blk-throttle.c 71.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181 182 183 184

	/* total time spent on lower layer: scheduler, device and others */
	struct blkg_rwstat service_time;
	/* total time spent on block throttle */
	struct blkg_rwstat wait_time;
185 186
};

187 188 189 190 191 192 193 194 195 196 197 198 199
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

200 201 202
struct throtl_data
{
	/* service tree for active throtl groups */
203
	struct throtl_service_queue service_queue;
204 205 206 207 208 209

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

210 211
	unsigned int throtl_slice;

212
	/* Work for dispatching throttled bios */
213
	struct work_struct dispatch_work;
214 215
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
216 217 218

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
219 220

	unsigned int scale;
221

222 223 224
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
225
	unsigned long last_calculate_time;
226
	unsigned long filtered_latency;
227 228

	bool track_bio_latency;
229 230
};

231
static void throtl_pending_timer_fn(struct timer_list *t);
232

233 234 235 236 237
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
238
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
239
{
240
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
241 242
}

T
Tejun Heo 已提交
243
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
244
{
245
	return pd_to_blkg(&tg->pd);
246 247
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
267
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
268 269 270 271 272 273 274 275 276 277 278 279
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

298 299
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
300
	struct blkcg_gq *blkg = tg_to_blkg(tg);
301
	struct throtl_data *td;
302 303 304 305
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
306 307 308

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
309 310 311 312 313 314 315 316
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
317 318 319 320 321 322 323 324

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
325
	return ret;
326 327 328 329
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
330
	struct blkcg_gq *blkg = tg_to_blkg(tg);
331
	struct throtl_data *td;
332 333 334 335
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
336

337 338
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
339 340 341 342 343 344 345 346
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
347 348 349 350 351 352 353 354 355 356

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
357
	return ret;
358 359
}

360 361 362
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
377 378
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
379
	if ((__tg)) {							\
380 381
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
382 383 384
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
385
} while (0)
386

387 388 389 390 391 392 393 394
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

478
/* init a service_queue, assumes the caller zeroed it */
479
static void throtl_service_queue_init(struct throtl_service_queue *sq)
480
{
481 482
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
483
	sq->pending_tree = RB_ROOT;
484
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 486
}

487 488 489
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
490
{
491
	struct throtl_grp *tg;
T
Tejun Heo 已提交
492
	int rw;
493

494
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495
	if (!tg)
496
		return NULL;
497

498 499 500 501
	if (blkg_rwstat_init(&tg->service_time, gfp) ||
	    blkg_rwstat_init(&tg->wait_time, gfp))
		goto err;

502 503 504 505 506 507 508 509
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
510 511 512 513
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
514 515 516 517 518
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
519

520
	tg->latency_target = DFL_LATENCY_TARGET;
521
	tg->latency_target_conf = DFL_LATENCY_TARGET;
522 523
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
524

525
	return &tg->pd;
526 527 528 529 530 531

err:
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
	kfree(tg);
	return NULL;
532 533
}

534
static void throtl_pd_init(struct blkg_policy_data *pd)
535
{
536 537
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
538
	struct throtl_data *td = blkg->q->td;
539
	struct throtl_service_queue *sq = &tg->service_queue;
540

541
	/*
542
	 * If on the default hierarchy, we switch to properly hierarchical
543 544 545 546 547
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
548
	 * If not on the default hierarchy, the broken flat hierarchy
549 550 551 552 553
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
554
	sq->parent_sq = &td->service_queue;
555 556 557

	/* Enable hierarchical throttling even on traditional hierarchy */
	if (blkg->parent)
558
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559
	tg->td = td;
560 561
}

562 563 564 565 566 567 568 569
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570
	struct throtl_data *td = tg->td;
571 572 573 574
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575 576 577
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
578 579
}

580
static void throtl_pd_online(struct blkg_policy_data *pd)
581
{
582
	struct throtl_grp *tg = pd_to_tg(pd);
583 584 585 586
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
587
	tg_update_has_rules(tg);
588 589
}

