blk-throttle.c 68.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181
};

182 183 184 185 186 187 188 189 190 191 192 193 194
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

195 196 197
struct throtl_data
{
	/* service tree for active throtl groups */
198
	struct throtl_service_queue service_queue;
199 200 201 202 203 204

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

205 206
	unsigned int throtl_slice;

207
	/* Work for dispatching throttled bios */
208
	struct work_struct dispatch_work;
209 210
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
211 212 213

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
214 215

	unsigned int scale;
216

217 218 219
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
220
	unsigned long last_calculate_time;
221
	unsigned long filtered_latency;
222 223

	bool track_bio_latency;
224 225
};

226
static void throtl_pending_timer_fn(struct timer_list *t);
227

228 229 230 231 232
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
233
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234
{
235
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 237
}

T
Tejun Heo 已提交
238
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239
{
240
	return pd_to_blkg(&tg->pd);
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
262
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 264 265 266 267 268 269 270 271 272 273 274
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

293 294
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
295
	struct blkcg_gq *blkg = tg_to_blkg(tg);
296
	struct throtl_data *td;
297 298 299 300
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
301 302 303

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
304 305 306 307 308 309 310 311
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
312 313 314 315 316 317 318 319

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
320
	return ret;
321 322 323 324
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
325
	struct blkcg_gq *blkg = tg_to_blkg(tg);
326
	struct throtl_data *td;
327 328 329 330
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
331

332 333
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
334 335 336 337 338 339 340 341
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
342 343 344 345 346 347 348 349 350 351

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
352
	return ret;
353 354
}

355 356 357
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
372 373
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
374
	if ((__tg)) {							\
375 376
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 378 379
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
380
} while (0)
381

382 383 384 385 386 387 388 389
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

473
/* init a service_queue, assumes the caller zeroed it */
474
static void throtl_service_queue_init(struct throtl_service_queue *sq)
475
{
476 477
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
478
	sq->pending_tree = RB_ROOT;
479
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 481
}

482 483 484
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
						struct request_queue *q,
						struct blkcg *blkcg)
485
{
486
	struct throtl_grp *tg;
T
Tejun Heo 已提交
487
	int rw;
488

489
	tg = kzalloc_node(sizeof(*tg), gfp, q->node);
490
	if (!tg)
491
		return NULL;
492

493 494 495 496 497 498 499 500
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
501 502 503 504
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
505 506 507 508 509
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
510

511
	tg->latency_target = DFL_LATENCY_TARGET;
512
	tg->latency_target_conf = DFL_LATENCY_TARGET;
513 514
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
515

516
	return &tg->pd;
517 518
}

519
static void throtl_pd_init(struct blkg_policy_data *pd)
520
{
521 522
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
523
	struct throtl_data *td = blkg->q->td;
524
	struct throtl_service_queue *sq = &tg->service_queue;
525

526
	/*
527
	 * If on the default hierarchy, we switch to properly hierarchical
528 529 530 531 532
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
533
	 * If not on the default hierarchy, the broken flat hierarchy
534 535 536 537 538
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
539
	sq->parent_sq = &td->service_queue;
540 541 542

	/* Enable hierarchical throttling even on traditional hierarchy */
	if (blkg->parent)
543
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
544
	tg->td = td;
545 546
}

547 548 549 550 551 552 553 554
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
555
	struct throtl_data *td = tg->td;
556 557 558 559
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
560 561 562
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
563 564
}

565
static void throtl_pd_online(struct blkg_policy_data *pd)
566
{
567
	struct throtl_grp *tg = pd_to_tg(pd);
568 569 570 571
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
572
	tg_update_has_rules(tg);
573 574
}

S
Shaohua Li 已提交
575 576 577 578 579 580 581 582 583 584 585
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
586
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
587
			low_valid = true;
588 589
			break;
		}
S
Shaohua Li 已提交
590 591 592 593 594 595
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

596
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
597 598 599 600 601 602 603 604 605 606 607
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

