blk-throttle.c 54.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25

T
Tejun Heo 已提交
26
static struct blkcg_policy blkcg_policy_throtl;
27

28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

60
struct throtl_service_queue {
61 62
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

63 64 65 66
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
67
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
68 69 70 71 72 73
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
74 75 76 77
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
78
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
79 80
};

81 82
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
83
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
84 85
};

86 87
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

88
enum {
S
Shaohua Li 已提交
89
	LIMIT_LOW,
90 91 92 93
	LIMIT_MAX,
	LIMIT_CNT,
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
130
	/* internally used bytes per second rate limits */
131
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
132 133
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
134

S
Shaohua Li 已提交
135
	/* internally used IOPS limits */
136
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
137 138
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
139

140 141
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
142 143
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
144

S
Shaohua Li 已提交
145 146 147 148 149 150 151
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

152 153 154 155 156 157 158 159
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
160
	struct throtl_service_queue service_queue;
161 162 163 164 165 166

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

167 168
	unsigned int throtl_slice;

169
	/* Work for dispatching throttled bios */
170
	struct work_struct dispatch_work;
171 172
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
173 174 175

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
176 177
};

178 179
static void throtl_pending_timer_fn(unsigned long arg);

180 181 182 183 184
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
185
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
186
{
187
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
188 189
}

T
Tejun Heo 已提交
190
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
191
{
192
	return pd_to_blkg(&tg->pd);
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
214
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
215 216 217 218 219 220 221 222 223 224 225 226
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

227 228
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
229 230 231 232 233 234 235 236 237
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
	ret = tg->bps[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->bps[rw][LIMIT_MAX];
	return ret;
238 239 240 241
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
242 243 244 245 246 247 248 249 250
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
	ret = tg->iops[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
	return ret;
251 252
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
267 268
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
269 270
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
271
									\
272 273 274 275 276
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
277
} while (0)
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

362
/* init a service_queue, assumes the caller zeroed it */
363
static void throtl_service_queue_init(struct throtl_service_queue *sq)
364
{
365 366
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
367
	sq->pending_tree = RB_ROOT;
368 369 370 371
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

372 373
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
374
	struct throtl_grp *tg;
T
Tejun Heo 已提交
375
	int rw;
376 377 378

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
379
		return NULL;
380

381 382 383 384 385 386 387 388
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
389 390 391 392
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
393 394 395 396 397
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
398

399
	return &tg->pd;
400 401
}

402
static void throtl_pd_init(struct blkg_policy_data *pd)
403
{
404 405
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
406
	struct throtl_data *td = blkg->q->td;
407
	struct throtl_service_queue *sq = &tg->service_queue;
408

409
	/*
410
	 * If on the default hierarchy, we switch to properly hierarchical
411 412 413 414 415
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
416
	 * If not on the default hierarchy, the broken flat hierarchy
417 418 419 420 421
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
422
	sq->parent_sq = &td->service_queue;
423
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
424
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
425
	tg->td = td;
426 427
}

428 429 430 431 432 433 434 435
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
436
	struct throtl_data *td = tg->td;
437 438 439 440
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
441 442 443
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
444 445
}

446
static void throtl_pd_online(struct blkg_policy_data *pd)
447 448 449 450 451
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
452
	tg_update_has_rules(pd_to_tg(pd));
453 454
}

S
Shaohua Li 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

474
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
475 476 477 478 479 480 481 482 483 484 485
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

486 487
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
488 489
}

490 491
static void throtl_pd_free(struct blkg_policy_data *pd)
{
492 493
	struct throtl_grp *tg = pd_to_tg(pd);

494
	del_timer_sync(&tg->service_queue.pending_timer);
495
	kfree(tg);
496 497
}

498 499
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
500 501
{
	/* Service tree is empty */
502
	if (!parent_sq->nr_pending)
503 504
		return NULL;

505 506
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
507

508 509
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
510 511 512 513 514 515 516 517 518 519

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

520 521
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
522
{
523 524 525 526
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
527 528
}

529
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
530 531 532
{
	struct throtl_grp *tg;

533
	tg = throtl_rb_first(parent_sq);
534 535 536
	if (!tg)
		return;

537
	parent_sq->first_pending_disptime = tg->disptime;
538 539
}

540
static void tg_service_queue_add(struct throtl_grp *tg)
541
{
542
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
543
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
562
		parent_sq->first_pending = &tg->rb_node;
563 564

	rb_link_node(&tg->rb_node, parent, node);
565
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
566 567
}

