blk-throttle.c 46.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86
enum {
S
Shaohua Li 已提交
87
	LIMIT_LOW,
88 89 90 91
	LIMIT_MAX,
	LIMIT_CNT,
};

92
struct throtl_grp {
93 94 95
	/* must be the first member */
	struct blkg_policy_data pd;

96
	/* active throtl group service_queue member */
97 98
	struct rb_node rb_node;

99 100 101
	/* throtl_data this group belongs to */
	struct throtl_data *td;

102 103 104
	/* this group's service queue */
	struct throtl_service_queue service_queue;

105 106 107 108 109 110 111 112 113 114 115
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

116 117 118 119 120 121 122 123 124
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

125 126 127
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
128
	/* internally used bytes per second rate limits */
129
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
130 131
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
132

S
Shaohua Li 已提交
133
	/* internally used IOPS limits */
134
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
135 136
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
137

138 139
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
140 141
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
142 143 144 145 146 147 148 149 150

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
151
	struct throtl_service_queue service_queue;
152 153 154 155 156 157 158

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* Work for dispatching throttled bios */
159
	struct work_struct dispatch_work;
160 161
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
162 163
};

164 165
static void throtl_pending_timer_fn(unsigned long arg);

166 167 168 169 170
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
171
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
172
{
173
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
174 175
}

T
Tejun Heo 已提交
176
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
177
{
178
	return pd_to_blkg(&tg->pd);
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
200
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
201 202 203 204 205 206 207 208 209 210 211 212
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

213 214 215 216 217 218 219 220 221 222
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
	return tg->bps[rw][tg->td->limit_index];
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
	return tg->iops[rw][tg->td->limit_index];
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
237 238
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
239 240
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
241
									\
242 243 244 245 246
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
247
} while (0)
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

332
/* init a service_queue, assumes the caller zeroed it */
333
static void throtl_service_queue_init(struct throtl_service_queue *sq)
334
{
335 336
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
337
	sq->pending_tree = RB_ROOT;
338 339 340 341
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

342 343
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
344
	struct throtl_grp *tg;
T
Tejun Heo 已提交
345
	int rw;
346 347 348

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
349
		return NULL;
350

351 352 353 354 355 356 357 358
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
359 360 361 362
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
363 364 365 366 367
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
368

369
	return &tg->pd;
370 371
}

372
static void throtl_pd_init(struct blkg_policy_data *pd)
373
{
374 375
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
376
	struct throtl_data *td = blkg->q->td;
377
	struct throtl_service_queue *sq = &tg->service_queue;
378

379
	/*
380
	 * If on the default hierarchy, we switch to properly hierarchical
381 382 383 384 385
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
386
	 * If not on the default hierarchy, the broken flat hierarchy
387 388 389 390 391
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
392
	sq->parent_sq = &td->service_queue;
393
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
394
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
395
	tg->td = td;
396 397
}

398 399 400 401 402 403 404 405
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
406
	struct throtl_data *td = tg->td;
407 408 409 410
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
411 412 413
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
414 415
}

416
static void throtl_pd_online(struct blkg_policy_data *pd)
417 418 419 420 421
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
422
	tg_update_has_rules(pd_to_tg(pd));
423 424
}

S
Shaohua Li 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

	if (tg->td->limit_index == LIMIT_LOW &&
	    !tg->td->limit_valid[LIMIT_LOW])
		tg->td->limit_index = LIMIT_MAX;
}

460 461
static void throtl_pd_free(struct blkg_policy_data *pd)
{
462 463
	struct throtl_grp *tg = pd_to_tg(pd);

464
	del_timer_sync(&tg->service_queue.pending_timer);
465
	kfree(tg);
466 467
}

468 469
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
470 471
{
	/* Service tree is empty */
472
	if (!parent_sq->nr_pending)
473 474
		return NULL;

475 476
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
477

478 479
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
480 481 482 483 484 485 486 487 488 489

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

490 491
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
492
{
493 494 495 496
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
497 498
}

499
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
500 501 502
{
	struct throtl_grp *tg;

503
	tg = throtl_rb_first(parent_sq);
504 505 506
	if (!tg)
		return;

