efx.c 88.8 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 83 84 85
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 88
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 91
};

92 93 94 95 96 97
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

98 99 100 101 102 103
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

104 105 106 107 108 109 110 111 112
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
113 114
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
115
 *
116
 * This is only used in MSI-X interrupt mode
117
 */
118 119
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
120 121
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
122 123 124 125 126 127 128

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
129 130
 * monitor.
 * On Falcon-based NICs, this will:
131 132
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
133 134
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
135
 */
S
stephen hemminger 已提交
136
static unsigned int efx_monitor_interval = 1 * HZ;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169
 * The default (0) means to assign an interrupt to each core.
170 171 172 173 174
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

175 176
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
177 178
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

179
static unsigned irq_adapt_low_thresh = 8000;
180 181 182 183
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

184
static unsigned irq_adapt_high_thresh = 16000;
185 186 187 188
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

189 190 191 192 193 194 195
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

196 197 198 199 200
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
201

202
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
203
static void efx_soft_disable_interrupts(struct efx_nic *efx);
204
static void efx_remove_channel(struct efx_channel *channel);
205
static void efx_remove_channels(struct efx_nic *efx);
206
static const struct efx_channel_type efx_default_channel_type;
207
static void efx_remove_port(struct efx_nic *efx);
208
static void efx_init_napi_channel(struct efx_channel *channel);
209
static void efx_fini_napi(struct efx_nic *efx);
210
static void efx_fini_napi_channel(struct efx_channel *channel);
211 212 213
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
214 215 216

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
217
		if ((efx->state == STATE_READY) ||	\
218
		    (efx->state == STATE_RECOVERY) ||	\
219
		    (efx->state == STATE_DISABLED))	\
220 221 222
			ASSERT_RTNL();			\
	} while (0)

223 224
static int efx_check_disabled(struct efx_nic *efx)
{
225
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 227 228 229 230 231 232
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
246
static int efx_process_channel(struct efx_channel *channel, int budget)
247
{
248
	struct efx_tx_queue *tx_queue;
249
	int spent;
250

251
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
252
		return 0;
253

254 255 256 257 258
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		tx_queue->pkts_compl = 0;
		tx_queue->bytes_compl = 0;
	}

259
	spent = efx_nic_process_eventq(channel, budget);
260 261 262 263
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

264
		efx_rx_flush_packet(channel);
265
		efx_fast_push_rx_descriptors(rx_queue, true);
266 267
	}

268 269 270 271 272 273 274 275
	/* Update BQL */
	efx_for_each_channel_tx_queue(tx_queue, channel) {
		if (tx_queue->bytes_compl) {
			netdev_tx_completed_queue(tx_queue->core_txq,
				tx_queue->pkts_compl, tx_queue->bytes_compl);
		}
	}

276
	return spent;
277 278 279 280 281 282 283 284 285 286 287
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
288
	struct efx_nic *efx = channel->efx;
289
	int spent;
290

291 292 293
	if (!efx_channel_lock_napi(channel))
		return budget;

294 295 296
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
297

298
	spent = efx_process_channel(channel, budget);
299

300
	if (spent < budget) {
301
		if (efx_channel_has_rx_queue(channel) &&
302 303 304 305
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
306 307
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
308
					efx->type->push_irq_moderation(channel);
309
				}
310 311
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
312 313 314
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
315
					efx->type->push_irq_moderation(channel);
316
				}
317 318 319 320 321
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

322 323
		efx_filter_rfs_expire(channel);

324
		/* There is no race here; although napi_disable() will
325
		 * only wait for napi_complete(), this isn't a problem
326
		 * since efx_nic_eventq_read_ack() will have no effect if
327 328
		 * interrupts have already been disabled.
		 */
329
		napi_complete(napi);
330
		efx_nic_eventq_read_ack(channel);
331 332
	}

333
	efx_channel_unlock_napi(channel);
334
	return spent;
335 336 337 338 339 340 341 342 343
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
344 345 346
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

347
	netif_dbg(efx, probe, efx->net_dev,
348
		  "chan %d create event queue\n", channel->channel);
349

350 351 352 353 354 355
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

356
	return efx_nic_probe_eventq(channel);
357 358 359
}

/* Prepare channel's event queue */
360
static int efx_init_eventq(struct efx_channel *channel)
361
{
362
	struct efx_nic *efx = channel->efx;
363 364 365 366
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

367
	netif_dbg(efx, drv, efx->net_dev,
368
		  "chan %d init event queue\n", channel->channel);
369

370 371
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
372
		efx->type->push_irq_moderation(channel);
373 374 375 376
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
377 378
}

379
/* Enable event queue processing and NAPI */
380
void efx_start_eventq(struct efx_channel *channel)
381 382 383 384
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

385
	/* Make sure the NAPI handler sees the enabled flag set */
386 387 388
	channel->enabled = true;
	smp_wmb();

389
	efx_channel_enable(channel);
390 391 392 393 394
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
395
void efx_stop_eventq(struct efx_channel *channel)
396 397 398 399 400
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
401 402
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
403 404 405
	channel->enabled = false;
}

406 407
static void efx_fini_eventq(struct efx_channel *channel)
{
408 409 410
	if (!channel->eventq_init)
		return;

411 412
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
413

414
	efx_nic_fini_eventq(channel);
415
	channel->eventq_init = false;
416 417 418 419
}

static void efx_remove_eventq(struct efx_channel *channel)
{
420 421
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
422

