}

540 541
	/* tell the caller to continue dispatching */
	return false;
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

566
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
567 568
{
	tg->bytes_disp[rw] = 0;
569
	tg->io_disp[rw] = 0;
570 571
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
572 573 574 575
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
576 577
}

578 579
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
580 581 582 583
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

584 585
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
586 587
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
588 589 590 591
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
592 593 594
}

/* Determine if previously allocated or extended slice is complete or not */
595
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
596 597
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
598
		return false;
599 600 601 602 603

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
604
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
605
{
606 607
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
608 609 610 611 612 613 614 615

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
616
	if (throtl_slice_used(tg, rw))
617 618
		return;

619 620 621 622 623 624 625 626
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

627
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
628

629 630 631 632 633 634
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
635 636 637
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
638

639
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
640

641
	if (!bytes_trim && !io_trim)
642 643 644 645 646 647 648
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

649 650 651 652 653
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

654 655
	tg->slice_start[rw] += nr_slices * throtl_slice;

656 657 658 659
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
660 661
}

662 663
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
664 665
{
	bool rw = bio_data_dir(bio);
666
	unsigned int io_allowed;
667
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
668
	u64 tmp;
669

670
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
671

672 673 674 675 676 677
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

678 679 680 681 682 683 684 685 686 687 688 689 690 691
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
692 693

	if (tg->io_disp[rw] + 1 <= io_allowed) {
694 695
		if (wait)
			*wait = 0;
696
		return true;
697 698
	}

699 700 701 702 703 704 705 706 707 708 709 710 711
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

712 713
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
714 715
{
	bool rw = bio_data_dir(bio);
716
	u64 bytes_allowed, extra_bytes, tmp;
717
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
718 719 720 721 722 723 724 725 726

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

727 728
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
729
	bytes_allowed = tmp;
730

731
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
732 733
		if (wait)
			*wait = 0;
734
		return true;
735 736 737
	}

	/* Calc approx time to dispatch */
738
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
739 740 741 742 743 744 745 746 747 748 749 750
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
751 752 753 754 755 756 757
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
758 759
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
760 761 762 763 764 765 766 767 768 769
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
770
	BUG_ON(tg->service_queue.nr_queued[rw] &&
771
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
772

773 774 775 776
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
777
		return true;
778 779 780 781 782
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
783 784 785
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
786
	 */
787
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
788
		throtl_start_new_slice(tg, rw);
789 790
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
791
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
792 793
	}

794 795
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
796 797 798 799 800 801 802 803 804 805 806
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
807
		throtl_extend_slice(tg, rw, jiffies + max_wait);
808 809 810 811 812 813 814 815 816

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
817
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
818
	tg->io_disp[rw]++;
819

820
	/*
821
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
822 823 824 825
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
826 827
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
828 829
}

830 831 832 833 834 835 836 837 838 839 840
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
841
{
842
	struct throtl_service_queue *sq = &tg->service_queue;
843 844
	bool rw = bio_data_dir(bio);

845 846 847
	if (!qn)
		qn = &tg->qnode_on_self[rw];

848 849 850 851 852 853 854 855 856
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

857 858
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

859
	sq->nr_queued[rw]++;
860
	throtl_enqueue_tg(tg);
861 862
}

863
static void tg_update_disptime(struct throtl_grp *tg)
864
{
865
	struct throtl_service_queue *sq = &tg->service_queue;
866 867 868
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

869 870
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
871
		tg_may_dispatch(tg, bio, &read_wait);
872

873 874
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
875
		tg_may_dispatch(tg, bio, &write_wait);
876 877 878 879 880

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
881
	throtl_dequeue_tg(tg);
882
	tg->disptime = disptime;
883
	throtl_enqueue_tg(tg);
884 885 886

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
887 888
}

889 890 891 892 893 894 895 896 897 898
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

899
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
900
{
901
	struct throtl_service_queue *sq = &tg->service_queue;
902 903
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
904
	struct throtl_grp *tg_to_put = NULL;
905 906
	struct bio *bio;

907 908 909 910 911 912 913
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
914
	sq->nr_queued[rw]--;
915 916

	throtl_charge_bio(tg, bio);
917 918 919 920 921 922 923 924 925

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
926
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
927
		start_parent_slice_with_credit(tg, parent_tg, rw);
928
	} else {
929 930
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
931 932 933
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
934

935
	throtl_trim_slice(tg, rw);
936

937 938
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
939 940
}

941
static int throtl_dispatch_tg(struct throtl_grp *tg)
942
{
943
	struct throtl_service_queue *sq = &tg->service_queue;
944 945
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
946
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
947 948 949 950
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

951
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
952
	       tg_may_dispatch(tg, bio, NULL)) {
953