507
	parent_sq->first_pending_disptime = tg->disptime;
508 509
}

510
static void tg_service_queue_add(struct throtl_grp *tg)
511
{
512
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
513
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
532
		parent_sq->first_pending = &tg->rb_node;
533 534

	rb_link_node(&tg->rb_node, parent, node);
535
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
536 537
}

538
static void __throtl_enqueue_tg(struct throtl_grp *tg)
539
{
540
	tg_service_queue_add(tg);
541
	tg->flags |= THROTL_TG_PENDING;
542
	tg->service_queue.parent_sq->nr_pending++;
543 544
}

545
static void throtl_enqueue_tg(struct throtl_grp *tg)
546
{
547
	if (!(tg->flags & THROTL_TG_PENDING))
548
		__throtl_enqueue_tg(tg);
549 550
}

551
static void __throtl_dequeue_tg(struct throtl_grp *tg)
552
{
553
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
554
	tg->flags &= ~THROTL_TG_PENDING;
555 556
}

557
static void throtl_dequeue_tg(struct throtl_grp *tg)
558
{
559
	if (tg->flags & THROTL_TG_PENDING)
560
		__throtl_dequeue_tg(tg);
561 562
}

563
/* Call with queue lock held */
564 565
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
566
{
567 568 569
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
592
{
593
	/* any pending children left? */
594
	if (!sq->nr_pending)
595
		return true;
596

597
	update_min_dispatch_time(sq);
598

599
	/* is the next dispatch time in the future? */
600
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
601
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
602
		return true;
603 604
	}

605 606
	/* tell the caller to continue dispatching */
	return false;
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

631
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
632 633
{
	tg->bytes_disp[rw] = 0;
634
	tg->io_disp[rw] = 0;
635 636
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
637 638 639 640
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
641 642
}

643 644
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
645 646 647 648
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

649 650
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
651 652
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
653 654 655 656
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
657 658 659
}

/* Determine if previously allocated or extended slice is complete or not */
660
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
661 662
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
663
		return false;
664 665 666 667 668

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
669
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
670
{
671 672
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
673 674 675 676 677 678 679 680

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
681
	if (throtl_slice_used(tg, rw))
682 683
		return;

684 685 686 687 688 689 690 691
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

692
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
693

694 695 696 697 698 699
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
700
	tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
701 702
	do_div(tmp, HZ);
	bytes_trim = tmp;
703

704
	io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
705

706
	if (!bytes_trim && !io_trim)
707 708 709 710 711 712 713
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

714 715 716 717 718
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

719 720
	tg->slice_start[rw] += nr_slices * throtl_slice;

721 722 723 724
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
725 726
}

727 728
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
729 730
{
	bool rw = bio_data_dir(bio);
731
	unsigned int io_allowed;
732
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
733
	u64 tmp;
734

735
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
736

737 738 739 740 741 742
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

743 744 745 746 747 748 749
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

750
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
751 752 753 754 755 756
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
757 758

	if (tg->io_disp[rw] + 1 <= io_allowed) {
759 760
		if (wait)
			*wait = 0;
761
		return true;
762 763
	}

764
	/* Calc approx time to dispatch */
765
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
766 767 768 769 770 771 772 773 774 775 776

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

777 778
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
779 780
{
	bool rw = bio_data_dir(bio);
781
	u64 bytes_allowed, extra_bytes, tmp;
782
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
783 784 785 786 787 788 789 790 791

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

792
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
793
	do_div(tmp, HZ);
794
	bytes_allowed = tmp;
795

796
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
797 798
		if (wait)
			*wait = 0;
799
		return true;
800 801 802
	}

	/* Calc approx time to dispatch */
803
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
804
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
805 806 807 808 809 810 811 812 813 814 815

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
816 817 818 819 820 821 822
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
823 824
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
825 826 827 828 829 830 831 832 833 834
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
835
	BUG_ON(tg->service_queue.nr_queued[rw] &&
836
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
837