423
	efx_nic_remove_eventq(channel);
424 425 426 427 428 429 430 431
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

432
/* Allocate and initialise a channel structure. */
433 434 435 436 437 438 439 440
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

441 442 443
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
444

445 446 447
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
448

449 450 451 452 453 454
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
455

456 457 458 459
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
460

461 462 463 464 465 466 467 468 469 470 471 472 473
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
474

475 476 477 478 479 480 481 482
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
483

484 485 486
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
487
			tx_queue->channel = channel;
488 489
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 491 492
	}

	rx_queue = &channel->rx_queue;
493 494
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 496 497 498 499 500
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

501 502 503 504 505 506
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

507 508
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
509

510 511 512 513
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

514 515
	rc = efx_probe_eventq(channel);
	if (rc)
516
		goto fail;
517 518 519 520

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
521
			goto fail;
522 523 524 525 526
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
527
			goto fail;
528 529 530 531
	}

	return 0;

532 533
fail:
	efx_remove_channel(channel);
534 535 536
	return rc;
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
555

556 557 558 559
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

560 561
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
562 563
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
564 565
}

566 567 568 569 570 571 572 573
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

574 575 576 577 578 579
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

597 598 599 600
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
601
static void efx_start_datapath(struct efx_nic *efx)
602
{
603
	bool old_rx_scatter = efx->rx_scatter;
604 605 606
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
607
	size_t rx_buf_len;
608

609 610 611 612
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
613
	efx->rx_dma_len = (efx->rx_prefix_size +
614 615
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
616
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
617
		      efx->rx_ip_align + efx->rx_dma_len);
618
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
619
		efx->rx_scatter = efx->type->always_rx_scatter;
620 621
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
622
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
623
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
624 625 626
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
627 628 629 630 631 632 633 634
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

635 636 637 638 639 640 641 642 643 644 645
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
646

J
Jon Cooper 已提交
647
	/* RX filters may also have scatter-enabled flags */
648
	if (efx->rx_scatter != old_rx_scatter)
649
		efx->type->filter_update_rx_scatter(efx);
650

651 652 653 654 655 656 657 658 659 660
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

661 662
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
663
		efx_for_each_channel_tx_queue(tx_queue, channel) {
664
			efx_init_tx_queue(tx_queue);
665 666
			atomic_inc(&efx->active_queues);
		}
667

668
		efx_for_each_channel_rx_queue(rx_queue, channel) {
669
			efx_init_rx_queue(rx_queue);
670
			atomic_inc(&efx->active_queues);
671 672 673
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
674
		}
675

676
		WARN_ON(channel->rx_pkt_n_frags);
677 678
	}

679 680
	efx_ptp_start_datapath(efx);

681 682
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
683 684
}

685
static void efx_stop_datapath(struct efx_nic *efx)
686 687 688 689
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
690
	int rc;
691 692 693 694

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

695 696
	efx_ptp_stop_datapath(efx);

697 698 699 700 701 702
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

703
	efx_for_each_channel(channel, efx) {
704 705 706 707 708 709 710 711 712 713
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
714
	}
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
734 735
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
736
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738 739 740 741 742 743 744 745
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

746 747
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
748 749 750

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
751
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
752 753
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
754
	channel->type->post_remove(channel);
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
770
	unsigned i, next_buffer_table = 0;
771
	int rc, rc2;
772 773 774 775

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
798

799
	efx_device_detach_sync(efx);
800
	efx_stop_all(efx);
B
Ben Hutchings 已提交
801
	efx_soft_disable_interrupts(efx);
802

803
	/* Clone channels (where possible) */
804 805
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
806 807 808
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

827 828
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
829 830

	for (i = 0; i < efx->n_channels; i++) {
831 832 833 834 835 836 837
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
838
	}
839

840
out:
841 842 843 844 845 846 847 848 849
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
850

851 852 853 854 855 856 857 858 859 860
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
861 862 863 864 865 866 867 868 869 870 871 872 873 874
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

875
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
876
{
877
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 879
}

880 881
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
882
	.post_remove		= efx_channel_dummy_op_void,
883 884 885 886 887 888 889 890 891 892
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

893 894 895 896
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

897 898 899 900 901 902 903 904 905 906
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
907
void efx_link_status_changed(struct efx_nic *efx)
908
{
909 910
	struct efx_link_state *link_state = &efx->link_state;

911 912 913 914 915 916 917
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

918
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
919 920
		efx->n_link_state_changes++;

921
		if (link_state->up)
922 923 924 925 926 927
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
928
	if (link_state->up)
929
		netif_info(efx, link, efx->net_dev,
930
			   "link up at %uMbps %s-duplex (MTU %d)\n",
931
			   link_state->speed, link_state->fd ? "full" : "half",
932
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
933
	else
934
		netif_info(efx, link, efx->net_dev, "link down\n");
935 936
}

B
Ben Hutchings 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

950
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

965 966
static void efx_fini_port(struct efx_nic *efx);

967 968 969 970 971 972 973 974 975 976
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
977 978 979 980 981 982 983 984
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
985
{
B
Ben Hutchings 已提交
986 987
	enum efx_phy_mode phy_mode;
	int rc;
988

B
Ben Hutchings 已提交
989
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
990

B
Ben Hutchings 已提交
991 992
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
993 994 995 996 997
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
998
	rc = efx->type->reconfigure_port(efx);
999