S
Shaohua Li 已提交
590 591 592 593 594 595 596 597 598 599 600
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
602
			low_valid = true;
603 604
			break;
		}
S
Shaohua Li 已提交
605 606 607 608 609 610
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

611
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
612 613 614
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);
615 616
	struct blkcg_gq *blkg = pd_to_blkg(pd);
	struct blkcg_gq *parent = blkg->parent;
S
Shaohua Li 已提交
617 618 619 620 621 622 623 624

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

625 626
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
627 628 629 630 631 632
	if (parent) {
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->service_time,
				    &tg->service_time);
		blkg_rwstat_add_aux(&blkg_to_tg(parent)->wait_time,
				    &tg->wait_time);
	}
S
Shaohua Li 已提交
633 634
}

635 636
static void throtl_pd_free(struct blkg_policy_data *pd)
{
637 638
	struct throtl_grp *tg = pd_to_tg(pd);

639
	del_timer_sync(&tg->service_queue.pending_timer);
640 641
	blkg_rwstat_exit(&tg->service_time);
	blkg_rwstat_exit(&tg->wait_time);
642
	kfree(tg);
643 644
}

645 646 647 648 649 650 651 652
static void throtl_pd_reset(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	blkg_rwstat_reset(&tg->service_time);
	blkg_rwstat_reset(&tg->wait_time);
}

653 654
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
655 656
{
	/* Service tree is empty */
657
	if (!parent_sq->nr_pending)
658 659
		return NULL;

660 661
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
662

663 664
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
665 666 667 668 669 670 671 672 673 674

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

675 676
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
677
{
678 679 680 681
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
682 683
}

684
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
685 686 687
{
	struct throtl_grp *tg;

688
	tg = throtl_rb_first(parent_sq);
689 690 691
	if (!tg)
		return;

692
	parent_sq->first_pending_disptime = tg->disptime;
693 694
}

695
static void tg_service_queue_add(struct throtl_grp *tg)
696
{
697
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
698
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
717
		parent_sq->first_pending = &tg->rb_node;
718 719

	rb_link_node(&tg->rb_node, parent, node);
720
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
721 722
}

723
static void __throtl_enqueue_tg(struct throtl_grp *tg)
724
{
725
	tg_service_queue_add(tg);
726
	tg->flags |= THROTL_TG_PENDING;
727
	tg->service_queue.parent_sq->nr_pending++;
728 729
}

730
static void throtl_enqueue_tg(struct throtl_grp *tg)
731
{
732
	if (!(tg->flags & THROTL_TG_PENDING))
733
		__throtl_enqueue_tg(tg);
734 735
}

736
static void __throtl_dequeue_tg(struct throtl_grp *tg)
737
{
738
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
739
	tg->flags &= ~THROTL_TG_PENDING;
740 741
}

742
static void throtl_dequeue_tg(struct throtl_grp *tg)
743
{
744
	if (tg->flags & THROTL_TG_PENDING)
745
		__throtl_dequeue_tg(tg);
746 747
}

748
/* Call with queue lock held */
749 750
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
751
{
752
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
753 754 755 756 757 758 759 760 761 762

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
763 764 765
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
788
{
789
	/* any pending children left? */
790
	if (!sq->nr_pending)
791
		return true;
792

793
	update_min_dispatch_time(sq);
794

795
	/* is the next dispatch time in the future? */
796
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
797
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
798
		return true;
799 800
	}

801 802
	/* tell the caller to continue dispatching */
	return false;
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

820
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
821 822 823 824 825 826
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

827
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
828 829
{
	tg->bytes_disp[rw] = 0;
830
	tg->io_disp[rw] = 0;
831
	tg->slice_start[rw] = jiffies;
832
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
833 834 835 836
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
837 838
}

839 840
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
841
{
842
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
843 844
}

845 846
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
847
{
848
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
849 850 851 852
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
853 854 855
}