838
	/* If tg->bps = -1, then BW is unlimited */
839 840
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
841 842
		if (wait)
			*wait = 0;
843
		return true;
844 845 846 847 848
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
849 850 851
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
852
	 */
853
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
854
		throtl_start_new_slice(tg, rw);
855 856
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
857
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
858 859
	}

860 861
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
862 863 864 865 866 867 868 869 870 871 872
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
873
		throtl_extend_slice(tg, rw, jiffies + max_wait);
874 875 876 877 878 879 880 881 882

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
883
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
884
	tg->io_disp[rw]++;
885

886
	/*
887
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
888 889 890 891
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
892 893
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
894 895
}

896 897 898 899 900 901 902 903 904 905 906
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
907
{
908
	struct throtl_service_queue *sq = &tg->service_queue;
909 910
	bool rw = bio_data_dir(bio);

911 912 913
	if (!qn)
		qn = &tg->qnode_on_self[rw];

914 915 916 917 918 919 920 921 922
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

923 924
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

925
	sq->nr_queued[rw]++;
926
	throtl_enqueue_tg(tg);
927 928
}

929
static void tg_update_disptime(struct throtl_grp *tg)
930
{
931
	struct throtl_service_queue *sq = &tg->service_queue;
932 933 934
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

935 936
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
937
		tg_may_dispatch(tg, bio, &read_wait);
938

939 940
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
941
		tg_may_dispatch(tg, bio, &write_wait);
942 943 944 945 946

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
947
	throtl_dequeue_tg(tg);
948
	tg->disptime = disptime;
949
	throtl_enqueue_tg(tg);
950 951 952

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
953 954
}

955 956 957 958 959 960 961 962 963 964
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

965
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
966
{
967
	struct throtl_service_queue *sq = &tg->service_queue;
968 969
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
970
	struct throtl_grp *tg_to_put = NULL;
971 972
	struct bio *bio;

973 974 975 976 977 978 979
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
980
	sq->nr_queued[rw]--;
981 982

	throtl_charge_bio(tg, bio);
983 984 985 986 987 988 989 990 991

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
992
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
993
		start_parent_slice_with_credit(tg, parent_tg, rw);
994
	} else {
995 996
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
997 998 999
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1000

1001
	throtl_trim_slice(tg, rw);
1002

1003 1004
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1005 1006
}

1007
static int throtl_dispatch_tg(struct throtl_grp *tg)
1008
{
1009
	struct throtl_service_queue *sq = &tg->service_queue;
1010 1011
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1012
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1013 1014 1015 1016
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1017
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1018
	       tg_may_dispatch(tg, bio, NULL)) {
1019

1020
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1021 1022 1023 1024 1025 1026
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1027
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1028
	       tg_may_dispatch(tg, bio, NULL)) {
1029

1030
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1031 1032 1033 1034 1035 1036 1037 1038 1039
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1040
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1041 1042 1043 1044
{
	unsigned int nr_disp = 0;

	while (1) {
1045 1046
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1047 1048 1049 1050 1051 1052 1053

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1054
		throtl_dequeue_tg(tg);
1055

1056
		nr_disp += throtl_dispatch_tg(tg);
1057

1058
		if (sq->nr_queued[0] || sq->nr_queued[1])
1059
			tg_update_disptime(tg);
1060 1061 1062 1063 1064 1065 1066 1067

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1068 1069 1070 1071 1072 1073 1074
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1075 1076 1077 1078 1079 1080 1081
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1082
 */
1083 1084 1085
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1086
	struct throtl_grp *tg = sq_to_tg(sq);
1087
	struct throtl_data *td = sq_to_td(sq);
1088
	struct request_queue *q = td->queue;
1089 1090
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1091
	int ret;
1092 1093

	spin_lock_irq(q->queue_lock);
1094 1095 1096
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1097

1098 1099
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1100 1101
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1102 1103 1104 1105 1106 1107

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1108

1109 1110
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1111

1112 1113 1114 1115
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1116
	}
1117

1118 1119
	if (!dispatched)
		goto out_unlock;
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1137
	spin_unlock_irq(q->queue_lock);
1138
}
1139

1140 1141 1142 1143 1144 1145 1146 1147
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1148
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1162 1163 1164
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1165 1166 1167
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1168
		blk_start_plug(&plug);
1169 1170
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1171
		blk_finish_plug(&plug);
1172 1173 1174
	}
}

