blk-throttle.c 67.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25 26 27
#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 29
/* default latency target is 0, eg, guarantee IO latency by default */
#define DFL_LATENCY_TARGET (0)
30 31
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
32

33 34
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)

T
Tejun Heo 已提交
35
static struct blkcg_policy blkcg_policy_throtl;
36

37 38 39
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

69
struct throtl_service_queue {
70 71
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

72 73 74 75
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
76
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
77 78 79 80 81 82
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
83 84 85 86
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
87
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
88 89
};

90 91
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
92
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
93 94
};

95 96
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

97
enum {
S
Shaohua Li 已提交
98
	LIMIT_LOW,
99 100 101 102
	LIMIT_MAX,
	LIMIT_CNT,
};

103
struct throtl_grp {
104 105 106
	/* must be the first member */
	struct blkg_policy_data pd;

107
	/* active throtl group service_queue member */
108 109
	struct rb_node rb_node;

110 111 112
	/* throtl_data this group belongs to */
	struct throtl_data *td;

113 114 115
	/* this group's service queue */
	struct throtl_service_queue service_queue;

116 117 118 119 120 121 122 123 124 125 126
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

127 128 129 130 131 132 133 134 135
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

136 137 138
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
139
	/* internally used bytes per second rate limits */
140
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
141 142
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
143

S
Shaohua Li 已提交
144
	/* internally used IOPS limits */
145
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
146 147
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
148

149 150
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
151 152
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
153

S
Shaohua Li 已提交
154 155 156 157 158 159 160
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

161
	unsigned long latency_target; /* us */
162
	unsigned long latency_target_conf; /* us */
163 164 165
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
166 167 168 169 170

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
171
	unsigned long idletime_threshold_conf; /* us */
172 173 174 175

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
176 177
};

178 179 180 181 182 183 184 185 186 187 188 189 190
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

191 192 193
struct throtl_data
{
	/* service tree for active throtl groups */
194
	struct throtl_service_queue service_queue;
195 196 197 198 199 200

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

201 202
	unsigned int throtl_slice;

203
	/* Work for dispatching throttled bios */
204
	struct work_struct dispatch_work;
205 206
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
207

208 209
	unsigned long dft_idletime_threshold; /* us */

S
Shaohua Li 已提交
210 211
	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
212 213

	unsigned int scale;
214 215 216 217 218 219 220

	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets;
	unsigned long last_calculate_time;

	bool track_bio_latency;
221 222
};

223 224
static void throtl_pending_timer_fn(unsigned long arg);

225 226 227 228 229
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
230
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
231
{
232
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
233 234
}

T
Tejun Heo 已提交
235
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
236
{
237
	return pd_to_blkg(&tg->pd);
238 239
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
259
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
260 261 262 263 264 265 266 267 268 269 270 271
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

290 291
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
292
	struct blkcg_gq *blkg = tg_to_blkg(tg);
293
	struct throtl_data *td;
294 295 296 297
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
298 299 300

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
301 302 303 304 305 306 307 308
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
309 310 311 312 313 314 315 316

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
317
	return ret;
318 319 320 321
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
322
	struct blkcg_gq *blkg = tg_to_blkg(tg);
323
	struct throtl_data *td;
324 325 326 327
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
328

329 330
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
331 332 333 334 335 336 337 338
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
339 340 341 342 343 344 345 346 347 348

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
349
	return ret;
350 351
}

352 353 354
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

355 356 357 358 359 360 361 362 363 364 365 366 367 368
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
369 370
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
371 372
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
373
									\
374 375 376 377 378
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
379
} while (0)
380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

464
/* init a service_queue, assumes the caller zeroed it */
465
static void throtl_service_queue_init(struct throtl_service_queue *sq)
466
{
467 468
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
469
	sq->pending_tree = RB_ROOT;
470 471 472 473
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

474 475
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
476
	struct throtl_grp *tg;
T
Tejun Heo 已提交
477
	int rw;
478 479 480

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
481
		return NULL;
482

483 484 485 486 487 488 489 490
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
491 492 493 494
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
495 496 497 498 499
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
500

501
	tg->latency_target = DFL_LATENCY_TARGET;
502
	tg->latency_target_conf = DFL_LATENCY_TARGET;
503