608 609
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
610 611
}

612 613
static void throtl_pd_free(struct blkg_policy_data *pd)
{
614 615
	struct throtl_grp *tg = pd_to_tg(pd);

616
	del_timer_sync(&tg->service_queue.pending_timer);
617
	kfree(tg);
618 619
}

620 621
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
622 623
{
	/* Service tree is empty */
624
	if (!parent_sq->nr_pending)
625 626
		return NULL;

627 628
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
629

630 631
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
632 633 634 635 636 637 638 639 640 641

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

642 643
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
644
{
645 646 647 648
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
649 650
}

651
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
652 653 654
{
	struct throtl_grp *tg;

655
	tg = throtl_rb_first(parent_sq);
656 657 658
	if (!tg)
		return;

659
	parent_sq->first_pending_disptime = tg->disptime;
660 661
}

662
static void tg_service_queue_add(struct throtl_grp *tg)
663
{
664
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
665
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
684
		parent_sq->first_pending = &tg->rb_node;
685 686

	rb_link_node(&tg->rb_node, parent, node);
687
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
688 689
}

690
static void __throtl_enqueue_tg(struct throtl_grp *tg)
691
{
692
	tg_service_queue_add(tg);
693
	tg->flags |= THROTL_TG_PENDING;
694
	tg->service_queue.parent_sq->nr_pending++;
695 696
}

697
static void throtl_enqueue_tg(struct throtl_grp *tg)
698
{
699
	if (!(tg->flags & THROTL_TG_PENDING))
700
		__throtl_enqueue_tg(tg);
701 702
}

703
static void __throtl_dequeue_tg(struct throtl_grp *tg)
704
{
705
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
706
	tg->flags &= ~THROTL_TG_PENDING;
707 708
}

709
static void throtl_dequeue_tg(struct throtl_grp *tg)
710
{
711
	if (tg->flags & THROTL_TG_PENDING)
712
		__throtl_dequeue_tg(tg);
713 714
}

715
/* Call with queue lock held */
716 717
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
718
{
719
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
720 721 722 723 724 725 726 727 728 729

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
730 731 732
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
755
{
756
	/* any pending children left? */
757
	if (!sq->nr_pending)
758
		return true;
759

760
	update_min_dispatch_time(sq);
761

762
	/* is the next dispatch time in the future? */
763
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
764
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
765
		return true;
766 767
	}

768 769
	/* tell the caller to continue dispatching */
	return false;
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

787
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
788 789 790 791 792 793
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

794
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
795 796
{
	tg->bytes_disp[rw] = 0;
797
	tg->io_disp[rw] = 0;
798
	tg->slice_start[rw] = jiffies;
799
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
800 801 802 803
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
804 805
}

806 807
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
808
{
809
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
810 811
}

812 813
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
814
{
815
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
816 817 818 819
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
820 821 822
}

/* Determine if previously allocated or extended slice is complete or not */
823
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
824 825
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
826
		return false;
827

828
	return true;
829 830 831
}

/* Trim the used slices and adjust slice start accordingly */
832
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
833
{
834 835
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
836 837 838 839 840 841 842 843

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
844
	if (throtl_slice_used(tg, rw))
845 846
		return;

847 848 849 850 851 852 853 854
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

855
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
856

857 858
	time_elapsed = jiffies - tg->slice_start[rw];

859
	nr_slices = time_elapsed / tg->td->throtl_slice;
860 861 862

	if (!nr_slices)
		return;
863
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
864 865
	do_div(tmp, HZ);
	bytes_trim = tmp;
866

867 868
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
869

870
	if (!bytes_trim && !io_trim)
871 872 873 874 875 876 877
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

878 879 880 881 882
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

883
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
884

885 886 887 888
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
889 890
}

891 892
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
893 894
{
	bool rw = bio_data_dir(bio);
895
	unsigned int io_allowed;
896
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
897
	u64 tmp;
898

899
	jiffy_elapsed = jiffies - tg->slice_start[rw];
900

901 902
	/* Round up to the next throttle slice, wait time must be nonzero */
	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
903

904 905 906 907 908 909 910
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