954
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
955 956 957 958 959 960
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

961
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
962
	       tg_may_dispatch(tg, bio, NULL)) {
963

964
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
965 966 967 968 969 970 971 972 973
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

974
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
975 976 977 978
{
	unsigned int nr_disp = 0;

	while (1) {
979 980
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
981 982 983 984 985 986 987

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

988
		throtl_dequeue_tg(tg);
989

990
		nr_disp += throtl_dispatch_tg(tg);
991

992
		if (sq->nr_queued[0] || sq->nr_queued[1])
993
			tg_update_disptime(tg);
994 995 996 997 998 999 1000 1001

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1002 1003 1004 1005 1006 1007 1008
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1009 1010 1011 1012 1013 1014 1015
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1016
 */
1017 1018 1019
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1020
	struct throtl_grp *tg = sq_to_tg(sq);
1021
	struct throtl_data *td = sq_to_td(sq);
1022
	struct request_queue *q = td->queue;
1023 1024
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1025
	int ret;
1026 1027

	spin_lock_irq(q->queue_lock);
1028 1029 1030
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1031

1032 1033
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1034 1035
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1036 1037 1038 1039 1040 1041

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1042

1043 1044
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1045

1046 1047 1048 1049
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1050
	}
1051

1052 1053
	if (!dispatched)
		goto out_unlock;
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1071
	spin_unlock_irq(q->queue_lock);
1072
}
1073

1074 1075 1076 1077 1078 1079 1080 1081
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1082
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1096 1097 1098
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1099 1100 1101
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1102
		blk_start_plug(&plug);
1103 1104
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1105
		blk_finish_plug(&plug);
1106 1107 1108
	}
}

1109 1110
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1111
{
1112 1113
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1114

1115
	if (v == -1)
1116
		return 0;
1117
	return __blkg_prfill_u64(sf, pd, v);
1118 1119
}

1120 1121
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1122
{
1123 1124
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1125

1126 1127
	if (v == -1)
		return 0;
1128
	return __blkg_prfill_u64(sf, pd, v);
1129 1130
}

1131
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1132
{
1133 1134
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1135
	return 0;
1136 1137
}

1138
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1139
{
1140 1141
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1142
	return 0;
1143 1144
}

1145
static void tg_conf_updated(struct throtl_grp *tg)
1146
{
1147
	struct throtl_service_queue *sq = &tg->service_queue;
1148
	struct cgroup_subsys_state *pos_css;
1149
	struct blkcg_gq *blkg;
1150

1151 1152 1153 1154
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1155

1156 1157 1158 1159 1160 1161 1162
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1163
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1164 1165
		tg_update_has_rules(blkg_to_tg(blkg));

1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1174 1175
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1176

1177
	if (tg->flags & THROTL_TG_PENDING) {
1178
		tg_update_disptime(tg);
1179
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1180
	}
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
		v = -1;

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1208

1209
	tg_conf_updated(tg);
1210 1211
	ret = 0;
out_finish:
1212
	blkg_conf_finish(&ctx);
1213
	return ret ?: nbytes;
1214 1215
}

1216 1217
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1218
{
1219
	return tg_set_conf(of, buf, nbytes, off, true);
1220 1221
}

1222 1223
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1224
{
1225
	return tg_set_conf(of, buf, nbytes, off, false);
1226 1227
}

1228
static struct cftype throtl_legacy_files[] = {
1229 1230
	{
		.name = "throttle.read_bps_device",
1231
		.private = offsetof(struct throtl_grp, bps[READ]),
1232
		.seq_show = tg_print_conf_u64,
1233
		.write = tg_set_conf_u64,
1234 1235 1236
	},
	{
		.name = "throttle.write_bps_device",
1237
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1238
		.seq_show = tg_print_conf_u64,
1239
		.write = tg_set_conf_u64,
1240 1241 1242
	},
	{
		.name = "throttle.read_iops_device",
1243
		.private = offsetof(struct throtl_grp, iops[READ]),
1244
		.seq_show = tg_print_conf_uint,
1245
		.write = tg_set_conf_uint,
1246 1247 1248
	},
	{
		.name = "throttle.write_iops_device",
1249
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1250
		.seq_show = tg_print_conf_uint,
1251
		.write = tg_set_conf_uint,
1252 1253 1254
	},
	{
		.name = "throttle.io_service_bytes",
1255 1256
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1257 1258 1259
	},
	{
		.name = "throttle.io_serviced",
1260 1261
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1262 1263 1264 1265
	},
	{ }	/* terminate */
};