B
Ben Hutchings 已提交
1000 1001
	if (rc)
		efx->phy_mode = phy_mode;
1002

B
Ben Hutchings 已提交
1003
	return rc;
1004 1005 1006 1007
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
1008
int efx_reconfigure_port(struct efx_nic *efx)
1009
{
B
Ben Hutchings 已提交
1010 1011
	int rc;

1012 1013 1014
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1015
	rc = __efx_reconfigure_port(efx);
1016
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1017 1018

	return rc;
1019 1020
}

1021 1022 1023
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1024 1025 1026 1027 1028
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1029
	if (efx->port_enabled)
1030
		efx_mac_reconfigure(efx);
1031 1032 1033
	mutex_unlock(&efx->mac_lock);
}

1034 1035 1036 1037
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1038
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039

1040 1041 1042
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1043 1044
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1045
	if (rc)
1046
		return rc;
1047

1048
	/* Initialise MAC address to permanent address */
1049
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1050 1051 1052 1053 1054 1055 1056 1057

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1058
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059

1060 1061
	mutex_lock(&efx->mac_lock);

1062
	rc = efx->phy_op->init(efx);
1063
	if (rc)
1064
		goto fail1;
1065

1066
	efx->port_initialized = true;
1067

B
Ben Hutchings 已提交
1068 1069
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1071 1072 1073

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1074
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1075 1076
		goto fail2;

1077
	mutex_unlock(&efx->mac_lock);
1078
	return 0;
1079

1080
fail2:
1081
	efx->phy_op->fini(efx);
1082 1083
fail1:
	mutex_unlock(&efx->mac_lock);
1084
	return rc;
1085 1086 1087 1088
}

static void efx_start_port(struct efx_nic *efx)
{
1089
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 1091 1092
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1093
	efx->port_enabled = true;
1094

1095
	/* Ensure MAC ingress/egress is enabled */
1096
	efx_mac_reconfigure(efx);
1097

1098 1099 1100
	mutex_unlock(&efx->mac_lock);
}

1101 1102 1103 1104 1105
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1106 1107
static void efx_stop_port(struct efx_nic *efx)
{
1108
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1109

1110 1111
	EFX_ASSERT_RESET_SERIALISED(efx);

1112
	mutex_lock(&efx->mac_lock);
1113
	efx->port_enabled = false;
1114 1115 1116
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1117 1118
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1119 1120 1121 1122

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1123 1124 1125 1126
}

static void efx_fini_port(struct efx_nic *efx)
{
1127
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1128 1129 1130 1131

	if (!efx->port_initialized)
		return;

1132
	efx->phy_op->fini(efx);
1133
	efx->port_initialized = false;
1134

1135
	efx->link_state.up = false;
1136 1137 1138 1139 1140
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1141
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1142

1143
	efx->type->remove_port(efx);
1144 1145 1146 1147 1148 1149 1150 1151
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1223 1224 1225 1226 1227
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1228
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1229
	int rc, bar;
1230

1231
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1232

1233 1234
	bar = efx->type->mem_bar;

1235 1236
	rc = pci_enable_device(pci_dev);
	if (rc) {
1237 1238
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1250
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1251
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1252 1253 1254
			if (rc == 0)
				break;
		}
1255 1256 1257
		dma_mask >>= 1;
	}
	if (rc) {
1258 1259
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1260 1261
		goto fail2;
	}
1262 1263
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1264

1265 1266
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1267
	if (rc) {
1268 1269
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1270 1271 1272
		rc = -EIO;
		goto fail3;
	}
1273
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1274
	if (!efx->membase) {
1275 1276
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1277
			  (unsigned long long)efx->membase_phys, mem_map_size);
1278 1279 1280
		rc = -ENOMEM;
		goto fail4;
	}
1281 1282
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1283 1284
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1285 1286 1287 1288

	return 0;

 fail4:
1289
	pci_release_region(efx->pci_dev, bar);
1290
 fail3:
1291
	efx->membase_phys = 0;
1292 1293 1294 1295 1296 1297 1298 1299
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1300 1301
	int bar;

1302
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1303 1304 1305 1306 1307 1308 1309

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1310 1311
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1312
		efx->membase_phys = 0;
1313 1314
	}

1315 1316 1317
	/* Don't disable bus-mastering if VFs are assigned */
	if (!pci_vfs_assigned(efx->pci_dev))
		pci_disable_device(efx->pci_dev);
1318 1319
}

1320 1321 1322 1323 1324 1325 1326
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1327 1328
}

1329
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1330
{
1331
	cpumask_var_t thread_mask;
1332
	unsigned int count;
1333
	int cpu;
1334

1335 1336 1337 1338 1339 1340 1341 1342
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1343

1344 1345 1346 1347 1348
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
1349
					   topology_sibling_cpumask(cpu));
1350 1351 1352 1353
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1354 1355
	}

1356 1357 1358
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1370
	}
1371
#endif
1372 1373 1374 1375 1376 1377 1378

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1379
static int efx_probe_interrupts(struct efx_nic *efx)
1380
{
1381 1382
	unsigned int extra_channels = 0;
	unsigned int i, j;
1383
	int rc;
1384

1385 1386 1387 1388
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1389
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1390
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1391
		unsigned int n_channels;
1392

1393
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1394 1395
		if (separate_tx_channels)
			n_channels *= 2;
1396
		n_channels += extra_channels;
1397
		n_channels = min(n_channels, efx->max_channels);
1398