/* Determine if previously allocated or extended slice is complete or not */
856
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
857 858
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
859
		return false;
860

861
	return true;
862 863 864
}

/* Trim the used slices and adjust slice start accordingly */
865
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
866
{
867 868
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
869 870 871 872 873 874 875 876

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
877
	if (throtl_slice_used(tg, rw))
878 879
		return;

880 881 882 883 884 885 886 887
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

888
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
889

890 891
	time_elapsed = jiffies - tg->slice_start[rw];

892
	nr_slices = time_elapsed / tg->td->throtl_slice;
893 894 895

	if (!nr_slices)
		return;
896
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
897 898
	do_div(tmp, HZ);
	bytes_trim = tmp;
899

900 901
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
902

903
	if (!bytes_trim && !io_trim)
904 905 906 907 908 909 910
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

911 912 913 914 915
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

916
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
917

918 919 920 921
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
922 923
}

924 925
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
926 927
{
	bool rw = bio_data_dir(bio);
928
	unsigned int io_allowed;
929
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
930
	u64 tmp;
931

932
	jiffy_elapsed = jiffies - tg->slice_start[rw];
933

934 935
	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
936

937 938 939 940 941 942 943
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

944
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
945 946 947 948 949 950
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
951 952

	if (tg->io_disp[rw] + 1 <= io_allowed) {
953 954
		if (wait)
			*wait = 0;
955
		return true;
956 957
	}

958
	/* Calc approx time to dispatch */
959
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
960 961 962

	if (wait)
		*wait = jiffy_wait;
963
	return false;
964 965
}

966 967
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
968 969
{
	bool rw = bio_data_dir(bio);
970
	u64 bytes_allowed, extra_bytes, tmp;
971
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
972
	unsigned int bio_size = throtl_bio_data_size(bio);
973 974 975 976 977

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
978
		jiffy_elapsed_rnd = tg->td->throtl_slice;
979

980
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
981

982
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
983
	do_div(tmp, HZ);
984
	bytes_allowed = tmp;
985

986
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
987 988
		if (wait)
			*wait = 0;
989
		return true;
990 991 992
	}

	/* Calc approx time to dispatch */
993
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
994
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
995 996 997 998 999 1000 1001 1002 1003 1004 1005

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
1006
	return false;
1007 1008 1009 1010 1011 1012
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
1013 1014
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
1025
	BUG_ON(tg->service_queue.nr_queued[rw] &&
1026
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1027

1028
	/* If tg->bps = -1, then BW is unlimited */
1029 1030
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1031 1032
		if (wait)
			*wait = 0;
1033
		return true;
1034 1035 1036 1037 1038
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1039 1040 1041
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1042
	 */
1043
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1044
		throtl_start_new_slice(tg, rw);
1045
	else {
1046 1047 1048 1049
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1050 1051
	}

1052 1053
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1054 1055
		if (wait)
			*wait = 0;
1056
		return true;
1057 1058 1059 1060 1061 1062 1063 1064
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1065
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1066

1067
	return false;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static void throtl_stats_update_completion(struct throtl_grp *tg,
					   uint64_t start_time,
					   uint64_t io_start_time,
					   int op)
{
	unsigned long flags;
	uint64_t now = sched_clock();

	local_irq_save(flags);
	if (time_after64(now, io_start_time))
		blkg_rwstat_add(&tg->service_time, op, now - io_start_time);
	if (time_after64(io_start_time, start_time))
		blkg_rwstat_add(&tg->wait_time, op, io_start_time - start_time);
	local_irq_restore(flags);
}

static void throtl_bio_end_io(struct bio *bio)
{
	struct throtl_grp *tg;

	rcu_read_lock();
	tg = (struct throtl_grp *)bio->bi_tg_private;
	if (!tg)
		goto out;

	throtl_stats_update_completion(tg, bio_start_time_ns(bio),
				       bio_io_start_time_ns(bio),
				       bio_op(bio));
	blkg_put(tg_to_blkg(tg));
out:
	rcu_read_unlock();
}

static inline void throtl_bio_stats_start(struct bio *bio, struct throtl_grp *tg)
{
	int op = bio_op(bio);

	if (op == REQ_OP_READ || op == REQ_OP_WRITE) {
		bio->bi_tg_end_io = throtl_bio_end_io;
		bio->bi_tg_private = tg;
		bio_set_start_time_ns(bio);
		blkg_get(tg_to_blkg(tg));
	}
}