568
static void __throtl_enqueue_tg(struct throtl_grp *tg)
569
{
570
	tg_service_queue_add(tg);
571
	tg->flags |= THROTL_TG_PENDING;
572
	tg->service_queue.parent_sq->nr_pending++;
573 574
}

575
static void throtl_enqueue_tg(struct throtl_grp *tg)
576
{
577
	if (!(tg->flags & THROTL_TG_PENDING))
578
		__throtl_enqueue_tg(tg);
579 580
}

581
static void __throtl_dequeue_tg(struct throtl_grp *tg)
582
{
583
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
584
	tg->flags &= ~THROTL_TG_PENDING;
585 586
}

587
static void throtl_dequeue_tg(struct throtl_grp *tg)
588
{
589
	if (tg->flags & THROTL_TG_PENDING)
590
		__throtl_dequeue_tg(tg);
591 592
}

593
/* Call with queue lock held */
594 595
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
596
{
597
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
598 599 600 601 602 603 604 605 606 607

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
608 609 610
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
633
{
634
	/* any pending children left? */
635
	if (!sq->nr_pending)
636
		return true;
637

638
	update_min_dispatch_time(sq);
639

640
	/* is the next dispatch time in the future? */
641
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
642
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
643
		return true;
644 645
	}

646 647
	/* tell the caller to continue dispatching */
	return false;
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

665
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
666 667 668 669 670 671
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

672
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
673 674
{
	tg->bytes_disp[rw] = 0;
675
	tg->io_disp[rw] = 0;
676
	tg->slice_start[rw] = jiffies;
677
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
678 679 680 681
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
682 683
}

684 685
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
686
{
687
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
688 689
}

690 691
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
692
{
693
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
694 695 696 697
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
698 699 700
}

/* Determine if previously allocated or extended slice is complete or not */
701
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
702 703
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
704
		return false;
705 706 707 708 709

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
710
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
711
{
712 713
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
714 715 716 717 718 719 720 721

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
722
	if (throtl_slice_used(tg, rw))
723 724
		return;

725 726 727 728 729 730 731 732
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

733
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
734

735 736
	time_elapsed = jiffies - tg->slice_start[rw];

737
	nr_slices = time_elapsed / tg->td->throtl_slice;
738 739 740

	if (!nr_slices)
		return;
741
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
742 743
	do_div(tmp, HZ);
	bytes_trim = tmp;
744

745 746
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
747

748
	if (!bytes_trim && !io_trim)
749 750 751 752 753 754 755
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

756 757 758 759 760
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

761
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
762

763 764 765 766
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
767 768
}

769 770
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
771 772
{
	bool rw = bio_data_dir(bio);
773
	unsigned int io_allowed;
774
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
775
	u64 tmp;
776

777
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
778

779 780
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
781
		jiffy_elapsed_rnd = tg->td->throtl_slice;
782

783
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
784

785 786 787 788 789 790 791
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

792
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
793 794 795 796 797 798
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
799 800

	if (tg->io_disp[rw] + 1 <= io_allowed) {
801 802
		if (wait)
			*wait = 0;
803
		return true;
804 805
	}

806
	/* Calc approx time to dispatch */
807
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
808 809 810 811 812 813 814 815 816 817 818

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

819 820
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
821 822
{
	bool rw = bio_data_dir(bio);
823
	u64 bytes_allowed, extra_bytes, tmp;
824
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
825 826 827 828 829

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
830
		jiffy_elapsed_rnd = tg->td->throtl_slice;
831

832
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
833

834
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
835
	do_div(tmp, HZ);
836
	bytes_allowed = tmp;
837

838
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
839 840
		if (wait)
			*wait = 0;
841
		return true;
842 843 844
	}

	/* Calc approx time to dispatch */
845
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
846
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
847 848 849 850 851 852 853 854 855 856 857

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
858 859 860 861 862 863 864
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
865 866
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
867 868 869 870 871 872 873 874 875 876
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
877
	BUG_ON(tg->service_queue.nr_queued[rw] &&
878
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
879

880
	/* If tg->bps = -1, then BW is unlimited */
881 882
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
883 884
		if (wait)
			*wait = 0;
885
		return true;
886 887 888 889 890
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
891 892 893
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
894
	 */
895
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
896
		throtl_start_new_slice(tg, rw);
897
	else {
898 899 900 901
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
902 903
	}