B
Ben Hutchings 已提交
1399
		for (i = 0; i < n_channels; i++)
1400
			xentries[i].entry = i;
1401 1402 1403 1404 1405 1406 1407 1408
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1409 1410
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1411
				  " available (%d < %u).\n", rc, n_channels);
1412 1413
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1414
			n_channels = rc;
1415 1416
		}

1417
		if (rc > 0) {
B
Ben Hutchings 已提交
1418
			efx->n_channels = n_channels;
1419 1420
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1421
			if (separate_tx_channels) {
1422 1423 1424 1425
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1426
			} else {
1427 1428
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1429
			}
1430
			for (i = 0; i < efx->n_channels; i++)
1431 1432
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1433 1434 1435 1436 1437
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1438
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1439 1440
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1441 1442
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1443
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1444
		} else {
1445 1446
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1447 1448 1449 1450 1451 1452
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1453
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1454 1455
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1456 1457
		efx->legacy_irq = efx->pci_dev->irq;
	}
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1474
	/* RSS might be usable on VFs even if it is disabled on the PF */
1475 1476 1477 1478 1479 1480 1481 1482 1483
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1484

1485
	return 0;
1486 1487
}

1488
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1489
{
1490 1491
	struct efx_channel *channel, *end_channel;
	int rc;
1492

1493 1494
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1495 1496
	efx->irq_soft_enabled = true;
	smp_wmb();
1497 1498

	efx_for_each_channel(channel, efx) {
1499 1500 1501 1502 1503
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1504 1505 1506 1507
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1521 1522
}

B
Ben Hutchings 已提交
1523
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1524 1525 1526
{
	struct efx_channel *channel;

1527 1528 1529
	if (efx->state == STATE_DISABLED)
		return;

1530 1531
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1532 1533 1534 1535
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1536 1537 1538 1539 1540 1541 1542
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1543
		if (!channel->type->keep_eventq)
1544
			efx_fini_eventq(channel);
1545
	}
1546 1547 1548

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1549 1550
}

1551
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1552
{
1553 1554
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1555 1556 1557 1558 1559 1560 1561 1562

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1563
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1564 1565

	efx_for_each_channel(channel, efx) {
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1584
		if (channel->type->keep_eventq)
1585
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1586 1587
	}

1588 1589 1590
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1604
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1605 1606
}

1607 1608 1609 1610 1611
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1612
	efx_for_each_channel(channel, efx)
1613 1614 1615 1616 1617 1618 1619 1620
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1621
static void efx_set_channels(struct efx_nic *efx)
1622
{
1623 1624 1625
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1626
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1627
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1628

1629 1630
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1631 1632 1633
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1634 1635 1636 1637 1638
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1639 1640 1641 1642
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1643 1644 1645 1646 1647 1648
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1649
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1650 1651

	/* Carry out hardware-type specific initialisation */
1652
	rc = efx->type->probe(efx);
1653 1654 1655
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1656
	/* Determine the number of channels and queues by trying to hook
1657
	 * in MSI-X interrupts. */
1658 1659
	rc = efx_probe_interrupts(efx);
	if (rc)
1660
		goto fail1;
1661

1662 1663
	efx_set_channels(efx);

1664 1665 1666
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1667

1668
	if (efx->n_channels > 1)
1669 1670 1671
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1672

1673 1674
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1675 1676

	/* Initialise the interrupt moderation settings */
1677 1678
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1679 1680

	return 0;
1681

1682 1683 1684
fail2:
	efx_remove_interrupts(efx);
fail1:
1685 1686
	efx->type->remove(efx);
	return rc;
1687 1688 1689 1690
}

static void efx_remove_nic(struct efx_nic *efx)
{
1691
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1692 1693

	efx_remove_interrupts(efx);
1694
	efx->type->remove(efx);
1695 1696
}

1697 1698 1699 1700 1701
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1702 1703
	init_rwsem(&efx->filter_sem);
	down_write(&efx->filter_sem);
1704 1705
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1706
		goto out_unlock;
1707 1708 1709 1710 1711 1712 1713 1714

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
1715 1716
			rc = -ENOMEM;
			goto out_unlock;
1717 1718 1719
		}
	}
#endif
1720 1721 1722
out_unlock:
	up_write(&efx->filter_sem);
	return rc;
1723 1724 1725 1726 1727 1728 1729
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
1730
	down_write(&efx->filter_sem);
1731
	efx->type->filter_table_remove(efx);
1732
	up_write(&efx->filter_sem);
1733 1734 1735 1736
}

static void efx_restore_filters(struct efx_nic *efx)
{
1737
	down_read(&efx->filter_sem);
1738
	efx->type->filter_table_restore(efx);
1739
	up_read(&efx->filter_sem);
1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1754
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1755 1756 1757 1758 1759
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1760
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1761 1762 1763
		goto fail2;
	}

1764 1765 1766 1767 1768
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1769
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1770

1771 1772 1773 1774 1775 1776 1777 1778
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1779 1780 1781 1782
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1783
		goto fail4;
B
Ben Hutchings 已提交
1784 1785
	}

1786 1787
	rc = efx_probe_channels(efx);
	if (rc)
1788
		goto fail5;
1789

1790 1791
	return 0;

1792
 fail5:
1793
	efx_remove_filters(efx);
1794 1795 1796 1797
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1798 1799 1800 1801 1802 1803 1804 1805
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1806 1807 1808 1809 1810 1811
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1812
 */
1813 1814 1815
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1816
	BUG_ON(efx->state == STATE_DISABLED);
1817 1818 1819

