blk-throttle.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86
enum {
S
Shaohua Li 已提交
87
	LIMIT_LOW,
88 89 90 91
	LIMIT_MAX,
	LIMIT_CNT,
};

92
struct throtl_grp {
93 94 95
	/* must be the first member */
	struct blkg_policy_data pd;

96
	/* active throtl group service_queue member */
97 98
	struct rb_node rb_node;

99 100 101
	/* throtl_data this group belongs to */
	struct throtl_data *td;

102 103 104
	/* this group's service queue */
	struct throtl_service_queue service_queue;

105 106 107 108 109 110 111 112 113 114 115
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

116 117 118 119 120 121 122 123 124
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

125 126 127
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
128
	/* internally used bytes per second rate limits */
129
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
130 131
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
132

S
Shaohua Li 已提交
133
	/* internally used IOPS limits */
134
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
135 136
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
137

138 139
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
140 141
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
142 143 144 145 146 147 148 149 150

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
151
	struct throtl_service_queue service_queue;
152 153 154 155 156 157 158

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* Work for dispatching throttled bios */
159
	struct work_struct dispatch_work;
160 161
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
162 163
};

164 165
static void throtl_pending_timer_fn(unsigned long arg);

166 167 168 169 170
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
171
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
172
{
173
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
174 175
}

T
Tejun Heo 已提交
176
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
177
{
178
	return pd_to_blkg(&tg->pd);
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
200
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
201 202 203 204 205 206 207 208 209 210 211 212
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

213 214
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
215 216 217 218 219 220 221 222 223
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
	ret = tg->bps[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->bps[rw][LIMIT_MAX];
	return ret;
224 225 226 227
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
228 229 230 231 232 233 234 235 236
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
	ret = tg->iops[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
	return ret;
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
253 254
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
255 256
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
257
									\
258 259 260 261 262
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
263
} while (0)
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

348
/* init a service_queue, assumes the caller zeroed it */
349
static void throtl_service_queue_init(struct throtl_service_queue *sq)
350
{
351 352
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
353
	sq->pending_tree = RB_ROOT;
354 355 356 357
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

358 359
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
360
	struct throtl_grp *tg;
T
Tejun Heo 已提交
361
	int rw;
362 363 364

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
365
		return NULL;
366

367 368 369 370 371 372 373 374
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
375 376 377 378
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
379 380 381 382 383
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
384

385
	return &tg->pd;
386 387
}

388
static void throtl_pd_init(struct blkg_policy_data *pd)
389
{
390 391
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
392
	struct throtl_data *td = blkg->q->td;
393
	struct throtl_service_queue *sq = &tg->service_queue;
394

395
	/*
396
	 * If on the default hierarchy, we switch to properly hierarchical
397 398 399 400 401
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
402
	 * If not on the default hierarchy, the broken flat hierarchy
403 404 405 406 407
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
408
	sq->parent_sq = &td->service_queue;
409
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
410
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
411
	tg->td = td;
412 413
}

414 415 416 417 418 419 420 421
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
422
	struct throtl_data *td = tg->td;
423 424 425 426
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
427 428 429
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
430 431
}

432
static void throtl_pd_online(struct blkg_policy_data *pd)
433 434 435 436 437
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
438
	tg_update_has_rules(pd_to_tg(pd));
439 440
}

S
Shaohua Li 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

	if (tg->td->limit_index == LIMIT_LOW &&
	    !tg->td->limit_valid[LIMIT_LOW])
		tg->td->limit_index = LIMIT_MAX;
}

476 477
static void throtl_pd_free(struct blkg_policy_data *pd)
{
478 479
	struct throtl_grp *tg = pd_to_tg(pd);

480
	del_timer_sync(&tg->service_queue.pending_timer);
481
	kfree(tg);
482 483
}

484 485
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
486 487
{
	/* Service tree is empty */
488
	if (!parent_sq->nr_pending)
489 490
		return NULL;

491 492
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
493

494 495
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
496 497 498 499 500 501 502 503 504 505

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

506 507
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
508
{
509 510 511 512
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
513 514
}

515
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
516 517 518
{
	struct throtl_grp *tg;