1175 1176
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1177
{
1178 1179
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1180

1181
	if (v == U64_MAX)
1182
		return 0;
1183
	return __blkg_prfill_u64(sf, pd, v);
1184 1185
}

1186 1187
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1188
{
1189 1190
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1191

1192
	if (v == UINT_MAX)
1193
		return 0;
1194
	return __blkg_prfill_u64(sf, pd, v);
1195 1196
}

1197
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1198
{
1199 1200
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1201
	return 0;
1202 1203
}

1204
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1205
{
1206 1207
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1208
	return 0;
1209 1210
}

1211
static void tg_conf_updated(struct throtl_grp *tg)
1212
{
1213
	struct throtl_service_queue *sq = &tg->service_queue;
1214
	struct cgroup_subsys_state *pos_css;
1215
	struct blkcg_gq *blkg;
1216

1217 1218
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1219 1220
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1221

1222 1223 1224 1225 1226 1227 1228
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1229
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1230 1231
		tg_update_has_rules(blkg_to_tg(blkg));

1232 1233 1234 1235 1236 1237 1238 1239
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1240 1241
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1242

1243
	if (tg->flags & THROTL_TG_PENDING) {
1244
		tg_update_disptime(tg);
1245
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1246
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1266
		v = U64_MAX;
1267 1268 1269 1270 1271 1272 1273

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1274

1275
	tg_conf_updated(tg);
1276 1277
	ret = 0;
out_finish:
1278
	blkg_conf_finish(&ctx);
1279
	return ret ?: nbytes;
1280 1281
}

1282 1283
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1284
{
1285
	return tg_set_conf(of, buf, nbytes, off, true);
1286 1287
}

1288 1289
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1290
{
1291
	return tg_set_conf(of, buf, nbytes, off, false);
1292 1293
}

1294
static struct cftype throtl_legacy_files[] = {
1295 1296
	{
		.name = "throttle.read_bps_device",
1297
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1298
		.seq_show = tg_print_conf_u64,
1299
		.write = tg_set_conf_u64,
1300 1301 1302
	},
	{
		.name = "throttle.write_bps_device",
1303
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1304
		.seq_show = tg_print_conf_u64,
1305
		.write = tg_set_conf_u64,
1306 1307 1308
	},
	{
		.name = "throttle.read_iops_device",
1309
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1310
		.seq_show = tg_print_conf_uint,
1311
		.write = tg_set_conf_uint,
1312 1313 1314
	},
	{
		.name = "throttle.write_iops_device",
1315
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1316
		.seq_show = tg_print_conf_uint,
1317
		.write = tg_set_conf_uint,
1318 1319 1320
	},
	{
		.name = "throttle.io_service_bytes",
1321 1322
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1323 1324 1325
	},
	{
		.name = "throttle.io_serviced",
1326 1327
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1328 1329 1330 1331
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1332
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1333 1334 1335 1336 1337
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1338 1339
	u64 bps_dft;
	unsigned int iops_dft;
1340 1341 1342

	if (!dname)
		return 0;
1343

S
Shaohua Li 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1356 1357
		return 0;

S
Shaohua Li 已提交
1358
	if (tg->bps_conf[READ][off] != bps_dft)
1359
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1360 1361
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1362
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1363 1364
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1365
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1366 1367
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1368
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1369
			tg->iops_conf[WRITE][off]);
1370 1371 1372 1373 1374 1375

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1376
static int tg_print_limit(struct seq_file *sf, void *v)
1377
{
S
Shaohua Li 已提交
1378
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1379 1380 1381 1382
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1383
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1384 1385 1386 1387 1388 1389 1390
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1391
	int index = of_cft(of)->private;
1392 1393 1394 1395 1396 1397 1398

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1399 1400 1401 1402
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1403 1404 1405 1406

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1407
		u64 val = U64_MAX;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1439 1440 1441 1442
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1443

S
Shaohua Li 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1464 1465 1466 1467 1468 1469 1470 1471
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1481 1482 1483
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1484 1485 1486
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1487 1488 1489 1490
	},
	{ }	/* terminate */
};