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1820 1821
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1822 1823 1824
		return;

	efx_start_port(efx);
1825
	efx_start_datapath(efx);
1826

1827 1828
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1829 1830
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1831 1832 1833 1834 1835

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1836 1837 1838 1839 1840
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1841

1842
	efx->type->start_stats(efx);
1843 1844 1845 1846
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1847 1848
}

1849 1850 1851 1852 1853
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1854 1855 1856 1857 1858 1859 1860 1861
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1862 1863 1864 1865 1866 1867 1868
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1869
	efx->type->stop_stats(efx);
1870 1871
	efx_stop_port(efx);

1872 1873 1874 1875 1876 1877
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1878 1879 1880
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1881 1882 1883 1884
}

static void efx_remove_all(struct efx_nic *efx)
{
1885
	efx_remove_channels(efx);
1886
	efx_remove_filters(efx);
1887 1888 1889
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1900
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1901
{
1902 1903
	if (usecs == 0)
		return 0;
1904
	if (usecs * 1000 < quantum_ns)
1905
		return 1; /* never round down to 0 */
1906
	return usecs * 1000 / quantum_ns;
1907 1908
}

1909
/* Set interrupt moderation parameters */
1910 1911 1912
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1913
{
1914
	struct efx_channel *channel;
1915 1916 1917 1918 1919
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1920 1921 1922

	EFX_ASSERT_RESET_SERIALISED(efx);

1923
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1924 1925
		return -EINVAL;

1926 1927 1928
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1929 1930 1931 1932 1933 1934 1935
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1936
	efx->irq_rx_adaptive = rx_adaptive;
1937
	efx->irq_rx_moderation = rx_ticks;
1938
	efx_for_each_channel(channel, efx) {
1939
		if (efx_channel_has_rx_queue(channel))
1940
			channel->irq_moderation = rx_ticks;
1941
		else if (efx_channel_has_tx_queues(channel))
1942 1943
			channel->irq_moderation = tx_ticks;
	}
1944 1945

	return 0;
1946 1947
}

1948 1949 1950
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1951 1952 1953 1954
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1955
	*rx_adaptive = efx->irq_rx_adaptive;
1956 1957 1958
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1959 1960 1961 1962 1963 1964 1965 1966

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1967
		*tx_usecs = DIV_ROUND_UP(
1968
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1969 1970
			efx->timer_quantum_ns,
			1000);
1971 1972
}

1973 1974 1975 1976 1977 1978
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1979
/* Run periodically off the general workqueue */
1980 1981 1982 1983 1984
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1985 1986 1987
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1988
	BUG_ON(efx->type->monitor == NULL);
1989 1990 1991

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1992 1993 1994 1995 1996 1997
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
2014
	struct efx_nic *efx = netdev_priv(net_dev);
2015
	struct mii_ioctl_data *data = if_mii(ifr);
2016

2017
	if (cmd == SIOCSHWTSTAMP)
2018 2019 2020
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2021

2022 2023 2024 2025 2026 2027
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2028 2029 2030 2031 2032 2033 2034 2035
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2036 2037 2038 2039 2040 2041 2042
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2043 2044
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2045 2046
}

2047
static void efx_init_napi(struct efx_nic *efx)
2048 2049 2050
{
	struct efx_channel *channel;

2051 2052
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2053 2054 2055 2056
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2057
	if (channel->napi_dev) {
2058
		netif_napi_del(&channel->napi_str);
2059 2060
		napi_hash_del(&channel->napi_str);
	}
2061
	channel->napi_dev = NULL;
2062 2063 2064 2065 2066 2067
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2068 2069
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2086
	struct efx_nic *efx = netdev_priv(net_dev);
2087 2088
	struct efx_channel *channel;

2089
	efx_for_each_channel(channel, efx)
2090 2091 2092 2093 2094
		efx_schedule_channel(channel);
}

#endif

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2126 2127 2128 2129 2130 2131 2132
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
2133
int efx_net_open(struct net_device *net_dev)
2134
{
2135
	struct efx_nic *efx = netdev_priv(net_dev);
2136 2137
	int rc;

2138 2139
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2140

2141 2142 2143
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2144 2145
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2146 2147
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2148

2149 2150 2151 2152
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2153
	efx_start_all(efx);
2154
	efx_selftest_async_start(efx);
2155 2156 2157 2158 2159 2160 2161
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
2162
int efx_net_stop(struct net_device *net_dev)
2163
{
2164
	struct efx_nic *efx = netdev_priv(net_dev);
2165

2166 2167
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2168

2169 2170
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2171 2172 2173 2174

	return 0;
}

2175
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2176 2177
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2178
{
2179
	struct efx_nic *efx = netdev_priv(net_dev);
2180

2181
	spin_lock_bh(&efx->stats_lock);
2182
	efx->type->update_stats(efx, NULL, stats);
2183 2184
	spin_unlock_bh(&efx->stats_lock);

2185 2186 2187 2188 2189 2190
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2191
	struct efx_nic *efx = netdev_priv(net_dev);
2192

2193 2194 2195
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2196

2197
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2198 2199 2200 2201 2202 2203
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2204
	struct efx_nic *efx = netdev_priv(net_dev);
2205
	int rc;
2206

2207 2208 2209
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2210 2211 2212
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2213
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2214