904 905
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
906 907 908 909 910 911 912 913 914 915 916
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
917
		throtl_extend_slice(tg, rw, jiffies + max_wait);
918 919 920 921 922 923 924 925 926

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
927
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
928
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
929 930
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
931

932
	/*
933
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
934 935 936 937
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
938 939
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
940 941
}

942 943 944 945 946 947 948 949 950 951 952
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
953
{
954
	struct throtl_service_queue *sq = &tg->service_queue;
955 956
	bool rw = bio_data_dir(bio);

957 958 959
	if (!qn)
		qn = &tg->qnode_on_self[rw];

960 961 962 963 964 965 966 967 968
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

969 970
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

971
	sq->nr_queued[rw]++;
972
	throtl_enqueue_tg(tg);
973 974
}

975
static void tg_update_disptime(struct throtl_grp *tg)
976
{
977
	struct throtl_service_queue *sq = &tg->service_queue;
978 979 980
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

981 982
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
983
		tg_may_dispatch(tg, bio, &read_wait);
984

985 986
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
987
		tg_may_dispatch(tg, bio, &write_wait);
988 989 990 991 992

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
993
	throtl_dequeue_tg(tg);
994
	tg->disptime = disptime;
995
	throtl_enqueue_tg(tg);
996 997 998

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
999 1000
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1011
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1012
{
1013
	struct throtl_service_queue *sq = &tg->service_queue;
1014 1015
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1016
	struct throtl_grp *tg_to_put = NULL;
1017 1018
	struct bio *bio;

1019 1020 1021 1022 1023 1024 1025
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1026
	sq->nr_queued[rw]--;
1027 1028

	throtl_charge_bio(tg, bio);
1029 1030 1031 1032 1033 1034 1035 1036 1037

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1038
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1039
		start_parent_slice_with_credit(tg, parent_tg, rw);
1040
	} else {
1041 1042
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1043 1044 1045
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1046

1047
	throtl_trim_slice(tg, rw);
1048

1049 1050
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1051 1052
}

1053
static int throtl_dispatch_tg(struct throtl_grp *tg)
1054
{
1055
	struct throtl_service_queue *sq = &tg->service_queue;
1056 1057
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1058
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1059 1060 1061 1062
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1063
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1064
	       tg_may_dispatch(tg, bio, NULL)) {
1065

1066
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1067 1068 1069 1070 1071 1072
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1073
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1074
	       tg_may_dispatch(tg, bio, NULL)) {
1075

1076
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1077 1078 1079 1080 1081 1082 1083 1084 1085
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1086
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1087 1088 1089 1090
{
	unsigned int nr_disp = 0;

	while (1) {
1091 1092
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1093 1094 1095 1096 1097 1098 1099

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1100
		throtl_dequeue_tg(tg);
1101

1102
		nr_disp += throtl_dispatch_tg(tg);
1103

1104
		if (sq->nr_queued[0] || sq->nr_queued[1])
1105
			tg_update_disptime(tg);
1106 1107 1108 1109 1110 1111 1112 1113

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1114 1115
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1116 1117 1118 1119 1120 1121 1122
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1123 1124 1125 1126 1127 1128 1129
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1130
 */
1131 1132 1133
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1134
	struct throtl_grp *tg = sq_to_tg(sq);
1135
	struct throtl_data *td = sq_to_td(sq);
1136
	struct request_queue *q = td->queue;
1137 1138
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1139
	int ret;
1140 1141

	spin_lock_irq(q->queue_lock);
1142 1143 1144
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1145 1146 1147
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1148

1149 1150
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1151 1152
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1153 1154 1155 1156 1157 1158

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1159

1160 1161
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1162

1163 1164 1165 1166
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1167
	}
1168

1169 1170
	if (!dispatched)
		goto out_unlock;
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1188
	spin_unlock_irq(q->queue_lock);
1189
}
1190

1191 1192 1193 1194 1195 1196 1197 1198
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1199
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1213 1214 1215
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1216 1217 1218
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1219
		blk_start_plug(&plug);
1220 1221
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1222
		blk_finish_plug(&plug);
1223 1224 1225
	}
}

1226 1227
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1228
{
1229 1230
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1231

1232
	if (v == U64_MAX)
1233
		return 0;
1234
	return __blkg_prfill_u64(sf, pd, v);
1235 1236
}

1237 1238
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1239
{
1240 1241
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1242