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };

	if (!dname)
		return 0;
	if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
	    tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
		return 0;

	if (tg->bps[READ] != -1)
		snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
	if (tg->bps[WRITE] != -1)
		snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
	if (tg->iops[READ] != -1)
		snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
	if (tg->iops[WRITE] != -1)
		snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

static int tg_print_max(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

static ssize_t tg_set_max(struct kernfs_open_file *of,
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

	v[0] = tg->bps[READ];
	v[1] = tg->bps[WRITE];
	v[2] = tg->iops[READ];
	v[3] = tg->iops[WRITE];

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
		u64 val = -1;
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

	tg->bps[READ] = v[0];
	tg->bps[WRITE] = v[1];
	tg->iops[READ] = v[2];
	tg->iops[WRITE] = v[3];

	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_max,
		.write = tg_set_max,
	},
	{ }	/* terminate */
};

1377
static void throtl_shutdown_wq(struct request_queue *q)
1378 1379 1380
{
	struct throtl_data *td = q->td;

1381
	cancel_work_sync(&td->dispatch_work);
1382 1383
}

T
Tejun Heo 已提交
1384
static struct blkcg_policy blkcg_policy_throtl = {
1385
	.dfl_cftypes		= throtl_files,
1386
	.legacy_cftypes		= throtl_legacy_files,
1387

1388
	.pd_alloc_fn		= throtl_pd_alloc,
1389
	.pd_init_fn		= throtl_pd_init,
1390
	.pd_online_fn		= throtl_pd_online,
1391
	.pd_free_fn		= throtl_pd_free,
1392 1393
};

1394 1395
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1396
{
1397
	struct throtl_qnode *qn = NULL;
1398
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1399
	struct throtl_service_queue *sq;
1400
	bool rw = bio_data_dir(bio);
1401
	bool throttled = false;
1402

1403 1404
	WARN_ON_ONCE(!rcu_read_lock_held());

1405
	/* see throtl_charge_bio() */
1406
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1407
		goto out;
1408 1409

	spin_lock_irq(q->queue_lock);
1410 1411

	if (unlikely(blk_queue_bypass(q)))
1412
		goto out_unlock;
1413

1414 1415
	sq = &tg->service_queue;

1416 1417 1418 1419
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1420

1421 1422 1423 1424 1425
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1426
		throtl_charge_bio(tg, bio);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1439
		throtl_trim_slice(tg, rw);
1440 1441 1442 1443 1444 1445

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1446
		qn = &tg->qnode_on_parent[rw];
1447 1448 1449 1450
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1451 1452
	}

1453
	/* out-of-limit, queue to @tg */
1454 1455
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1456
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1457 1458
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1459

1460
	bio_associate_current(bio);
1461
	tg->td->nr_queued[rw]++;
1462
	throtl_add_bio_tg(bio, qn, tg);
1463
	throttled = true;
1464

1465 1466 1467 1468 1469 1470
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1471
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1472
		tg_update_disptime(tg);
1473
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1474 1475
	}

1476
out_unlock:
1477
	spin_unlock_irq(q->queue_lock);
1478
out:
1479 1480 1481 1482 1483 1484
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1485
		bio_clear_flag(bio, BIO_THROTTLED);
1486
	return throttled;
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1504
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1505
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1506
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1507 1508 1509 1510
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1521
	struct blkcg_gq *blkg;
1522
	struct cgroup_subsys_state *pos_css;
1523
	struct bio *bio;
1524
	int rw;
1525

1526
	queue_lockdep_assert_held(q);
1527
	rcu_read_lock();
1528

1529 1530 1531 1532 1533 1534
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1535
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1536
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1537

1538 1539 1540 1541
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1542 1543
	spin_unlock_irq(q->queue_lock);

1544
	/* all bios now should be in td->service_queue, issue them */
1545
	for (rw = READ; rw <= WRITE; rw++)
1546 1547
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1548
			generic_make_request(bio);
1549 1550 1551 1552

	spin_lock_irq(q->queue_lock);
}

1553 1554 1555
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1556
	int ret;
1557 1558 1559 1560 1561

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1562
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1563
	throtl_service_queue_init(&td->service_queue);
1564

1565
	q->td = td;
1566
	td->queue = q;
V
Vivek Goyal 已提交
1567

1568
	/* activate policy */
T
Tejun Heo 已提交
1569
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1570
	if (ret)
1571
		kfree(td);
1572
	return ret;
1573 1574 1575 1576
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1577
	BUG_ON(!q->td);
1578
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1579
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1580
	kfree(q->td);
1581 1582 1583 1584
}

static int __init throtl_init(void)
{
1585 1586 1587 1588
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1589
	return blkcg_policy_register(&blkcg_policy_throtl);
1590 1591 1592
}

module_init(throtl_init);