2215 2216 2217
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2218
	mutex_lock(&efx->mac_lock);
2219
	net_dev->mtu = new_mtu;
2220
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2221 2222
	mutex_unlock(&efx->mac_lock);

2223
	efx_start_all(efx);
2224
	netif_device_attach(efx->net_dev);
2225
	return 0;
2226 2227 2228 2229
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2230
	struct efx_nic *efx = netdev_priv(net_dev);
2231
	struct sockaddr *addr = data;
2232
	u8 *new_addr = addr->sa_data;
2233 2234
	u8 old_addr[6];
	int rc;
2235 2236

	if (!is_valid_ether_addr(new_addr)) {
2237 2238 2239
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2240
		return -EADDRNOTAVAIL;
2241 2242
	}

2243 2244
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2245
	ether_addr_copy(net_dev->dev_addr, new_addr);
2246 2247
	if (efx->type->set_mac_address) {
		rc = efx->type->set_mac_address(efx);
2248 2249 2250 2251 2252
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2253 2254

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2255
	mutex_lock(&efx->mac_lock);
2256
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2257
	mutex_unlock(&efx->mac_lock);
2258 2259 2260 2261

	return 0;
}

2262
/* Context: netif_addr_lock held, BHs disabled. */
2263
static void efx_set_rx_mode(struct net_device *net_dev)
2264
{
2265
	struct efx_nic *efx = netdev_priv(net_dev);
2266

2267 2268 2269
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2270 2271
}

2272
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2273 2274 2275 2276 2277
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2278
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2279 2280 2281 2282

	return 0;
}

2283
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2284 2285
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2286
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2287 2288 2289 2290 2291 2292
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2293
	.ndo_set_rx_mode	= efx_set_rx_mode,
2294
	.ndo_set_features	= efx_set_features,
2295
#ifdef CONFIG_SFC_SRIOV
2296 2297 2298 2299
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2300
	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2301
	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2302
#endif
S
Stephen Hemminger 已提交
2303 2304 2305
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2306
	.ndo_setup_tc		= efx_setup_tc,
2307 2308 2309
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2310 2311 2312
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2313 2314
};

2315 2316 2317 2318 2319 2320 2321
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2322 2323 2324
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2325
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2326

2327
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2328 2329
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2330 2331 2332 2333 2334 2335 2336 2337

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2338 2339 2340 2341 2342 2343
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2344
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);

	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
			    const char *buf, size_t count)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
	bool enable = count > 0 && *buf != '0';

	mcdi->logging_enabled = enable;
	return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
#endif

2368 2369 2370
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2371
	struct efx_channel *channel;
2372 2373 2374 2375
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2376 2377
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2378
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2379
	net_dev->ethtool_ops = &efx_ethtool_ops;
2380
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2381

2382
	rtnl_lock();
2383

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2397 2398 2399
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2400
	efx_update_name(efx);
2401

2402 2403 2404
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2405 2406 2407 2408
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2409 2410
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2411 2412
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2413 2414
	}

2415 2416
	efx_associate(efx);

2417
	rtnl_unlock();
2418

B
Ben Hutchings 已提交
2419 2420
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2421 2422
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2423 2424
		goto fail_registered;
	}
2425 2426 2427 2428 2429 2430 2431 2432
#ifdef CONFIG_SFC_MCDI_LOGGING
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
	if (rc) {
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
		goto fail_attr_mcdi_logging;
	}
#endif
B
Ben Hutchings 已提交
2433

2434
	return 0;
B
Ben Hutchings 已提交
2435

2436 2437 2438 2439
#ifdef CONFIG_SFC_MCDI_LOGGING
fail_attr_mcdi_logging:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
#endif
2440 2441
fail_registered:
	rtnl_lock();
2442
	efx_dissociate(efx);
2443
	unregister_netdevice(net_dev);
2444
fail_locked:
2445
	efx->state = STATE_UNINIT;
2446
	rtnl_unlock();
2447
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2448
	return rc;
2449 2450 2451 2452 2453 2454 2455
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2456
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2457

2458 2459 2460 2461 2462 2463 2464 2465
	if (efx_dev_registered(efx)) {
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
#ifdef CONFIG_SFC_MCDI_LOGGING
		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
#endif
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
		unregister_netdev(efx->net_dev);
	}
2466 2467 2468 2469 2470 2471 2472 2473
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2474 2475
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2476
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2477 2478 2479
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2480 2481 2482
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2483
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2484
	efx_disable_interrupts(efx);
2485 2486

	mutex_lock(&efx->mac_lock);
2487 2488
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH)
2489
		efx->phy_op->fini(efx);
2490
	efx->type->fini(efx);
2491 2492
}

B
Ben Hutchings 已提交
2493 2494 2495 2496 2497
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2498
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2499 2500 2501
{
	int rc;

B
Ben Hutchings 已提交
2502
	EFX_ASSERT_RESET_SERIALISED(efx);
2503

2504 2505 2506 2507
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2508
	rc = efx->type->init(efx);
2509
	if (rc) {
2510
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2511
		goto fail;
2512 2513
	}

2514 2515 2516
	if (!ok)
		goto fail;

2517 2518
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
	    method != RESET_TYPE_DATAPATH) {
2519 2520 2521
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2522 2523
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2524 2525
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2526 2527
	}

2528 2529 2530
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2531 2532 2533 2534 2535 2536 2537 2538 2539

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2540
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2541
	efx_restore_filters(efx);
2542
	up_read(&efx->filter_sem);
2543 2544
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2545 2546 2547 2548 2549 2550 2551 2552 2553