1243
	if (v == UINT_MAX)
1244
		return 0;
1245
	return __blkg_prfill_u64(sf, pd, v);
1246 1247
}

1248
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1249
{
1250 1251
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1252
	return 0;
1253 1254
}

1255
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1256
{
1257 1258
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1259
	return 0;
1260 1261
}

1262
static void tg_conf_updated(struct throtl_grp *tg)
1263
{
1264
	struct throtl_service_queue *sq = &tg->service_queue;
1265
	struct cgroup_subsys_state *pos_css;
1266
	struct blkcg_gq *blkg;
1267

1268 1269
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1270 1271
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1272

1273 1274 1275 1276 1277 1278 1279
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1280
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1281 1282
		tg_update_has_rules(blkg_to_tg(blkg));

1283 1284 1285 1286 1287 1288 1289 1290
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1291 1292
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1293

1294
	if (tg->flags & THROTL_TG_PENDING) {
1295
		tg_update_disptime(tg);
1296
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1297
	}
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1317
		v = U64_MAX;
1318 1319 1320 1321 1322 1323 1324

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1325

1326
	tg_conf_updated(tg);
1327 1328
	ret = 0;
out_finish:
1329
	blkg_conf_finish(&ctx);
1330
	return ret ?: nbytes;
1331 1332
}

1333 1334
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1335
{
1336
	return tg_set_conf(of, buf, nbytes, off, true);
1337 1338
}

1339 1340
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1341
{
1342
	return tg_set_conf(of, buf, nbytes, off, false);
1343 1344
}

1345
static struct cftype throtl_legacy_files[] = {
1346 1347
	{
		.name = "throttle.read_bps_device",
1348
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1349
		.seq_show = tg_print_conf_u64,
1350
		.write = tg_set_conf_u64,
1351 1352 1353
	},
	{
		.name = "throttle.write_bps_device",
1354
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1355
		.seq_show = tg_print_conf_u64,
1356
		.write = tg_set_conf_u64,
1357 1358 1359
	},
	{
		.name = "throttle.read_iops_device",
1360
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1361
		.seq_show = tg_print_conf_uint,
1362
		.write = tg_set_conf_uint,
1363 1364 1365
	},
	{
		.name = "throttle.write_iops_device",
1366
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1367
		.seq_show = tg_print_conf_uint,
1368
		.write = tg_set_conf_uint,
1369 1370 1371
	},
	{
		.name = "throttle.io_service_bytes",
1372 1373
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1374 1375 1376
	},
	{
		.name = "throttle.io_serviced",
1377 1378
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1379 1380 1381 1382
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1383
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1384 1385 1386 1387 1388
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1389 1390
	u64 bps_dft;
	unsigned int iops_dft;
1391 1392 1393

	if (!dname)
		return 0;
1394

S
Shaohua Li 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1407 1408
		return 0;

S
Shaohua Li 已提交
1409
	if (tg->bps_conf[READ][off] != bps_dft)
1410
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1411 1412
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1413
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1414 1415
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1416
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1417 1418
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1419
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1420
			tg->iops_conf[WRITE][off]);
1421 1422 1423 1424 1425 1426

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1427
static int tg_print_limit(struct seq_file *sf, void *v)
1428
{
S
Shaohua Li 已提交
1429
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1430 1431 1432 1433
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1434
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1435 1436 1437 1438 1439 1440 1441
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1442
	int index = of_cft(of)->private;
1443 1444 1445 1446 1447 1448 1449

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1450 1451 1452 1453
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1454 1455 1456 1457

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1458
		u64 val = U64_MAX;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1490 1491 1492 1493
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1494

S
Shaohua Li 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1515 1516 1517 1518 1519 1520 1521 1522
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1532 1533 1534
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1535 1536 1537
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1538 1539 1540 1541
	},
	{ }	/* terminate */
};

1542
static void throtl_shutdown_wq(struct request_queue *q)
1543 1544 1545
{
	struct throtl_data *td = q->td;

1546
	cancel_work_sync(&td->dispatch_work);
1547 1548
}

T
Tejun Heo 已提交
1549
static struct blkcg_policy blkcg_policy_throtl = {
1550
	.dfl_cftypes		= throtl_files,
1551
	.legacy_cftypes		= throtl_legacy_files,
1552