519
	tg = throtl_rb_first(parent_sq);
520 521 522
	if (!tg)
		return;

523
	parent_sq->first_pending_disptime = tg->disptime;
524 525
}

526
static void tg_service_queue_add(struct throtl_grp *tg)
527
{
528
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
529
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
548
		parent_sq->first_pending = &tg->rb_node;
549 550

	rb_link_node(&tg->rb_node, parent, node);
551
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
552 553
}

554
static void __throtl_enqueue_tg(struct throtl_grp *tg)
555
{
556
	tg_service_queue_add(tg);
557
	tg->flags |= THROTL_TG_PENDING;
558
	tg->service_queue.parent_sq->nr_pending++;
559 560
}

561
static void throtl_enqueue_tg(struct throtl_grp *tg)
562
{
563
	if (!(tg->flags & THROTL_TG_PENDING))
564
		__throtl_enqueue_tg(tg);
565 566
}

567
static void __throtl_dequeue_tg(struct throtl_grp *tg)
568
{
569
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
570
	tg->flags &= ~THROTL_TG_PENDING;
571 572
}

573
static void throtl_dequeue_tg(struct throtl_grp *tg)
574
{
575
	if (tg->flags & THROTL_TG_PENDING)
576
		__throtl_dequeue_tg(tg);
577 578
}

579
/* Call with queue lock held */
580 581
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
582
{
583 584 585
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
608
{
609
	/* any pending children left? */
610
	if (!sq->nr_pending)
611
		return true;
612

613
	update_min_dispatch_time(sq);
614

615
	/* is the next dispatch time in the future? */
616
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
617
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
618
		return true;
619 620
	}

621 622
	/* tell the caller to continue dispatching */
	return false;
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

647
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
648 649
{
	tg->bytes_disp[rw] = 0;
650
	tg->io_disp[rw] = 0;
651 652
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
653 654 655 656
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
657 658
}

659 660
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
661 662 663 664
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

665 666
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
667 668
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
669 670 671 672
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
673 674 675
}

/* Determine if previously allocated or extended slice is complete or not */
676
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
677 678
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
679
		return false;
680 681 682 683 684

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
685
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
686
{
687 688
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
689 690 691 692 693 694 695 696

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
697
	if (throtl_slice_used(tg, rw))
698 699
		return;

700 701 702 703 704 705 706 707
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

708
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
709

710 711 712 713 714 715
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
716
	tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
717 718
	do_div(tmp, HZ);
	bytes_trim = tmp;
719

720
	io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
721

722
	if (!bytes_trim && !io_trim)
723 724 725 726 727 728 729
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

730 731 732 733 734
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

735 736
	tg->slice_start[rw] += nr_slices * throtl_slice;

737 738 739 740
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
741 742
}

743 744
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
745 746
{
	bool rw = bio_data_dir(bio);
747
	unsigned int io_allowed;
748
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
749
	u64 tmp;
750

751
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
752

753 754 755 756 757 758
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

759 760 761 762 763 764 765
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

766
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
767 768 769 770 771 772
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
773 774

	if (tg->io_disp[rw] + 1 <= io_allowed) {
775 776
		if (wait)
			*wait = 0;
777
		return true;
778 779
	}

780
	/* Calc approx time to dispatch */
781
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
782 783 784 785 786 787 788 789 790 791 792

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

793 794
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
795 796
{
	bool rw = bio_data_dir(bio);
797
	u64 bytes_allowed, extra_bytes, tmp;
798
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
799 800 801 802 803 804 805 806 807

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

808
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
809
	do_div(tmp, HZ);
810
	bytes_allowed = tmp;
811

812
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
813 814
		if (wait)
			*wait = 0;
815
		return true;
816 817 818
	}

	/* Calc approx time to dispatch */
819
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
820
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
821 822 823 824 825 826 827 828 829 830 831

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
832 833 834 835 836 837 838
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
839 840
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
841 842 843 844 845 846 847 848 849 850
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
851
	BUG_ON(tg->service_queue.nr_queued[rw] &&
852
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
853