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2554 2555 2556

	mutex_unlock(&efx->mac_lock);

2557 2558 2559
	return rc;
}

2560 2561
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2562
 *
2563
 * Caller must hold the rtnl_lock.
2564
 */
2565
int efx_reset(struct efx_nic *efx, enum reset_type method)
2566
{
2567 2568
	int rc, rc2;
	bool disabled;
2569

2570 2571
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2572

2573
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2574
	efx_reset_down(efx, method);
2575

2576
	rc = efx->type->reset(efx, method);
2577
	if (rc) {
2578
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2579
		goto out;
2580 2581
	}

2582 2583 2584
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2585 2586 2587 2588
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2589 2590 2591 2592 2593 2594 2595

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2596
out:
2597
	/* Leave device stopped if necessary */
2598 2599 2600
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2601 2602 2603 2604 2605
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2606 2607
	}

2608
	if (disabled) {
2609
		dev_close(efx->net_dev);
2610
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2611 2612
		efx->state = STATE_DISABLED;
	} else {
2613
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2614
		netif_device_attach(efx->net_dev);
2615
	}
2616 2617 2618
	return rc;
}

2619 2620 2621 2622 2623
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2624
int efx_try_recovery(struct efx_nic *efx)
2625 2626 2627 2628 2629 2630 2631
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2632
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2661 2662 2663 2664 2665
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2666
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2667 2668 2669 2670 2671 2672
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2673 2674 2675
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2676 2677 2678 2679
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2680

2681
	if (!pending)
2682 2683
		return;

2684
	rtnl_lock();
2685 2686 2687 2688 2689 2690

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2691
		(void)efx_reset(efx, method);
2692

2693
	rtnl_unlock();
2694 2695 2696 2697 2698 2699
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2700 2701 2702 2703 2704 2705 2706
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2707 2708 2709
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2710
	case RESET_TYPE_RECOVER_OR_ALL:
2711 2712
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2713
	case RESET_TYPE_RECOVER_OR_DISABLE:
2714
	case RESET_TYPE_DATAPATH:
2715
	case RESET_TYPE_MC_BIST:
2716
	case RESET_TYPE_MCDI_TIMEOUT:
2717
		method = type;
2718 2719
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2720 2721
		break;
	default:
2722
		method = efx->type->map_reset_reason(type);
2723 2724 2725
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2726 2727
		break;
	}
2728

2729
	set_bit(method, &efx->reset_pending);
2730 2731 2732 2733 2734 2735 2736
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2737

2738 2739 2740 2741
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2742
	queue_work(reset_workqueue, &efx->reset_work);
2743 2744 2745 2746 2747 2748 2749 2750 2751
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2752
static const struct pci_device_id efx_pci_table[] = {
2753 2754
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2755
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2756 2757
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2758
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2759
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2760
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2761
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2762
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2763 2764
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2765 2766
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2767 2768
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2769 2770 2771 2772 2773
	{0}			/* end of list */
};

/**************************************************************************
 *
2774
 * Dummy PHY/MAC operations
2775
 *
2776
 * Can be used for some unimplemented operations
2777 2778 2779 2780 2781 2782 2783 2784 2785
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2786 2787

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2788 2789 2790
{
	return false;
}
2791

2792
static const struct efx_phy_operations efx_dummy_phy_operations = {
2793
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2794
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2795
	.poll		 = efx_port_dummy_op_poll,
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2808
static int efx_init_struct(struct efx_nic *efx,
2809 2810
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2811
	int i;
2812 2813

	/* Initialise common structures */
2814 2815
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2816
	spin_lock_init(&efx->biu_lock);
2817 2818 2819
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2820 2821
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2822
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2823
	efx->pci_dev = pci_dev;
2824
	efx->msg_enable = debug;
2825
	efx->state = STATE_UNINIT;
2826 2827 2828
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2829
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2830 2831
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2832 2833
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2834 2835
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2836 2837 2838
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2839
	efx->mdio.dev = net_dev;
2840
	INIT_WORK(&efx->mac_work, efx_mac_work);
2841
	init_waitqueue_head(&efx->flush_wq);
2842 2843

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2844 2845 2846
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2847 2848
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2849 2850 2851 2852 2853 2854
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2855 2856 2857 2858
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2859
	if (!efx->workqueue)
2860
		goto fail;
2861

2862
	return 0;
2863 2864 2865 2866

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2867 2868 2869 2870
}

static void efx_fini_struct(struct efx_nic *efx)
{
2871 2872 2873 2874 2875
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2876 2877
	kfree(efx->vpd_sn);

2878 2879 2880 2881 2882 2883
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2906 2907 2908 2909 2910 2911
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2912
	efx_disable_interrupts(efx);
2913
	efx_nic_fini_interrupt(efx);
2914
	efx_fini_port(efx);
2915
	efx->type->fini(efx);
2916 2917 2918 2919 2920
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
2921 2922
 * This is called only at module unload (or hotplug removal).  A PF can call
 * this on its VFs to ensure they are unbound first.
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2934
	efx_dissociate(efx);
2935
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2936
	efx_disable_interrupts(efx);
2937
	efx->state = STATE_UNINIT;
2938 2939
	rtnl_unlock();

2940 2941 2942
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2943 2944
	efx_unregister_netdev(efx);

2945 2946
	efx_mtd_remove(efx);