911
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
912 913 914 915 916 917
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
918 919

	if (tg->io_disp[rw] + 1 <= io_allowed) {
920 921
		if (wait)
			*wait = 0;
922
		return true;
923 924
	}

925
	/* Calc approx time to dispatch */
926
	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
927 928 929

	if (wait)
		*wait = jiffy_wait;
930
	return false;
931 932
}

933 934
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
935 936
{
	bool rw = bio_data_dir(bio);
937
	u64 bytes_allowed, extra_bytes, tmp;
938
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
939
	unsigned int bio_size = throtl_bio_data_size(bio);
940 941 942 943 944

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
945
		jiffy_elapsed_rnd = tg->td->throtl_slice;
946

947
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
948

949
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
950
	do_div(tmp, HZ);
951
	bytes_allowed = tmp;
952

953
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
954 955
		if (wait)
			*wait = 0;
956
		return true;
957 958 959
	}

	/* Calc approx time to dispatch */
960
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
961
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
962 963 964 965 966 967 968 969 970 971 972

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
973
	return false;
974 975 976 977 978 979
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
980 981
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
982 983 984 985 986 987 988 989 990 991
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
992
	BUG_ON(tg->service_queue.nr_queued[rw] &&
993
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
994

995
	/* If tg->bps = -1, then BW is unlimited */
996 997
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
998 999
		if (wait)
			*wait = 0;
1000
		return true;
1001 1002 1003 1004 1005
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1006 1007 1008
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1009
	 */
1010
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1011
		throtl_start_new_slice(tg, rw);
1012
	else {
1013 1014 1015 1016
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1017 1018
	}

1019 1020
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1021 1022
		if (wait)
			*wait = 0;
1023
		return true;
1024 1025 1026 1027 1028 1029 1030 1031
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1032
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1033

1034
	return false;
1035 1036 1037 1038 1039
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1040
	unsigned int bio_size = throtl_bio_data_size(bio);
1041 1042

	/* Charge the bio to the group */
1043
	tg->bytes_disp[rw] += bio_size;
1044
	tg->io_disp[rw]++;
1045
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1046
	tg->last_io_disp[rw]++;
1047

1048
	/*
1049
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1050 1051 1052 1053
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1054 1055
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1069
{
1070
	struct throtl_service_queue *sq = &tg->service_queue;
1071 1072
	bool rw = bio_data_dir(bio);

1073 1074 1075
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1085 1086
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1087
	sq->nr_queued[rw]++;
1088
	throtl_enqueue_tg(tg);
1089 1090
}

1091
static void tg_update_disptime(struct throtl_grp *tg)
1092
{
1093
	struct throtl_service_queue *sq = &tg->service_queue;
1094 1095 1096
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1097 1098
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1099
		tg_may_dispatch(tg, bio, &read_wait);
1100

1101 1102
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1103
		tg_may_dispatch(tg, bio, &write_wait);
1104 1105 1106 1107 1108

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1109
	throtl_dequeue_tg(tg);
1110
	tg->disptime = disptime;
1111
	throtl_enqueue_tg(tg);
1112 1113 1114

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1115 1116
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1127
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1128
{
1129
	struct throtl_service_queue *sq = &tg->service_queue;
1130 1131
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1132
	struct throtl_grp *tg_to_put = NULL;
1133 1134
	struct bio *bio;

1135 1136 1137 1138 1139 1140 1141
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1142
	sq->nr_queued[rw]--;
1143 1144

	throtl_charge_bio(tg, bio);
1145 1146 1147 1148 1149 1150 1151 1152 1153

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1154
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1155
		start_parent_slice_with_credit(tg, parent_tg, rw);
1156
	} else {
1157 1158
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1159 1160 1161
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1162

1163
	throtl_trim_slice(tg, rw);
1164

1165 1166
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1167 1168
}

1169
static int throtl_dispatch_tg(struct throtl_grp *tg)
1170
{
1171
	struct throtl_service_queue *sq = &tg->service_queue;
1172 1173
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1174
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1175 1176 1177 1178
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1179
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1180
	       tg_may_dispatch(tg, bio, NULL)) {
1181