1115 1116 1117
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1118
	unsigned int bio_size = throtl_bio_data_size(bio);
1119 1120

	/* Charge the bio to the group */
1121
	tg->bytes_disp[rw] += bio_size;
1122
	tg->io_disp[rw]++;
1123
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1124
	tg->last_io_disp[rw]++;
1125

1126
	/*
1127
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1128 1129 1130 1131
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1132 1133
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1147
{
1148
	struct throtl_service_queue *sq = &tg->service_queue;
1149 1150
	bool rw = bio_data_dir(bio);

1151 1152 1153
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1163 1164
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1165
	sq->nr_queued[rw]++;
1166
	throtl_enqueue_tg(tg);
1167 1168
}

1169
static void tg_update_disptime(struct throtl_grp *tg)
1170
{
1171
	struct throtl_service_queue *sq = &tg->service_queue;
1172 1173 1174
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1175 1176
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1177
		tg_may_dispatch(tg, bio, &read_wait);
1178

1179 1180
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1181
		tg_may_dispatch(tg, bio, &write_wait);
1182 1183 1184 1185 1186

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1187
	throtl_dequeue_tg(tg);
1188
	tg->disptime = disptime;
1189
	throtl_enqueue_tg(tg);
1190 1191 1192

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1205
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1206
{
1207
	struct throtl_service_queue *sq = &tg->service_queue;
1208 1209
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1210
	struct throtl_grp *tg_to_put = NULL;
1211 1212
	struct bio *bio;

1213 1214 1215 1216 1217 1218 1219
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1220
	sq->nr_queued[rw]--;
1221 1222

	throtl_charge_bio(tg, bio);
1223 1224 1225 1226 1227 1228 1229 1230 1231

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1232
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1233
		start_parent_slice_with_credit(tg, parent_tg, rw);
1234
	} else {
1235 1236
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1237 1238 1239
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1240

1241
	throtl_trim_slice(tg, rw);
1242

1243 1244
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1245 1246
}

1247
static int throtl_dispatch_tg(struct throtl_grp *tg)
1248
{
1249
	struct throtl_service_queue *sq = &tg->service_queue;
1250 1251
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1252
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1253 1254 1255 1256
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1257
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1258
	       tg_may_dispatch(tg, bio, NULL)) {
1259

1260
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1261 1262 1263 1264 1265 1266
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1267
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1268
	       tg_may_dispatch(tg, bio, NULL)) {
1269

1270
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1271 1272 1273 1274 1275 1276 1277 1278 1279
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1280
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1281 1282 1283 1284
{
	unsigned int nr_disp = 0;

	while (1) {
1285
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1286
		struct throtl_service_queue *sq;
1287 1288 1289 1290 1291 1292 1293

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1294
		throtl_dequeue_tg(tg);
1295

1296
		nr_disp += throtl_dispatch_tg(tg);
1297

1298
		sq = &tg->service_queue;
1299
		if (sq->nr_queued[0] || sq->nr_queued[1])
1300
			tg_update_disptime(tg);
1301 1302 1303 1304 1305 1306 1307 1308

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1309 1310
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1311 1312 1313 1314 1315 1316 1317
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1318 1319 1320 1321 1322 1323 1324
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1325
 */
1326
static void throtl_pending_timer_fn(struct timer_list *t)
1327
{
1328
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1329
	struct throtl_grp *tg = sq_to_tg(sq);
1330
	struct throtl_data *td = sq_to_td(sq);
1331
	struct request_queue *q = td->queue;
1332 1333
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1334
	int ret;
1335 1336

	spin_lock_irq(q->queue_lock);
1337 1338 1339
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1340 1341 1342
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1343