1491
static void throtl_shutdown_wq(struct request_queue *q)
1492 1493 1494
{
	struct throtl_data *td = q->td;

1495
	cancel_work_sync(&td->dispatch_work);
1496 1497
}

T
Tejun Heo 已提交
1498
static struct blkcg_policy blkcg_policy_throtl = {
1499
	.dfl_cftypes		= throtl_files,
1500
	.legacy_cftypes		= throtl_legacy_files,
1501

1502
	.pd_alloc_fn		= throtl_pd_alloc,
1503
	.pd_init_fn		= throtl_pd_init,
1504
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1505
	.pd_offline_fn		= throtl_pd_offline,
1506
	.pd_free_fn		= throtl_pd_free,
1507 1508
};

1509 1510
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1511
{
1512
	struct throtl_qnode *qn = NULL;
1513
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1514
	struct throtl_service_queue *sq;
1515
	bool rw = bio_data_dir(bio);
1516
	bool throttled = false;
1517

1518 1519
	WARN_ON_ONCE(!rcu_read_lock_held());

1520
	/* see throtl_charge_bio() */
1521
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1522
		goto out;
1523 1524

	spin_lock_irq(q->queue_lock);
1525 1526

	if (unlikely(blk_queue_bypass(q)))
1527
		goto out_unlock;
1528

1529 1530
	sq = &tg->service_queue;

1531 1532 1533 1534
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1535

1536 1537 1538 1539 1540
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1541
		throtl_charge_bio(tg, bio);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1554
		throtl_trim_slice(tg, rw);
1555 1556 1557 1558 1559 1560

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1561
		qn = &tg->qnode_on_parent[rw];
1562 1563 1564 1565
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1566 1567
	}

1568
	/* out-of-limit, queue to @tg */
1569 1570
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1571 1572 1573
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1574
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1575

1576
	bio_associate_current(bio);
1577
	tg->td->nr_queued[rw]++;
1578
	throtl_add_bio_tg(bio, qn, tg);
1579
	throttled = true;
1580

1581 1582 1583 1584 1585 1586
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1587
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1588
		tg_update_disptime(tg);
1589
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1590 1591
	}

1592
out_unlock:
1593
	spin_unlock_irq(q->queue_lock);
1594
out:
1595 1596 1597 1598 1599 1600
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1601
		bio_clear_flag(bio, BIO_THROTTLED);
1602
	return throttled;
1603 1604
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1620
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1621
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1622
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1623 1624 1625 1626
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1637
	struct blkcg_gq *blkg;
1638
	struct cgroup_subsys_state *pos_css;
1639
	struct bio *bio;
1640
	int rw;
1641

1642
	queue_lockdep_assert_held(q);
1643
	rcu_read_lock();
1644

1645 1646 1647 1648 1649 1650
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1651
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1652
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1653

1654 1655 1656 1657
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1658 1659
	spin_unlock_irq(q->queue_lock);

1660
	/* all bios now should be in td->service_queue, issue them */
1661
	for (rw = READ; rw <= WRITE; rw++)
1662 1663
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1664
			generic_make_request(bio);
1665 1666 1667 1668

	spin_lock_irq(q->queue_lock);
}

1669 1670 1671
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1672
	int ret;
1673 1674 1675 1676 1677

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1678
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1679
	throtl_service_queue_init(&td->service_queue);
1680

1681
	q->td = td;
1682
	td->queue = q;
V
Vivek Goyal 已提交
1683

1684
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1685
	td->limit_index = LIMIT_MAX;
1686
	/* activate policy */
T
Tejun Heo 已提交
1687
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1688
	if (ret)
1689
		kfree(td);
1690
	return ret;
1691 1692 1693 1694
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1695
	BUG_ON(!q->td);
1696
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1697
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1698
	kfree(q->td);
1699 1700 1701 1702
}

static int __init throtl_init(void)
{
1703 1704 1705 1706
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1707
	return blkcg_policy_register(&blkcg_policy_throtl);
1708 1709 1710
}

module_init(throtl_init);