504
	return &tg->pd;
505 506
}

507
static void throtl_pd_init(struct blkg_policy_data *pd)
508
{
509 510
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
511
	struct throtl_data *td = blkg->q->td;
512
	struct throtl_service_queue *sq = &tg->service_queue;
513

514
	/*
515
	 * If on the default hierarchy, we switch to properly hierarchical
516 517 518 519 520
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
521
	 * If not on the default hierarchy, the broken flat hierarchy
522 523 524 525 526
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
527
	sq->parent_sq = &td->service_queue;
528
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
529
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
530
	tg->td = td;
531

532
	tg->idletime_threshold = td->dft_idletime_threshold;
533
	tg->idletime_threshold_conf = td->dft_idletime_threshold;
534 535
}

536 537 538 539 540 541 542 543
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
544
	struct throtl_data *td = tg->td;
545 546 547 548
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
549 550 551
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
552 553
}

554
static void throtl_pd_online(struct blkg_policy_data *pd)
555
{
556
	struct throtl_grp *tg = pd_to_tg(pd);
557 558 559 560
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
561
	tg_update_has_rules(tg);
562 563
}

S
Shaohua Li 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

583
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
584 585 586 587 588 589 590 591 592 593 594
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

595 596
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
597 598
}

599 600
static void throtl_pd_free(struct blkg_policy_data *pd)
{
601 602
	struct throtl_grp *tg = pd_to_tg(pd);

603
	del_timer_sync(&tg->service_queue.pending_timer);
604
	kfree(tg);
605 606
}

607 608
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
609 610
{
	/* Service tree is empty */
611
	if (!parent_sq->nr_pending)
612 613
		return NULL;

614 615
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
616

617 618
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
619 620 621 622 623 624 625 626 627 628

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

629 630
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
631
{
632 633 634 635
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
636 637
}

638
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
639 640 641
{
	struct throtl_grp *tg;

642
	tg = throtl_rb_first(parent_sq);
643 644 645
	if (!tg)
		return;

646
	parent_sq->first_pending_disptime = tg->disptime;
647 648
}

649
static void tg_service_queue_add(struct throtl_grp *tg)
650
{
651
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
652
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
671
		parent_sq->first_pending = &tg->rb_node;
672 673

	rb_link_node(&tg->rb_node, parent, node);
674
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
675 676
}

677
static void __throtl_enqueue_tg(struct throtl_grp *tg)
678
{
679
	tg_service_queue_add(tg);
680
	tg->flags |= THROTL_TG_PENDING;
681
	tg->service_queue.parent_sq->nr_pending++;
682 683
}

684
static void throtl_enqueue_tg(struct throtl_grp *tg)
685
{
686
	if (!(tg->flags & THROTL_TG_PENDING))
687
		__throtl_enqueue_tg(tg);
688 689
}

690
static void __throtl_dequeue_tg(struct throtl_grp *tg)
691
{
692
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
693
	tg->flags &= ~THROTL_TG_PENDING;
694 695
}

696
static void throtl_dequeue_tg(struct throtl_grp *tg)
697
{
698
	if (tg->flags & THROTL_TG_PENDING)
699
		__throtl_dequeue_tg(tg);
700 701
}

702
/* Call with queue lock held */
703 704
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
705
{
706
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
707 708 709 710 711 712 713 714 715 716

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
717 718 719
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
742
{
743
	/* any pending children left? */
744
	if (!sq->nr_pending)
745
		return true;
746

747
	update_min_dispatch_time(sq);
748

749
	/* is the next dispatch time in the future? */
750
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
751
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
752
		return true;
753 754
	}

755 756
	/* tell the caller to continue dispatching */
	return false;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

774
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
775 776 777 778 779 780
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

781
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
782 783
{
	tg->bytes_disp[rw] = 0;
784
	tg->io_disp[rw] = 0;
785
	tg->slice_start[rw] = jiffies;
786
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
787 788 789 790
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
791 792
}

793 794
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
795
{
796
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
797 798
}

799 800
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
801
{
802
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
803 804 805 806
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
807 808 809
}

/* Determine if previously allocated or extended slice is complete or not */
810
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
811 812
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
813
		return false;
814 815 816 817 818

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
819
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
820
{
821 822
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
823 824 825 826 827 828 829 830