854
	/* If tg->bps = -1, then BW is unlimited */
855 856
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
857 858
		if (wait)
			*wait = 0;
859
		return true;
860 861 862 863 864
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
865 866 867
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
868
	 */
869
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
870
		throtl_start_new_slice(tg, rw);
871 872
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
873
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
874 875
	}

876 877
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
878 879 880 881 882 883 884 885 886 887 888
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
889
		throtl_extend_slice(tg, rw, jiffies + max_wait);
890 891 892 893 894 895 896 897 898

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
899
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
900
	tg->io_disp[rw]++;
901

902
	/*
903
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
904 905 906 907
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
908 909
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
910 911
}

912 913 914 915 916 917 918 919 920 921 922
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
923
{
924
	struct throtl_service_queue *sq = &tg->service_queue;
925 926
	bool rw = bio_data_dir(bio);

927 928 929
	if (!qn)
		qn = &tg->qnode_on_self[rw];

930 931 932 933 934 935 936 937 938
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

939 940
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

941
	sq->nr_queued[rw]++;
942
	throtl_enqueue_tg(tg);
943 944
}

945
static void tg_update_disptime(struct throtl_grp *tg)
946
{
947
	struct throtl_service_queue *sq = &tg->service_queue;
948 949 950
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

951 952
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
953
		tg_may_dispatch(tg, bio, &read_wait);
954

955 956
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
957
		tg_may_dispatch(tg, bio, &write_wait);
958 959 960 961 962

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
963
	throtl_dequeue_tg(tg);
964
	tg->disptime = disptime;
965
	throtl_enqueue_tg(tg);
966 967 968

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
969 970
}

971 972 973 974 975 976 977 978 979 980
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

981
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
982
{
983
	struct throtl_service_queue *sq = &tg->service_queue;
984 985
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
986
	struct throtl_grp *tg_to_put = NULL;
987 988
	struct bio *bio;

989 990 991 992 993 994 995
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
996
	sq->nr_queued[rw]--;
997 998

	throtl_charge_bio(tg, bio);
999 1000 1001 1002 1003 1004 1005 1006 1007

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1008
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1009
		start_parent_slice_with_credit(tg, parent_tg, rw);
1010
	} else {
1011 1012
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1013 1014 1015
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1016

1017
	throtl_trim_slice(tg, rw);
1018

1019 1020
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1021 1022
}

1023
static int throtl_dispatch_tg(struct throtl_grp *tg)
1024
{
1025
	struct throtl_service_queue *sq = &tg->service_queue;
1026 1027
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1028
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1029 1030 1031 1032
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1033
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1034
	       tg_may_dispatch(tg, bio, NULL)) {
1035

1036
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1037 1038 1039 1040 1041 1042
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1043
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1044
	       tg_may_dispatch(tg, bio, NULL)) {
1045

1046
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1047 1048 1049 1050 1051 1052 1053 1054 1055
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1056
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1057 1058 1059 1060
{
	unsigned int nr_disp = 0;

	while (1) {
1061 1062
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1063 1064 1065 1066 1067 1068 1069

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1070
		throtl_dequeue_tg(tg);
1071

1072
		nr_disp += throtl_dispatch_tg(tg);
1073

1074
		if (sq->nr_queued[0] || sq->nr_queued[1])
1075
			tg_update_disptime(tg);
1076 1077 1078 1079 1080 1081 1082 1083

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1084 1085 1086 1087 1088 1089 1090
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1091 1092 1093 1094 1095 1096 1097
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1098
 */
1099 1100 1101
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1102
	struct throtl_grp *tg = sq_to_tg(sq);
1103
	struct throtl_data *td = sq_to_td(sq);
1104
	struct request_queue *q = td->queue;
1105 1106
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1107
	int ret;
1108 1109

	spin_lock_irq(q->queue_lock);
1110 1111 1112
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1113

1114 1115
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1116 1117
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1118 1119 1120 1121 1122 1123

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1124

1125 1126
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1127

1128 1129 1130 1131
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1132
	}
1133

1134 1135
	if (!dispatched)
		goto out_unlock;
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1153
	spin_unlock_irq(q->queue_lock);
1154
}
1155