1344 1345
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1346 1347
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1348 1349 1350 1351 1352 1353

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1354

1355 1356
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1357

1358 1359 1360 1361
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1362
	}
1363

1364 1365
	if (!dispatched)
		goto out_unlock;
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1383
	spin_unlock_irq(q->queue_lock);
1384
}
1385

1386 1387 1388 1389 1390 1391 1392 1393
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1394
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1408 1409 1410
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1411 1412 1413
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1414
		blk_start_plug(&plug);
1415 1416
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1417
		blk_finish_plug(&plug);
1418 1419 1420
	}
}

1421 1422
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1423
{
1424 1425
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1426

1427
	if (v == U64_MAX)
1428
		return 0;
1429
	return __blkg_prfill_u64(sf, pd, v);
1430 1431
}

1432 1433
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1434
{
1435 1436
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1437

1438
	if (v == UINT_MAX)
1439
		return 0;
1440
	return __blkg_prfill_u64(sf, pd, v);
1441 1442
}

1443
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1444
{
1445 1446
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1447
	return 0;
1448 1449
}

1450
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1451
{
1452 1453
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1454
	return 0;
1455 1456
}

1457
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1458
{
1459
	struct throtl_service_queue *sq = &tg->service_queue;
1460
	struct cgroup_subsys_state *pos_css;
1461
	struct blkcg_gq *blkg;
1462

1463 1464
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1465 1466
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1467

1468 1469 1470 1471 1472 1473 1474
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1475 1476
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1495

1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1504 1505
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1506

1507
	if (tg->flags & THROTL_TG_PENDING) {
1508
		tg_update_disptime(tg);
1509
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1510
	}
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1530
		v = U64_MAX;
1531 1532 1533 1534 1535 1536 1537

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1538

1539
	tg_conf_updated(tg, false);
1540 1541
	ret = 0;
out_finish:
1542
	blkg_conf_finish(&ctx);
1543
	return ret ?: nbytes;
1544 1545
}

1546 1547
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1548
{
1549
	return tg_set_conf(of, buf, nbytes, off, true);
1550 1551
}

1552 1553
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1554
{
1555
	return tg_set_conf(of, buf, nbytes, off, false);
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static u64 tg_prfill_rwstat_field(struct seq_file *sf,
				  struct blkg_policy_data *pd,
				  int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkg_rwstat rwstat = blkg_rwstat_read((void *)tg + off);

	return __blkg_prfill_rwstat(sf, pd, &rwstat);
}

static int tg_print_service_time(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_field, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

static int tg_print_wait_time(struct seq_file *sf, void *v)
{
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
			  tg_prfill_rwstat_field, &blkcg_policy_throtl,
			  seq_cft(sf)->private, true);
	return 0;
}

1584
static struct cftype throtl_legacy_files[] = {
1585 1586
	{
		.name = "throttle.read_bps_device",
1587
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1588
		.seq_show = tg_print_conf_u64,
1589
		.write = tg_set_conf_u64,
1590 1591 1592
	},
	{
		.name = "throttle.write_bps_device",
1593
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1594
		.seq_show = tg_print_conf_u64,
1595
		.write = tg_set_conf_u64,
1596 1597 1598
	},
	{
		.name = "throttle.read_iops_device",
1599
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1600
		.seq_show = tg_print_conf_uint,
1601
		.write = tg_set_conf_uint,
1602 1603 1604
	},
	{
		.name = "throttle.write_iops_device",
1605
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1606
		.seq_show = tg_print_conf_uint,
1607
		.write = tg_set_conf_uint,
1608 1609 1610
	},
	{
		.name = "throttle.io_service_bytes",
1611 1612
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1613
	},
1614 1615 1616 1617 1618
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1619 1620
	{
		.name = "throttle.io_serviced",
1621 1622
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1623
	},
1624 1625 1626 1627 1628
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	{
		.name = "throttle.io_service_time",
		.private = offsetof(struct throtl_grp, service_time),
		.seq_show = tg_print_service_time,
	},
	{
		.name = "throttle.io_wait_time",
		.private = offsetof(struct throtl_grp, wait_time),
		.seq_show = tg_print_wait_time,
	},
1639 1640 1641
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1642
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1643 1644 1645 1646 1647
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1648 1649
	u64 bps_dft;
	unsigned int iops_dft;
1650
	char idle_time[26] = "";
1651
	char latency_time[26] = "";
1652 1653 1654