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
831
	if (throtl_slice_used(tg, rw))
832 833
		return;

834 835 836 837 838 839 840 841
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

842
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
843

844 845
	time_elapsed = jiffies - tg->slice_start[rw];

846
	nr_slices = time_elapsed / tg->td->throtl_slice;
847 848 849

	if (!nr_slices)
		return;
850
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
851 852
	do_div(tmp, HZ);
	bytes_trim = tmp;
853

854 855
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
856

857
	if (!bytes_trim && !io_trim)
858 859 860 861 862 863 864
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

865 866 867 868 869
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

870
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
871

872 873 874 875
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
876 877
}

878 879
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
880 881
{
	bool rw = bio_data_dir(bio);
882
	unsigned int io_allowed;
883
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
884
	u64 tmp;
885

886
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
887

888 889
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
890
		jiffy_elapsed_rnd = tg->td->throtl_slice;
891

892
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
893

894 895 896 897 898 899 900
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

901
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
902 903 904 905 906 907
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
908 909

	if (tg->io_disp[rw] + 1 <= io_allowed) {
910 911
		if (wait)
			*wait = 0;
912
		return true;
913 914
	}

915
	/* Calc approx time to dispatch */
916
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
917 918 919 920 921 922 923 924 925 926 927

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

928 929
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
930 931
{
	bool rw = bio_data_dir(bio);
932
	u64 bytes_allowed, extra_bytes, tmp;
933
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
934 935 936 937 938

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
939
		jiffy_elapsed_rnd = tg->td->throtl_slice;
940

941
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
942

943
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
944
	do_div(tmp, HZ);
945
	bytes_allowed = tmp;
946

947
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
948 949
		if (wait)
			*wait = 0;
950
		return true;
951 952 953
	}

	/* Calc approx time to dispatch */
954
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
955
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
956 957 958 959 960 961 962 963 964 965 966

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
967 968 969 970 971 972 973
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
974 975
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
976 977 978 979 980 981 982 983 984 985
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
986
	BUG_ON(tg->service_queue.nr_queued[rw] &&
987
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
988

989
	/* If tg->bps = -1, then BW is unlimited */
990 991
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
992 993
		if (wait)
			*wait = 0;
994
		return true;
995 996 997 998 999
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1000 1001 1002
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1003
	 */
1004
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1005
		throtl_start_new_slice(tg, rw);
1006
	else {
1007 1008 1009 1010
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1011 1012
	}

1013 1014
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1026
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1027 1028 1029 1030 1031 1032 1033 1034 1035

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
1036
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1037
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
1038 1039
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
1040

1041
	/*
1042
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1043 1044 1045 1046
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1047 1048
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1062
{
1063
	struct throtl_service_queue *sq = &tg->service_queue;
1064 1065
	bool rw = bio_data_dir(bio);

1066 1067 1068
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1078 1079
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1080
	sq->nr_queued[rw]++;
1081
	throtl_enqueue_tg(tg);
1082 1083
}

1084
static void tg_update_disptime(struct throtl_grp *tg)
1085
{
1086
	struct throtl_service_queue *sq = &tg->service_queue;
1087 1088 1089
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1090 1091
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1092
		tg_may_dispatch(tg, bio, &read_wait);
1093

1094 1095
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1096
		tg_may_dispatch(tg, bio, &write_wait);
1097 1098 1099 1100 1101

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1102
	throtl_dequeue_tg(tg);
1103
	tg->disptime = disptime;
1104
	throtl_enqueue_tg(tg);
1105 1106 1107

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1108 1109
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1120
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1121
{
1122
	struct throtl_service_queue *sq = &tg->service_queue;
1123 1124
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1125
	struct throtl_grp *tg_to_put = NULL;
1126 1127
	struct bio *bio;

1128 1129 1130 1131 1132 1133 1134
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1135
	sq->nr_queued[rw]--;
1136 1137

	throtl_charge_bio(tg, bio);
1138 1139 1140 1141 1142 1143 1144 1145 1146

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1147
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1148
		start_parent_slice_with_credit(tg, parent_tg, rw);
1149
	} else {
1150 1151
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1152 1153 1154
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1155