1182
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1183 1184 1185 1186 1187 1188
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1189
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1190
	       tg_may_dispatch(tg, bio, NULL)) {
1191

1192
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1193 1194 1195 1196 1197 1198 1199 1200 1201
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1202
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1203 1204 1205 1206
{
	unsigned int nr_disp = 0;

	while (1) {
1207
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1208
		struct throtl_service_queue *sq;
1209 1210 1211 1212 1213 1214 1215

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1216
		throtl_dequeue_tg(tg);
1217

1218
		nr_disp += throtl_dispatch_tg(tg);
1219

1220
		sq = &tg->service_queue;
1221
		if (sq->nr_queued[0] || sq->nr_queued[1])
1222
			tg_update_disptime(tg);
1223 1224 1225 1226 1227 1228 1229 1230

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1231 1232
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1233 1234 1235 1236 1237 1238 1239
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1240 1241 1242 1243 1244 1245 1246
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1247
 */
1248
static void throtl_pending_timer_fn(struct timer_list *t)
1249
{
1250
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1251
	struct throtl_grp *tg = sq_to_tg(sq);
1252
	struct throtl_data *td = sq_to_td(sq);
1253
	struct request_queue *q = td->queue;
1254 1255
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1256
	int ret;
1257 1258

	spin_lock_irq(q->queue_lock);
1259 1260 1261
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1262 1263 1264
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1265

1266 1267
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1268 1269
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1270 1271 1272 1273 1274 1275

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1276

1277 1278
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1279

1280 1281 1282 1283
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1284
	}
1285

1286 1287
	if (!dispatched)
		goto out_unlock;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1305
	spin_unlock_irq(q->queue_lock);
1306
}
1307

1308 1309 1310 1311 1312 1313 1314 1315
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1316
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1330 1331 1332
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1333 1334 1335
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1336
		blk_start_plug(&plug);
1337 1338
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1339
		blk_finish_plug(&plug);
1340 1341 1342
	}
}

1343 1344
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1345
{
1346 1347
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1348

1349
	if (v == U64_MAX)
1350
		return 0;
1351
	return __blkg_prfill_u64(sf, pd, v);
1352 1353
}

1354 1355
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1356
{
1357 1358
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1359

1360
	if (v == UINT_MAX)
1361
		return 0;
1362
	return __blkg_prfill_u64(sf, pd, v);
1363 1364
}

1365
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1366
{
1367 1368
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1369
	return 0;
1370 1371
}

1372
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1373
{
1374 1375
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1376
	return 0;
1377 1378
}

1379
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1380
{
1381
	struct throtl_service_queue *sq = &tg->service_queue;
1382
	struct cgroup_subsys_state *pos_css;
1383
	struct blkcg_gq *blkg;
1384

1385 1386
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1387 1388
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1389

1390 1391 1392 1393 1394 1395 1396
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1397 1398
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1417

1418 1419 1420 1421 1422 1423 1424 1425
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1426 1427
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1428

1429
	if (tg->flags & THROTL_TG_PENDING) {
1430
		tg_update_disptime(tg);
1431
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1432
	}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1452
		v = U64_MAX;
1453 1454 1455 1456 1457 1458 1459

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1460

1461
	tg_conf_updated(tg, false);
1462 1463
	ret = 0;
out_finish:
1464
	blkg_conf_finish(&ctx);
1465
	return ret ?: nbytes;
1466 1467
}

1468 1469
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1470
{
1471
	return tg_set_conf(of, buf, nbytes, off, true);
1472 1473
}

1474 1475
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1476
{
1477
	return tg_set_conf(of, buf, nbytes, off, false);
1478 1479
}