1156 1157 1158 1159 1160 1161 1162 1163
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1164
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1178 1179 1180
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1181 1182 1183
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1184
		blk_start_plug(&plug);
1185 1186
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1187
		blk_finish_plug(&plug);
1188 1189 1190
	}
}

1191 1192
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1193
{
1194 1195
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1196

1197
	if (v == U64_MAX)
1198
		return 0;
1199
	return __blkg_prfill_u64(sf, pd, v);
1200 1201
}

1202 1203
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1204
{
1205 1206
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1207

1208
	if (v == UINT_MAX)
1209
		return 0;
1210
	return __blkg_prfill_u64(sf, pd, v);
1211 1212
}

1213
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1214
{
1215 1216
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1217
	return 0;
1218 1219
}

1220
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1221
{
1222 1223
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1224
	return 0;
1225 1226
}

1227
static void tg_conf_updated(struct throtl_grp *tg)
1228
{
1229
	struct throtl_service_queue *sq = &tg->service_queue;
1230
	struct cgroup_subsys_state *pos_css;
1231
	struct blkcg_gq *blkg;
1232

1233 1234
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1235 1236
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1237

1238 1239 1240 1241 1242 1243 1244
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1245
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1246 1247
		tg_update_has_rules(blkg_to_tg(blkg));

1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1256 1257
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1258

1259
	if (tg->flags & THROTL_TG_PENDING) {
1260
		tg_update_disptime(tg);
1261
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1262
	}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1282
		v = U64_MAX;
1283 1284 1285 1286 1287 1288 1289

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1290

1291
	tg_conf_updated(tg);
1292 1293
	ret = 0;
out_finish:
1294
	blkg_conf_finish(&ctx);
1295
	return ret ?: nbytes;
1296 1297
}

1298 1299
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1300
{
1301
	return tg_set_conf(of, buf, nbytes, off, true);
1302 1303
}

1304 1305
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1306
{
1307
	return tg_set_conf(of, buf, nbytes, off, false);
1308 1309
}

1310
static struct cftype throtl_legacy_files[] = {
1311 1312
	{
		.name = "throttle.read_bps_device",
1313
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1314
		.seq_show = tg_print_conf_u64,
1315
		.write = tg_set_conf_u64,
1316 1317 1318
	},
	{
		.name = "throttle.write_bps_device",
1319
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1320
		.seq_show = tg_print_conf_u64,
1321
		.write = tg_set_conf_u64,
1322 1323 1324
	},
	{
		.name = "throttle.read_iops_device",
1325
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1326
		.seq_show = tg_print_conf_uint,
1327
		.write = tg_set_conf_uint,
1328 1329 1330
	},
	{
		.name = "throttle.write_iops_device",
1331
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1332
		.seq_show = tg_print_conf_uint,
1333
		.write = tg_set_conf_uint,
1334 1335 1336
	},
	{
		.name = "throttle.io_service_bytes",
1337 1338
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1339 1340 1341
	},
	{
		.name = "throttle.io_serviced",
1342 1343
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1344 1345 1346 1347
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1348
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1349 1350 1351 1352 1353
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1354 1355
	u64 bps_dft;
	unsigned int iops_dft;
1356 1357 1358

	if (!dname)
		return 0;
1359

S
Shaohua Li 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1372 1373
		return 0;

S
Shaohua Li 已提交
1374
	if (tg->bps_conf[READ][off] != bps_dft)
1375
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1376 1377
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1378
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1379 1380
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1381
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1382 1383
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1384
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1385
			tg->iops_conf[WRITE][off]);
1386 1387 1388 1389 1390 1391

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1392
static int tg_print_limit(struct seq_file *sf, void *v)
1393
{
S
Shaohua Li 已提交
1394
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1395 1396 1397 1398
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1399
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1400 1401 1402 1403 1404 1405 1406
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1407
	int index = of_cft(of)->private;
1408 1409 1410 1411 1412 1413 1414

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1415 1416 1417 1418
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1419 1420 1421 1422

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1423
		u64 val = U64_MAX;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1455 1456 1457 1458
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1459