1156
	throtl_trim_slice(tg, rw);
1157

1158 1159
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1160 1161
}

1162
static int throtl_dispatch_tg(struct throtl_grp *tg)
1163
{
1164
	struct throtl_service_queue *sq = &tg->service_queue;
1165 1166
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1167
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1168 1169 1170 1171
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1172
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1173
	       tg_may_dispatch(tg, bio, NULL)) {
1174

1175
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1176 1177 1178 1179 1180 1181
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1182
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1183
	       tg_may_dispatch(tg, bio, NULL)) {
1184

1185
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1186 1187 1188 1189 1190 1191 1192 1193 1194
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1195
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1196 1197 1198 1199
{
	unsigned int nr_disp = 0;

	while (1) {
1200 1201
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1202 1203 1204 1205 1206 1207 1208

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1209
		throtl_dequeue_tg(tg);
1210

1211
		nr_disp += throtl_dispatch_tg(tg);
1212

1213
		if (sq->nr_queued[0] || sq->nr_queued[1])
1214
			tg_update_disptime(tg);
1215 1216 1217 1218 1219 1220 1221 1222

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1223 1224
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1225 1226 1227 1228 1229 1230 1231
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1232 1233 1234 1235 1236 1237 1238
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1239
 */
1240 1241 1242
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1243
	struct throtl_grp *tg = sq_to_tg(sq);
1244
	struct throtl_data *td = sq_to_td(sq);
1245
	struct request_queue *q = td->queue;
1246 1247
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1248
	int ret;
1249 1250

	spin_lock_irq(q->queue_lock);
1251 1252 1253
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1254 1255 1256
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1257

1258 1259
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1260 1261
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1262 1263 1264 1265 1266 1267

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1268

1269 1270
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1271

1272 1273 1274 1275
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1276
	}
1277

1278 1279
	if (!dispatched)
		goto out_unlock;
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1297
	spin_unlock_irq(q->queue_lock);
1298
}
1299

1300 1301 1302 1303 1304 1305 1306 1307
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1308
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1322 1323 1324
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1325 1326 1327
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1328
		blk_start_plug(&plug);
1329 1330
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1331
		blk_finish_plug(&plug);
1332 1333 1334
	}
}

1335 1336
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1337
{
1338 1339
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1340

1341
	if (v == U64_MAX)
1342
		return 0;
1343
	return __blkg_prfill_u64(sf, pd, v);
1344 1345
}

1346 1347
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1348
{
1349 1350
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1351

1352
	if (v == UINT_MAX)
1353
		return 0;
1354
	return __blkg_prfill_u64(sf, pd, v);
1355 1356
}

1357
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1358
{
1359 1360
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1361
	return 0;
1362 1363
}

1364
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1365
{
1366 1367
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1368
	return 0;
1369 1370
}

1371
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1372
{
1373
	struct throtl_service_queue *sq = &tg->service_queue;
1374
	struct cgroup_subsys_state *pos_css;
1375
	struct blkcg_gq *blkg;
1376

1377 1378
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1379 1380
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1381

1382 1383 1384 1385 1386 1387 1388
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1389 1390
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1409

1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1418 1419
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1420

1421
	if (tg->flags & THROTL_TG_PENDING) {
1422
		tg_update_disptime(tg);
1423
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1424
	}
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1444
		v = U64_MAX;
1445 1446 1447 1448 1449 1450 1451

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1452

1453
	tg_conf_updated(tg, false);
1454 1455
	ret = 0;
out_finish:
1456
	blkg_conf_finish(&ctx);
1457
	return ret ?: nbytes;
1458 1459
}

1460 1461
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1462
{
1463
	return tg_set_conf(of, buf, nbytes, off, true);
1464 1465
}

1466 1467
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1468
{
1469
	return tg_set_conf(of, buf, nbytes, off, false);
1470 1471
}