1480
static struct cftype throtl_legacy_files[] = {
1481 1482
	{
		.name = "throttle.read_bps_device",
1483
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1484
		.seq_show = tg_print_conf_u64,
1485
		.write = tg_set_conf_u64,
1486 1487 1488
	},
	{
		.name = "throttle.write_bps_device",
1489
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1490
		.seq_show = tg_print_conf_u64,
1491
		.write = tg_set_conf_u64,
1492 1493 1494
	},
	{
		.name = "throttle.read_iops_device",
1495
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1496
		.seq_show = tg_print_conf_uint,
1497
		.write = tg_set_conf_uint,
1498 1499 1500
	},
	{
		.name = "throttle.write_iops_device",
1501
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1502
		.seq_show = tg_print_conf_uint,
1503
		.write = tg_set_conf_uint,
1504 1505 1506
	},
	{
		.name = "throttle.io_service_bytes",
1507 1508
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1509
	},
1510 1511 1512 1513 1514
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1515 1516
	{
		.name = "throttle.io_serviced",
1517 1518
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1519
	},
1520 1521 1522 1523 1524
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1525 1526 1527
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1528
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1529 1530 1531 1532 1533
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1534 1535
	u64 bps_dft;
	unsigned int iops_dft;
1536
	char idle_time[26] = "";
1537
	char latency_time[26] = "";
1538 1539 1540

	if (!dname)
		return 0;
1541

S
Shaohua Li 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1553
	    tg->iops_conf[WRITE][off] == iops_dft &&
1554
	    (off != LIMIT_LOW ||
1555
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1556
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1557 1558
		return 0;

1559
	if (tg->bps_conf[READ][off] != U64_MAX)
1560
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1561
			tg->bps_conf[READ][off]);
1562
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1563
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1564
			tg->bps_conf[WRITE][off]);
1565
	if (tg->iops_conf[READ][off] != UINT_MAX)
1566
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1567
			tg->iops_conf[READ][off]);
1568
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1569
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1570
			tg->iops_conf[WRITE][off]);
1571
	if (off == LIMIT_LOW) {
1572
		if (tg->idletime_threshold_conf == ULONG_MAX)
1573 1574 1575
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1576
				tg->idletime_threshold_conf);
1577

1578
		if (tg->latency_target_conf == ULONG_MAX)
1579 1580 1581
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1582
				" latency=%lu", tg->latency_target_conf);
1583
	}
1584

1585 1586 1587
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1588 1589 1590
	return 0;
}

S
Shaohua Li 已提交
1591
static int tg_print_limit(struct seq_file *sf, void *v)
1592
{
S
Shaohua Li 已提交
1593
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1594 1595 1596 1597
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1598
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1599 1600 1601 1602 1603 1604
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1605
	unsigned long idle_time;
1606
	unsigned long latency_time;
1607
	int ret;
S
Shaohua Li 已提交
1608
	int index = of_cft(of)->private;
1609 1610 1611 1612 1613 1614 1615

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1616 1617 1618 1619
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1620

1621 1622
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1623 1624 1625
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1626
		u64 val = U64_MAX;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1654 1655
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1656 1657
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1658 1659 1660 1661
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1662 1663 1664 1665
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1666

S
Shaohua Li 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1696 1697
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1698
	}
1699 1700 1701 1702 1703 1704 1705

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1706 1707
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1708 1709 1710 1711 1712 1713 1714
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1724 1725 1726
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1727 1728 1729
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1730 1731 1732 1733
	},
	{ }	/* terminate */
};

1734
static void throtl_shutdown_wq(struct request_queue *q)
1735 1736 1737
{
	struct throtl_data *td = q->td;

1738
	cancel_work_sync(&td->dispatch_work);
1739 1740
}

T
Tejun Heo 已提交
1741
static struct blkcg_policy blkcg_policy_throtl = {
1742
	.dfl_cftypes		= throtl_files,
1743
	.legacy_cftypes		= throtl_legacy_files,
1744

1745
	.pd_alloc_fn		= throtl_pd_alloc,
1746
	.pd_init_fn		= throtl_pd_init,
1747
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1748
	.pd_offline_fn		= throtl_pd_offline,
1749
	.pd_free_fn		= throtl_pd_free,
1750 1751
};