1553
	.pd_alloc_fn		= throtl_pd_alloc,
1554
	.pd_init_fn		= throtl_pd_init,
1555
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1556
	.pd_offline_fn		= throtl_pd_offline,
1557
	.pd_free_fn		= throtl_pd_free,
1558 1559
};

S
Shaohua Li 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1642
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1643 1644
		return false;

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1668
	td->low_upgrade_time = jiffies;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1699 1700 1701
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
					td->throtl_slice))
S
Shaohua Li 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1730
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1731 1732 1733 1734 1735
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1736 1737
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1779 1780
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1781
{
1782
	struct throtl_qnode *qn = NULL;
1783
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1784
	struct throtl_service_queue *sq;
1785
	bool rw = bio_data_dir(bio);
1786
	bool throttled = false;
1787

1788 1789
	WARN_ON_ONCE(!rcu_read_lock_held());

1790
	/* see throtl_charge_bio() */
1791
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1792
		goto out;
1793 1794

	spin_lock_irq(q->queue_lock);
1795 1796

	if (unlikely(blk_queue_bypass(q)))
1797
		goto out_unlock;
1798

1799 1800
	sq = &tg->service_queue;

1801
again:
1802
	while (true) {
S
Shaohua Li 已提交
1803 1804 1805
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
1806 1807 1808
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1809

1810
		/* if above limits, break to queue */
1811
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
1812
			tg->last_low_overflow_time[rw] = jiffies;
1813 1814 1815 1816
			if (throtl_can_upgrade(tg->td, tg)) {
				throtl_upgrade_state(tg->td);
				goto again;
			}
1817
			break;
1818
		}
1819 1820

		/* within limits, let's charge and dispatch directly */
1821
		throtl_charge_bio(tg, bio);
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1834
		throtl_trim_slice(tg, rw);
1835 1836 1837 1838 1839 1840

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1841
		qn = &tg->qnode_on_parent[rw];
1842 1843 1844 1845
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1846 1847
	}

1848
	/* out-of-limit, queue to @tg */
1849 1850
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1851 1852 1853
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1854
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1855

S
Shaohua Li 已提交
1856 1857
	tg->last_low_overflow_time[rw] = jiffies;

1858
	bio_associate_current(bio);
1859
	tg->td->nr_queued[rw]++;
1860
	throtl_add_bio_tg(bio, qn, tg);
1861
	throttled = true;
1862

1863 1864 1865 1866 1867 1868
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1869
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1870
		tg_update_disptime(tg);
1871
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1872 1873
	}

1874
out_unlock:
1875
	spin_unlock_irq(q->queue_lock);
1876
out:
1877 1878 1879 1880 1881 1882
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1883
		bio_clear_flag(bio, BIO_THROTTLED);
1884
	return throttled;
1885 1886
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1902
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1903
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1904
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1905 1906 1907 1908
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1919
	struct blkcg_gq *blkg;
1920
	struct cgroup_subsys_state *pos_css;
1921
	struct bio *bio;
1922
	int rw;
1923

1924
	queue_lockdep_assert_held(q);
1925
	rcu_read_lock();
1926

1927 1928 1929 1930 1931 1932
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1933
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1934
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1935

1936 1937 1938 1939
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1940 1941
	spin_unlock_irq(q->queue_lock);

1942
	/* all bios now should be in td->service_queue, issue them */
1943
	for (rw = READ; rw <= WRITE; rw++)
1944 1945
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1946
			generic_make_request(bio);
1947 1948 1949 1950

	spin_lock_irq(q->queue_lock);
}

1951 1952 1953
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1954
	int ret;
1955 1956 1957 1958 1959

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1960
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1961
	throtl_service_queue_init(&td->service_queue);
1962

1963
	q->td = td;
1964
	td->queue = q;
V
Vivek Goyal 已提交
1965

1966
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1967
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1968 1969
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
1970
	/* activate policy */
T
Tejun Heo 已提交
1971
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1972
	if (ret)
1973
		kfree(td);
1974
	return ret;
1975 1976 1977 1978
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1979
	BUG_ON(!q->td);
1980
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1981
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1982
	kfree(q->td);
1983 1984
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;

	td = q->td;
	BUG_ON(!td);

	if (blk_queue_nonrot(q))
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
	else
		td->throtl_slice = DFL_THROTL_SLICE_HD;
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2028 2029
static int __init throtl_init(void)
{
2030 2031 2032 2033
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2034
	return blkcg_policy_register(&blkcg_policy_throtl);
2035 2036 2037
}

module_init(throtl_init);