1472
static struct cftype throtl_legacy_files[] = {
1473 1474
	{
		.name = "throttle.read_bps_device",
1475
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1476
		.seq_show = tg_print_conf_u64,
1477
		.write = tg_set_conf_u64,
1478 1479 1480
	},
	{
		.name = "throttle.write_bps_device",
1481
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1482
		.seq_show = tg_print_conf_u64,
1483
		.write = tg_set_conf_u64,
1484 1485 1486
	},
	{
		.name = "throttle.read_iops_device",
1487
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1488
		.seq_show = tg_print_conf_uint,
1489
		.write = tg_set_conf_uint,
1490 1491 1492
	},
	{
		.name = "throttle.write_iops_device",
1493
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1494
		.seq_show = tg_print_conf_uint,
1495
		.write = tg_set_conf_uint,
1496 1497 1498
	},
	{
		.name = "throttle.io_service_bytes",
1499 1500
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1501 1502 1503
	},
	{
		.name = "throttle.io_serviced",
1504 1505
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1506 1507 1508 1509
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1510
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1511 1512 1513 1514 1515
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1516 1517
	u64 bps_dft;
	unsigned int iops_dft;
1518
	char idle_time[26] = "";
1519
	char latency_time[26] = "";
1520 1521 1522

	if (!dname)
		return 0;
1523

S
Shaohua Li 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1535
	    tg->iops_conf[WRITE][off] == iops_dft &&
1536
	    (off != LIMIT_LOW ||
1537 1538
	     (tg->idletime_threshold_conf == tg->td->dft_idletime_threshold &&
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1539 1540
		return 0;

1541
	if (tg->bps_conf[READ][off] != U64_MAX)
1542
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1543
			tg->bps_conf[READ][off]);
1544
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1545
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1546
			tg->bps_conf[WRITE][off]);
1547
	if (tg->iops_conf[READ][off] != UINT_MAX)
1548
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1549
			tg->iops_conf[READ][off]);
1550
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1551
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1552
			tg->iops_conf[WRITE][off]);
1553
	if (off == LIMIT_LOW) {
1554
		if (tg->idletime_threshold_conf == ULONG_MAX)
1555 1556 1557
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1558
				tg->idletime_threshold_conf);
1559

1560
		if (tg->latency_target_conf == ULONG_MAX)
1561 1562 1563
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1564
				" latency=%lu", tg->latency_target_conf);
1565
	}
1566

1567 1568 1569
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1570 1571 1572
	return 0;
}

S
Shaohua Li 已提交
1573
static int tg_print_limit(struct seq_file *sf, void *v)
1574
{
S
Shaohua Li 已提交
1575
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1576 1577 1578 1579
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1580
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1581 1582 1583 1584 1585 1586
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1587
	unsigned long idle_time;
1588
	unsigned long latency_time;
1589
	int ret;
S
Shaohua Li 已提交
1590
	int index = of_cft(of)->private;
1591 1592 1593 1594 1595 1596 1597

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1598 1599 1600 1601
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1602

1603 1604
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1605 1606 1607
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1608
		u64 val = U64_MAX;
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1636 1637
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1638 1639
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1640 1641 1642 1643
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1644 1645 1646 1647
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1648

S
Shaohua Li 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
1668 1669 1670 1671
		tg->idletime_threshold_conf = idle_time;
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target_conf = latency_time;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1672
	}
1673 1674
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1675 1676 1677 1678 1679 1680 1681
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1691 1692 1693
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1694 1695 1696
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1697 1698 1699 1700
	},
	{ }	/* terminate */
};

1701
static void throtl_shutdown_wq(struct request_queue *q)
1702 1703 1704
{
	struct throtl_data *td = q->td;

1705
	cancel_work_sync(&td->dispatch_work);
1706 1707
}

T
Tejun Heo 已提交
1708
static struct blkcg_policy blkcg_policy_throtl = {
1709
	.dfl_cftypes		= throtl_files,
1710
	.legacy_cftypes		= throtl_legacy_files,
1711

1712
	.pd_alloc_fn		= throtl_pd_alloc,
1713
	.pd_init_fn		= throtl_pd_init,
1714
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1715
	.pd_offline_fn		= throtl_pd_offline,
1716
	.pd_free_fn		= throtl_pd_free,
1717 1718
};

S
Shaohua Li 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1758 1759 1760 1761 1762 1763 1764
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
	 *   configure a too big threshold) or 4 times of slice
	 * - average think time is more than threshold
1765
	 * - IO latency is largely below threshold
1766 1767
	 */
	unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1768
	bool ret;
1769 1770

	time = min_t(unsigned long, MAX_IDLE_TIME, time);
1771
	ret = (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1772 1773 1774
	       tg->avg_idletime > tg->idletime_threshold ||
	       (tg->latency_target && tg->bio_cnt &&
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1775 1776 1777 1778 1779
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1780 1781
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1801 1802

	if (time_after_eq(jiffies,
1803 1804
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1805
		return true;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1830
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1831 1832
		return false;