	if (!dname)
		return 0;
1655

S
Shaohua Li 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1667
	    tg->iops_conf[WRITE][off] == iops_dft &&
1668
	    (off != LIMIT_LOW ||
1669
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1670
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1671 1672
		return 0;

1673
	if (tg->bps_conf[READ][off] != U64_MAX)
1674
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1675
			tg->bps_conf[READ][off]);
1676
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1677
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1678
			tg->bps_conf[WRITE][off]);
1679
	if (tg->iops_conf[READ][off] != UINT_MAX)
1680
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1681
			tg->iops_conf[READ][off]);
1682
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1683
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1684
			tg->iops_conf[WRITE][off]);
1685
	if (off == LIMIT_LOW) {
1686
		if (tg->idletime_threshold_conf == ULONG_MAX)
1687 1688 1689
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1690
				tg->idletime_threshold_conf);
1691

1692
		if (tg->latency_target_conf == ULONG_MAX)
1693 1694 1695
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1696
				" latency=%lu", tg->latency_target_conf);
1697
	}
1698

1699 1700 1701
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1702 1703 1704
	return 0;
}

S
Shaohua Li 已提交
1705
static int tg_print_limit(struct seq_file *sf, void *v)
1706
{
S
Shaohua Li 已提交
1707
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1708 1709 1710 1711
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1712
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1713 1714 1715 1716 1717 1718
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1719
	unsigned long idle_time;
1720
	unsigned long latency_time;
1721
	int ret;
S
Shaohua Li 已提交
1722
	int index = of_cft(of)->private;
1723 1724 1725 1726 1727 1728 1729

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1730 1731 1732 1733
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1734

1735 1736
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1737 1738 1739
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1740
		u64 val = U64_MAX;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1768 1769
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1770 1771
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1772 1773 1774 1775
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1776 1777 1778 1779
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1780

S
Shaohua Li 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1810 1811
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1812
	}
1813 1814 1815 1816 1817 1818 1819

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1820 1821
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1822 1823 1824 1825 1826 1827 1828
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1838 1839 1840
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1841 1842 1843
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1844 1845 1846 1847
	},
	{ }	/* terminate */
};

1848
static void throtl_shutdown_wq(struct request_queue *q)
1849 1850 1851
{
	struct throtl_data *td = q->td;

1852
	cancel_work_sync(&td->dispatch_work);
1853 1854
}

T
Tejun Heo 已提交
1855
static struct blkcg_policy blkcg_policy_throtl = {
1856
	.dfl_cftypes		= throtl_files,
1857
	.legacy_cftypes		= throtl_legacy_files,
1858

1859
	.pd_alloc_fn		= throtl_pd_alloc,
1860
	.pd_init_fn		= throtl_pd_init,
1861
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1862
	.pd_offline_fn		= throtl_pd_offline,
1863
	.pd_free_fn		= throtl_pd_free,
1864
	.pd_reset_stats_fn	= throtl_pd_reset,
1865 1866
};

S
Shaohua Li 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1906 1907 1908 1909 1910
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1911
	 *   configure a too big threshold) or 4 times of idletime threshold
1912
	 * - average think time is more than threshold
1913
	 * - IO latency is largely below threshold
1914
	 */
1915
	unsigned long time;
1916
	bool ret;
1917