2947 2948 2949
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2950
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2951 2952 2953

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2954 2955

	pci_disable_pcie_error_reporting(pci_dev);
2956 2957
};

2958 2959 2960 2961 2962 2963
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2964
static void efx_probe_vpd_strings(struct efx_nic *efx)
2965 2966 2967 2968
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2969
	int ro_start, ro_size, i, j;
2970 2971 2972 2973 2974 2975 2976 2977 2978

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2979 2980
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2981 2982 2983 2984
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2985 2986 2987
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3028 3029 3030
}


3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

3043
	efx_init_napi(efx);
3044

3045
	rc = efx->type->init(efx);
3046
	if (rc) {
3047 3048
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
3049
		goto fail3;
3050 3051 3052 3053
	}

	rc = efx_init_port(efx);
	if (rc) {
3054 3055
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
3056
		goto fail4;
3057 3058
	}

3059
	rc = efx_nic_init_interrupt(efx);
3060
	if (rc)
3061
		goto fail5;
3062 3063 3064
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3065 3066 3067

	return 0;

3068 3069
 fail6:
	efx_nic_fini_interrupt(efx);
3070
 fail5:
3071 3072
	efx_fini_port(efx);
 fail4:
3073
	efx->type->fini(efx);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3084
 * theoretically).  It sets up PCI mappings, resets the NIC,
3085 3086 3087 3088 3089
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3090
static int efx_pci_probe(struct pci_dev *pci_dev,
3091
			 const struct pci_device_id *entry)
3092 3093 3094
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3095
	int rc;
3096 3097

	/* Allocate and initialise a struct net_device and struct efx_nic */
3098 3099
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3100 3101
	if (!net_dev)
		return -ENOMEM;
3102 3103 3104
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3105
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3106
			      NETIF_F_RXCSUM);
3107
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3108
		net_dev->features |= NETIF_F_TSO6;
3109 3110
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3111 3112 3113 3114
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3115
	pci_set_drvdata(pci_dev, efx);
3116
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3117
	rc = efx_init_struct(efx, pci_dev, net_dev);
3118 3119 3120
	if (rc)
		goto fail1;

3121
	netif_info(efx, probe, efx->net_dev,
3122
		   "Solarflare NIC detected\n");
3123

3124 3125
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3126

3127 3128 3129 3130 3131
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3132 3133 3134
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3135 3136 3137

	rc = efx_register_netdev(efx);
	if (rc)
3138
		goto fail4;
3139

3140 3141 3142 3143 3144 3145
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3146

3147
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3148

3149
	/* Try to create MTDs, but allow this to fail */
3150
	rtnl_lock();
3151
	rc = efx_mtd_probe(efx);
3152
	rtnl_unlock();
3153 3154 3155 3156
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3157 3158 3159 3160 3161
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3162 3163 3164
	return 0;

 fail4:
3165
	efx_pci_remove_main(efx);
3166 3167 3168 3169 3170
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3171
	WARN_ON(rc > 0);
3172
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3173 3174 3175 3176
	free_netdev(net_dev);
	return rc;
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3197 3198 3199 3200
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3201 3202
	rtnl_lock();

3203 3204
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3205

3206
		efx_device_detach_sync(efx);
3207

3208
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3209
		efx_disable_interrupts(efx);
3210
	}
3211

3212 3213
	rtnl_unlock();

3214 3215 3216 3217 3218
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3219
	int rc;
3220 3221
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3222 3223
	rtnl_lock();

3224
	if (efx->state != STATE_DISABLED) {
3225 3226 3227
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3228

3229 3230 3231
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3232

3233
		efx_start_all(efx);
3234

3235
		netif_device_attach(efx->net_dev);
3236

3237
		efx->state = STATE_READY;
3238

3239 3240
		efx->type->resume_wol(efx);
	}
3241

3242 3243
	rtnl_unlock();

3244 3245 3246
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3247
	return 0;
3248 3249 3250 3251 3252

fail:
	rtnl_unlock();

	return rc;
3253 3254 3255 3256 3257 3258 3259 3260 3261
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3262
	efx->reset_pending = 0;
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3289 3290
	rc = efx_pm_thaw(dev);
	return rc;
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3304
static const struct dev_pm_ops efx_pm_ops = {
3305 3306 3307 3308 3309 3310 3311 3312
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3313 3314 3315 3316
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3317 3318
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3335
		efx_disable_interrupts(efx);
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3352
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3353
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3412
static struct pci_driver efx_pci_driver = {
3413
	.name		= KBUILD_MODNAME,
3414 3415 3416
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3417
	.driver.pm	= &efx_pm_ops,
3418
	.err_handler	= &efx_err_handlers,
3419 3420 3421
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3444
#ifdef CONFIG_SFC_SRIOV
3445 3446 3447
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3448
#endif
3449

3450 3451 3452 3453 3454
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3455 3456 3457 3458 3459 3460 3461 3462

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3463 3464
	destroy_workqueue(reset_workqueue);
 err_reset:
3465
#ifdef CONFIG_SFC_SRIOV
3466 3467
	efx_fini_sriov();
 err_sriov:
3468
#endif
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3479
	destroy_workqueue(reset_workqueue);
3480
#ifdef CONFIG_SFC_SRIOV
3481
	efx_fini_sriov();
3482
#endif
3483 3484 3485 3486 3487 3488 3489
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3490 3491
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3492
MODULE_DESCRIPTION("Solarflare network driver");
3493 3494
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);