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1870 1871 1872 1873 1874
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1875
	throtl_log(&td->service_queue, "upgrade to max");
1876
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1877
	td->low_upgrade_time = jiffies;
1878
	td->scale = 0;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1894 1895
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1896 1897
	td->scale /= 2;

1898
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1899 1900 1901 1902 1903
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1917 1918
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1919 1920 1921
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1950
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1951 1952 1953 1954 1955
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1956 1957
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
	int i, cpu;
	unsigned long last_latency = 0;
	unsigned long latency;

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		struct latency_bucket *tmp = &td->tmp_buckets[i];

		for_each_possible_cpu(cpu) {
			struct latency_bucket *bucket;

			/* this isn't race free, but ok in practice */
			bucket = per_cpu_ptr(td->latency_buckets, cpu);
			tmp->total_latency += bucket[i].total_latency;
			tmp->samples += bucket[i].samples;
			bucket[i].total_latency = 0;
			bucket[i].samples = 0;
		}

		if (tmp->samples >= 32) {
			int samples = tmp->samples;

			latency = tmp->total_latency;

			tmp->total_latency = 0;
			tmp->samples = 0;
			latency /= samples;
			if (latency == 0)
				continue;
			avg_latency[i].latency = latency;
		}
	}

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		if (!avg_latency[i].latency) {
			if (td->avg_buckets[i].latency < last_latency)
				td->avg_buckets[i].latency = last_latency;
			continue;
		}

		if (!td->avg_buckets[i].valid)
			latency = avg_latency[i].latency;
		else
			latency = (td->avg_buckets[i].latency * 7 +
				avg_latency[i].latency) >> 3;

		td->avg_buckets[i].latency = max(latency, last_latency);
		td->avg_buckets[i].valid = true;
		last_latency = td->avg_buckets[i].latency;
	}
2072 2073 2074 2075 2076

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
			"Latency bucket %d: latency=%ld, valid=%d", i,
			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
2077 2078 2079 2080 2081 2082 2083
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	int ret;

	ret = bio_associate_current(bio);
	if (ret == 0 || ret == -EBUSY)
		bio->bi_cg_private = tg;
	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
#else
	bio_associate_current(bio);
#endif
}

2098 2099
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2100
{
2101
	struct throtl_qnode *qn = NULL;
2102
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2103
	struct throtl_service_queue *sq;
2104
	bool rw = bio_data_dir(bio);
2105
	bool throttled = false;
2106
	struct throtl_data *td = tg->td;
2107

2108 2109
	WARN_ON_ONCE(!rcu_read_lock_held());

2110
	/* see throtl_charge_bio() */
2111
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2112
		goto out;
2113 2114

	spin_lock_irq(q->queue_lock);
2115

2116 2117
	throtl_update_latency_buckets(td);

2118
	if (unlikely(blk_queue_bypass(q)))
2119
		goto out_unlock;
2120

2121
	blk_throtl_assoc_bio(tg, bio);
2122 2123
	blk_throtl_update_idletime(tg);

2124 2125
	sq = &tg->service_queue;

2126
again:
2127
	while (true) {
S
Shaohua Li 已提交
2128 2129 2130
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2131
		throtl_upgrade_check(tg);
2132 2133 2134
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2135

2136
		/* if above limits, break to queue */
2137
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2138
			tg->last_low_overflow_time[rw] = jiffies;
2139 2140
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2141 2142
				goto again;
			}
2143
			break;
2144
		}
2145 2146

		/* within limits, let's charge and dispatch directly */
2147
		throtl_charge_bio(tg, bio);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2160
		throtl_trim_slice(tg, rw);
2161 2162 2163 2164 2165 2166

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2167
		qn = &tg->qnode_on_parent[rw];
2168 2169 2170 2171
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2172 2173
	}

2174
	/* out-of-limit, queue to @tg */
2175 2176
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2177 2178 2179
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2180
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2181

S
Shaohua Li 已提交
2182 2183
	tg->last_low_overflow_time[rw] = jiffies;