1918 1919 1920 1921 1922 1923
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1924
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1925 1926 1927 1928 1929
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1930 1931
}

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1951 1952

	if (time_after_eq(jiffies,
1953 1954
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1955
		return true;
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1980
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1981 1982
		return false;

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

2020 2021 2022 2023 2024
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

2025
	throtl_log(&td->service_queue, "upgrade to max");
2026
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2027
	td->low_upgrade_time = jiffies;
2028
	td->scale = 0;
2029 2030 2031 2032 2033 2034 2035
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
2036
		throtl_schedule_next_dispatch(sq, true);
2037 2038 2039
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
2040
	throtl_schedule_next_dispatch(&td->service_queue, true);
2041 2042 2043
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
2044 2045
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
2046 2047
	td->scale /= 2;

2048
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2049 2050 2051 2052 2053
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
2067 2068
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
2069 2070 2071
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
2100
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
2101 2102 2103 2104 2105
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

2106 2107
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2162 2163 2164
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2165 2166 2167 2168
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2169 2170 2171 2172 2173 2174 2175 2176

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2192

2193 2194
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2195

2196
				latency[rw] = tmp->total_latency;
2197

2198 2199 2200 2201 2202 2203 2204
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2205 2206 2207
		}
	}

2208 2209 2210 2211 2212 2213 2214 2215
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2216

2217 2218 2219 2220 2221
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2222

2223 2224 2225 2226 2227
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2228
	}
2229 2230 2231

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2232 2233 2234 2235 2236 2237
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2238 2239 2240 2241 2242 2243 2244
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2245 2246 2247
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2248 2249 2250
	/* fallback to root_blkg if we fail to get a blkg ref */
	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2251
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2252 2253 2254
#endif
}

2255 2256
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2257
{
2258
	struct throtl_qnode *qn = NULL;
2259
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2260
	struct throtl_service_queue *sq;
2261
	bool rw = bio_data_dir(bio);
2262
	bool throttled = false;
2263
	struct throtl_data *td = tg->td;
2264

2265 2266
	WARN_ON_ONCE(!rcu_read_lock_held());

2267
	/* see throtl_charge_bio() */
2268 2269 2270 2271 2272 2273
	if (bio_flagged(bio, BIO_THROTTLED))
		goto out;

	throtl_bio_stats_start(bio, tg);

	if (!tg->has_rules[rw])
2274
		goto out;
2275 2276

	spin_lock_irq(q->queue_lock);
2277

2278 2279
	throtl_update_latency_buckets(td);

2280
	if (unlikely(blk_queue_bypass(q)))
2281
		goto out_unlock;
2282

2283
	blk_throtl_assoc_bio(tg, bio);
2284 2285
	blk_throtl_update_idletime(tg);

2286 2287
	sq = &tg->service_queue;

2288
again:
2289
	while (true) {
S
Shaohua Li 已提交
2290 2291 2292
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2293
		throtl_upgrade_check(tg);
2294 2295 2296
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2297

2298
		/* if above limits, break to queue */
2299
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2300
			tg->last_low_overflow_time[rw] = jiffies;
2301 2302
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2303 2304
				goto again;
			}
2305
			break;
2306
		}
2307 2308

		/* within limits, let's charge and dispatch directly */
2309
		throtl_charge_bio(tg, bio);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2322
		throtl_trim_slice(tg, rw);
2323 2324 2325 2326 2327 2328

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2329
		qn = &tg->qnode_on_parent[rw];
2330 2331 2332 2333
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2334 2335
	}

2336
	/* out-of-limit, queue to @tg */
2337 2338
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2339 2340 2341
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2342
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2343

S
Shaohua Li 已提交
2344 2345
	tg->last_low_overflow_time[rw] = jiffies;

2346
	td->nr_queued[rw]++;
2347
	throtl_add_bio_tg(bio, qn, tg);
2348
	throttled = true;
2349

2350 2351 2352 2353 2354 2355
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2356
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2357
		tg_update_disptime(tg);
2358
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2359 2360
	}