S
Shaohua Li 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1791 1792 1793 1794 1795
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1796
	 *   configure a too big threshold) or 4 times of idletime threshold
1797
	 * - average think time is more than threshold
1798
	 * - IO latency is largely below threshold
1799
	 */
1800
	unsigned long time;
1801
	bool ret;
1802

1803 1804 1805 1806 1807 1808
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1809
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1810 1811 1812 1813 1814
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1836 1837

	if (time_after_eq(jiffies,
1838 1839
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1840
		return true;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1865
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1866 1867
		return false;

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1905 1906 1907 1908 1909
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1910
	throtl_log(&td->service_queue, "upgrade to max");
1911
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1912
	td->low_upgrade_time = jiffies;
1913
	td->scale = 0;
1914 1915 1916 1917 1918 1919 1920
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1921
		throtl_schedule_next_dispatch(sq, true);
1922 1923 1924
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1925
	throtl_schedule_next_dispatch(&td->service_queue, true);
1926 1927 1928
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1929 1930
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1931 1932
	td->scale /= 2;

1933
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1934 1935 1936 1937 1938
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1952 1953
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1954 1955 1956
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1985
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1986 1987 1988 1989 1990
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1991 1992
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2047 2048 2049
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2050 2051 2052 2053
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2054 2055 2056 2057 2058 2059 2060 2061

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2077

2078 2079
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2080

2081
				latency[rw] = tmp->total_latency;
2082

2083 2084 2085 2086 2087 2088 2089
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2090 2091 2092
		}
	}

2093 2094 2095 2096 2097 2098 2099 2100
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2101

2102 2103 2104 2105 2106
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2107

2108 2109 2110 2111 2112
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2113
	}
2114 2115 2116

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2117 2118 2119 2120 2121 2122
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2123 2124 2125 2126 2127 2128 2129
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2130 2131 2132
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2133 2134 2135
	/* fallback to root_blkg if we fail to get a blkg ref */
	if (bio->bi_css && (bio_associate_blkg(bio, tg_to_blkg(tg)) == -ENODEV))
		bio_associate_blkg(bio, bio->bi_disk->queue->root_blkg);
2136
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2137 2138 2139
#endif
}

2140 2141
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2142
{
2143
	struct throtl_qnode *qn = NULL;
2144
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2145
	struct throtl_service_queue *sq;
2146
	bool rw = bio_data_dir(bio);
2147
	bool throttled = false;
2148
	struct throtl_data *td = tg->td;
2149

2150 2151
	WARN_ON_ONCE(!rcu_read_lock_held());

2152
	/* see throtl_charge_bio() */
2153
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2154
		goto out;
2155 2156

	spin_lock_irq(q->queue_lock);
2157

2158 2159
	throtl_update_latency_buckets(td);

2160
	if (unlikely(blk_queue_bypass(q)))
2161
		goto out_unlock;
2162

2163
	blk_throtl_assoc_bio(tg, bio);
2164 2165
	blk_throtl_update_idletime(tg);

2166 2167
	sq = &tg->service_queue;

2168
again:
2169
	while (true) {
S
Shaohua Li 已提交
2170 2171 2172
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2173
		throtl_upgrade_check(tg);
2174 2175 2176
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2177

2178
		/* if above limits, break to queue */
2179
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2180
			tg->last_low_overflow_time[rw] = jiffies;
2181 2182
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2183 2184
				goto again;
			}
2185
			break;
2186
		}
2187 2188

		/* within limits, let's charge and dispatch directly */
2189
		throtl_charge_bio(tg, bio);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2202
		throtl_trim_slice(tg, rw);
2203 2204 2205 2206 2207 2208

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2209
		qn = &tg->qnode_on_parent[rw];
2210 2211 2212 2213
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2214 2215
	}

2216
	/* out-of-limit, queue to @tg */
2217 2218
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2219 2220 2221
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2222
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2223

S
Shaohua Li 已提交
2224 2225
	tg->last_low_overflow_time[rw] = jiffies;