2184
	td->nr_queued[rw]++;
2185
	throtl_add_bio_tg(bio, qn, tg);
2186
	throttled = true;
2187

2188 2189 2190 2191 2192 2193
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2194
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2195
		tg_update_disptime(tg);
2196
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2197 2198
	}

2199
out_unlock:
2200
	spin_unlock_irq(q->queue_lock);
2201
out:
2202 2203 2204 2205 2206 2207
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
2208
		bio_clear_flag(bio, BIO_THROTTLED);
2209 2210 2211 2212 2213

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
		bio->bi_issue_stat.stat |= SKIP_LATENCY;
#endif
2214
	return throttled;
2215 2216
}

2217
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

	latency = get_cpu_ptr(td->latency_buckets);
	latency[index].total_latency += time;
	latency[index].samples++;
	put_cpu_ptr(td->latency_buckets);
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2245 2246 2247
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2248 2249 2250 2251
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2252 2253 2254 2255 2256 2257

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2258 2259 2260 2261 2262
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2263 2264 2265 2266
	if (!start_time || finish_time <= start_time)
		return;

	lat = finish_time - start_time;
2267
	/* this is only for bio based driver */
2268
	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2269 2270
		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
			bio_op(bio), lat);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

	if (tg->latency_target) {
		int bucket;
		unsigned int threshold;

		bucket = request_bucket_index(
			blk_stat_size(&bio->bi_issue_stat));
		threshold = tg->td->avg_buckets[bucket].latency +
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2293
	}
2294 2295 2296
}
#endif

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2312
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2313
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2314
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2315 2316 2317 2318
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2329
	struct blkcg_gq *blkg;
2330
	struct cgroup_subsys_state *pos_css;
2331
	struct bio *bio;
2332
	int rw;
2333

2334
	queue_lockdep_assert_held(q);
2335
	rcu_read_lock();
2336

2337 2338 2339 2340 2341 2342
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2343
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2344
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2345

2346 2347 2348 2349
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2350 2351
	spin_unlock_irq(q->queue_lock);

2352
	/* all bios now should be in td->service_queue, issue them */
2353
	for (rw = READ; rw <= WRITE; rw++)
2354 2355
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2356
			generic_make_request(bio);
2357 2358 2359 2360

	spin_lock_irq(q->queue_lock);
}

2361 2362 2363
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2364
	int ret;
2365 2366 2367 2368

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2369 2370 2371 2372 2373 2374
	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
		LATENCY_BUCKET_SIZE, __alignof__(u64));
	if (!td->latency_buckets) {
		kfree(td);
		return -ENOMEM;
	}
2375

2376
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2377
	throtl_service_queue_init(&td->service_queue);
2378

2379
	q->td = td;
2380
	td->queue = q;
V
Vivek Goyal 已提交
2381

2382
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2383
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2384 2385
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2386

2387
	/* activate policy */
T
Tejun Heo 已提交
2388
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2389 2390
	if (ret) {
		free_percpu(td->latency_buckets);
2391
		kfree(td);
2392
	}
2393
	return ret;
2394 2395 2396 2397
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2398
	BUG_ON(!q->td);
2399
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2400
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2401
	free_percpu(q->td->latency_buckets);
2402
	kfree(q->td);
2403 2404
}

2405 2406 2407
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2408 2409
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
2410 2411 2412 2413

	td = q->td;
	BUG_ON(!td);

2414
	if (blk_queue_nonrot(q)) {
2415
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2416 2417
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
	} else {
2418
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2419 2420
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
	}
2421 2422 2423 2424
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2425

2426 2427 2428 2429
	td->track_bio_latency = !q->mq_ops && !q->request_fn;
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);

2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * some tg are created before queue is fully initialized, eg, nonrot
	 * isn't initialized yet
	 */
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

2438
		tg->idletime_threshold = td->dft_idletime_threshold;
2439
		tg->idletime_threshold_conf = td->dft_idletime_threshold;
2440 2441
	}
	rcu_read_unlock();
2442 2443
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2470 2471
static int __init throtl_init(void)
{
2472 2473 2474 2475
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2476
	return blkcg_policy_register(&blkcg_policy_throtl);
2477 2478 2479
}

module_init(throtl_init);