2361
out_unlock:
2362
	spin_unlock_irq(q->queue_lock);
2363
out:
2364 2365
	if (!throttled)
		bio_set_io_start_time_ns(bio);
S
Shaohua Li 已提交
2366
	bio_set_flag(bio, BIO_THROTTLED);
2367 2368 2369

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2370
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2371
#endif
2372
	return throttled;
2373 2374
}

2375
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2376 2377 2378 2379 2380 2381
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2382 2383
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2384 2385 2386 2387 2388
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2389
	latency = get_cpu_ptr(td->latency_buckets[op]);
2390 2391
	latency[index].total_latency += time;
	latency[index].samples++;
2392
	put_cpu_ptr(td->latency_buckets[op]);
2393 2394 2395 2396 2397 2398 2399
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2400
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2401 2402
}

2403 2404
void blk_throtl_bio_endio(struct bio *bio)
{
2405
	struct blkcg_gq *blkg;
2406
	struct throtl_grp *tg;
2407 2408 2409 2410
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2411
	int rw = bio_data_dir(bio);
2412

2413 2414
	blkg = bio->bi_blkg;
	if (!blkg)
2415
		return;
2416
	tg = blkg_to_tg(blkg);
2417

2418 2419 2420
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2421 2422
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2423
	if (!start_time || finish_time <= start_time)
2424 2425 2426
		return;

	lat = finish_time - start_time;
2427
	/* this is only for bio based driver */
2428 2429 2430
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2431

2432
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2433 2434 2435
		int bucket;
		unsigned int threshold;

2436
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2437
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2452
	}
2453 2454 2455
}
#endif

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2471
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2472
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2473
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2474 2475 2476 2477
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2488
	struct blkcg_gq *blkg;
2489
	struct cgroup_subsys_state *pos_css;
2490
	struct bio *bio;
2491
	int rw;
2492

2493
	queue_lockdep_assert_held(q);
2494
	rcu_read_lock();
2495

2496 2497 2498 2499 2500 2501
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2502
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2503
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2504

2505 2506 2507 2508
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2509 2510
	spin_unlock_irq(q->queue_lock);

2511
	/* all bios now should be in td->service_queue, issue them */
2512
	for (rw = READ; rw <= WRITE; rw++)
2513 2514
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2515
			generic_make_request(bio);
2516 2517 2518 2519

	spin_lock_irq(q->queue_lock);
}

2520 2521 2522
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2523
	int ret;
2524 2525 2526 2527

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2528
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2529
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2530 2531 2532 2533 2534
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2535
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2536 2537
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2538 2539 2540
		kfree(td);
		return -ENOMEM;
	}
2541

2542
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2543
	throtl_service_queue_init(&td->service_queue);
2544

2545
	q->td = td;
2546
	td->queue = q;
V
Vivek Goyal 已提交
2547

2548
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2549
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2550 2551
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2552

2553
	/* activate policy */
T
Tejun Heo 已提交
2554
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2555
	if (ret) {
2556 2557
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2558
		kfree(td);
2559
	}
2560
	return ret;
2561 2562 2563 2564
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2565
	BUG_ON(!q->td);
2566
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2567
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2568 2569
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2570
	kfree(q->td);
2571 2572
}

2573 2574 2575
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2576
	int i;
2577 2578 2579 2580

	td = q->td;
	BUG_ON(!td);

2581
	if (blk_queue_nonrot(q)) {
2582
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2583 2584
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2585
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2586
		td->filtered_latency = LATENCY_FILTERED_HD;
2587 2588 2589 2590
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2591
	}
2592 2593 2594 2595
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2596

2597
	td->track_bio_latency = !queue_is_rq_based(q);
2598 2599
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2628 2629
static int __init throtl_init(void)
{
2630 2631 2632 2633
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2634
	return blkcg_policy_register(&blkcg_policy_throtl);
2635 2636 2637
}

module_init(throtl_init);