S
Shaohua Li 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1480 1481 1482 1483 1484 1485 1486 1487
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1497 1498 1499
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1500 1501 1502
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1503 1504 1505 1506
	},
	{ }	/* terminate */
};

1507
static void throtl_shutdown_wq(struct request_queue *q)
1508 1509 1510
{
	struct throtl_data *td = q->td;

1511
	cancel_work_sync(&td->dispatch_work);
1512 1513
}

T
Tejun Heo 已提交
1514
static struct blkcg_policy blkcg_policy_throtl = {
1515
	.dfl_cftypes		= throtl_files,
1516
	.legacy_cftypes		= throtl_legacy_files,
1517

1518
	.pd_alloc_fn		= throtl_pd_alloc,
1519
	.pd_init_fn		= throtl_pd_init,
1520
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1521
	.pd_offline_fn		= throtl_pd_offline,
1522
	.pd_free_fn		= throtl_pd_free,
1523 1524
};

1525 1526
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1527
{
1528
	struct throtl_qnode *qn = NULL;
1529
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1530
	struct throtl_service_queue *sq;
1531
	bool rw = bio_data_dir(bio);
1532
	bool throttled = false;
1533

1534 1535
	WARN_ON_ONCE(!rcu_read_lock_held());

1536
	/* see throtl_charge_bio() */
1537
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1538
		goto out;
1539 1540

	spin_lock_irq(q->queue_lock);
1541 1542

	if (unlikely(blk_queue_bypass(q)))
1543
		goto out_unlock;
1544

1545 1546
	sq = &tg->service_queue;

1547 1548 1549 1550
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1551

1552 1553 1554 1555 1556
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1557
		throtl_charge_bio(tg, bio);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1570
		throtl_trim_slice(tg, rw);
1571 1572 1573 1574 1575 1576

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1577
		qn = &tg->qnode_on_parent[rw];
1578 1579 1580 1581
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1582 1583
	}

1584
	/* out-of-limit, queue to @tg */
1585 1586
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1587 1588 1589
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1590
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1591

1592
	bio_associate_current(bio);
1593
	tg->td->nr_queued[rw]++;
1594
	throtl_add_bio_tg(bio, qn, tg);
1595
	throttled = true;
1596

1597 1598 1599 1600 1601 1602
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1603
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1604
		tg_update_disptime(tg);
1605
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1606 1607
	}

1608
out_unlock:
1609
	spin_unlock_irq(q->queue_lock);
1610
out:
1611 1612 1613 1614 1615 1616
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1617
		bio_clear_flag(bio, BIO_THROTTLED);
1618
	return throttled;
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1636
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1637
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1638
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1639 1640 1641 1642
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1653
	struct blkcg_gq *blkg;
1654
	struct cgroup_subsys_state *pos_css;
1655
	struct bio *bio;
1656
	int rw;
1657

1658
	queue_lockdep_assert_held(q);
1659
	rcu_read_lock();
1660

1661 1662 1663 1664 1665 1666
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1667
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1668
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1669

1670 1671 1672 1673
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1674 1675
	spin_unlock_irq(q->queue_lock);

1676
	/* all bios now should be in td->service_queue, issue them */
1677
	for (rw = READ; rw <= WRITE; rw++)
1678 1679
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1680
			generic_make_request(bio);
1681 1682 1683 1684

	spin_lock_irq(q->queue_lock);
}

1685 1686 1687
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1688
	int ret;
1689 1690 1691 1692 1693

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1694
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1695
	throtl_service_queue_init(&td->service_queue);
1696

1697
	q->td = td;
1698
	td->queue = q;
V
Vivek Goyal 已提交
1699

1700
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1701
	td->limit_index = LIMIT_MAX;
1702
	/* activate policy */
T
Tejun Heo 已提交
1703
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1704
	if (ret)
1705
		kfree(td);
1706
	return ret;
1707 1708 1709 1710
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1711
	BUG_ON(!q->td);
1712
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1713
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1714
	kfree(q->td);
1715 1716 1717 1718
}

static int __init throtl_init(void)
{
1719 1720 1721 1722
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1723
	return blkcg_policy_register(&blkcg_policy_throtl);
1724 1725 1726
}

module_init(throtl_init);