2226
	td->nr_queued[rw]++;
2227
	throtl_add_bio_tg(bio, qn, tg);
2228
	throttled = true;
2229

2230 2231 2232 2233 2234 2235
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2236
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2237
		tg_update_disptime(tg);
2238
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2239 2240
	}

2241
out_unlock:
2242
	spin_unlock_irq(q->queue_lock);
2243
out:
S
Shaohua Li 已提交
2244
	bio_set_flag(bio, BIO_THROTTLED);
2245 2246 2247

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2248
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2249
#endif
2250
	return throttled;
2251 2252
}

2253
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2254 2255 2256 2257 2258 2259
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2260 2261
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2262 2263 2264 2265 2266
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2267
	latency = get_cpu_ptr(td->latency_buckets[op]);
2268 2269
	latency[index].total_latency += time;
	latency[index].samples++;
2270
	put_cpu_ptr(td->latency_buckets[op]);
2271 2272 2273 2274 2275 2276 2277
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2278
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2279 2280
}

2281 2282
void blk_throtl_bio_endio(struct bio *bio)
{
2283
	struct blkcg_gq *blkg;
2284
	struct throtl_grp *tg;
2285 2286 2287 2288
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2289
	int rw = bio_data_dir(bio);
2290

2291 2292
	blkg = bio->bi_blkg;
	if (!blkg)
2293
		return;
2294
	tg = blkg_to_tg(blkg);
2295

2296 2297 2298
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2299 2300
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2301
	if (!start_time || finish_time <= start_time)
2302 2303 2304
		return;

	lat = finish_time - start_time;
2305
	/* this is only for bio based driver */
2306 2307 2308
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2309

2310
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2311 2312 2313
		int bucket;
		unsigned int threshold;

2314
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2315
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2330
	}
2331 2332 2333
}
#endif

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2349
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2350
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2351
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2352 2353 2354 2355
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2366
	struct blkcg_gq *blkg;
2367
	struct cgroup_subsys_state *pos_css;
2368
	struct bio *bio;
2369
	int rw;
2370

2371
	queue_lockdep_assert_held(q);
2372
	rcu_read_lock();
2373

2374 2375 2376 2377 2378 2379
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2380
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2381
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2382

2383 2384 2385 2386
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2387 2388
	spin_unlock_irq(q->queue_lock);

2389
	/* all bios now should be in td->service_queue, issue them */
2390
	for (rw = READ; rw <= WRITE; rw++)
2391 2392
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2393
			generic_make_request(bio);
2394 2395 2396 2397

	spin_lock_irq(q->queue_lock);
}

2398 2399 2400
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2401
	int ret;
2402 2403 2404 2405

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2406
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2407
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2408 2409 2410 2411 2412
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2413
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2414 2415
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2416 2417 2418
		kfree(td);
		return -ENOMEM;
	}
2419

2420
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2421
	throtl_service_queue_init(&td->service_queue);
2422

2423
	q->td = td;
2424
	td->queue = q;
V
Vivek Goyal 已提交
2425

2426
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2427
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2428 2429
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2430

2431
	/* activate policy */
T
Tejun Heo 已提交
2432
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2433
	if (ret) {
2434 2435
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2436
		kfree(td);
2437
	}
2438
	return ret;
2439 2440 2441 2442
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2443
	BUG_ON(!q->td);
2444
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2445
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2446 2447
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2448
	kfree(q->td);
2449 2450
}

2451 2452 2453
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2454
	int i;
2455 2456 2457 2458

	td = q->td;
	BUG_ON(!td);

2459
	if (blk_queue_nonrot(q)) {
2460
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2461 2462
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2463
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2464
		td->filtered_latency = LATENCY_FILTERED_HD;
2465 2466 2467 2468
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2469
	}
2470 2471 2472 2473
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2474

2475
	td->track_bio_latency = !queue_is_rq_based(q);
2476 2477
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2506 2507
static int __init throtl_init(void)
{
2508 2509 2510 2511
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2512
	return blkcg_policy_register(&blkcg_policy_throtl);
2513 2514 2515
}

module_init(throtl_init);