efx.c 70.1 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41
const char *const efx_loopback_mode_names[] = {
42
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
47 48 49
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
50 51 52 53 54 55
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
58 59
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 61
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 64
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65
	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 67
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 70 71
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72
const char *const efx_reset_type_names[] = {
73 74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156
 * The default (0) means to assign an interrupt to each core.
157 158 159 160 161
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

162 163 164 165
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

166 167 168 169 170 171 172 173 174 175
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

176 177 178 179 180 181 182
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

183 184 185 186 187
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
188 189

static void efx_remove_channels(struct efx_nic *efx);
190
static void efx_remove_port(struct efx_nic *efx);
191
static void efx_init_napi(struct efx_nic *efx);
192
static void efx_fini_napi(struct efx_nic *efx);
193
static void efx_fini_napi_channel(struct efx_channel *channel);
194 195 196
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
197 198 199

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
200 201
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
218
static int efx_process_channel(struct efx_channel *channel, int budget)
219
{
B
Ben Hutchings 已提交
220
	struct efx_nic *efx = channel->efx;
221
	int spent;
222

223
	if (unlikely(efx->reset_pending || !channel->enabled))
B
Ben Hutchings 已提交
224
		return 0;
225

226 227
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
228
		return 0;
229 230 231

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
232
		__efx_rx_packet(channel, channel->rx_pkt);
233 234 235 236 237
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

238
	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
239

240
	return spent;
241 242 243 244 245 246 247 248 249 250
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
251 252 253
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
254
	channel->work_pending = false;
255 256
	smp_wmb();

257
	efx_nic_eventq_read_ack(channel);
258 259 260 261 262 263 264 265 266 267 268
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
269
	struct efx_nic *efx = channel->efx;
270
	int spent;
271

272 273 274
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
275

276
	spent = efx_process_channel(channel, budget);
277

278
	if (spent < budget) {
B
Ben Hutchings 已提交
279
		if (channel->channel < efx->n_rx_channels &&
280 281 282 283
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
284 285
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
286
					efx->type->push_irq_moderation(channel);
287
				}
288 289
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
290 291 292
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296 297 298 299
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

300 301
		efx_filter_rfs_expire(channel);

302
		/* There is no race here; although napi_disable() will
303
		 * only wait for napi_complete(), this isn't a problem
304 305 306
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
307
		napi_complete(napi);
308 309 310
		efx_channel_processed(channel);
	}

311
	return spent;
312 313 314 315 316 317 318 319
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
320 321
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
322 323 324 325 326
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

327
	BUG_ON(channel->channel >= efx->n_channels);
328
	BUG_ON(!channel->enabled);
329
	BUG_ON(!efx->loopback_selftest);
330 331

	/* Disable interrupts and wait for ISRs to complete */
332
	efx_nic_disable_interrupts(efx);
333
	if (efx->legacy_irq) {
334
		synchronize_irq(efx->legacy_irq);
335 336
		efx->legacy_irq_enabled = false;
	}
337
	if (channel->irq)
338 339 340 341 342 343
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
344
	efx_process_channel(channel, channel->eventq_mask + 1);
345 346 347 348 349 350

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
351 352
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
353
	efx_nic_enable_interrupts(efx);
354 355 356 357 358 359 360 361 362
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
363 364 365
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

366
	netif_dbg(efx, probe, efx->net_dev,
367
		  "chan %d create event queue\n", channel->channel);
368

369 370 371 372 373 374
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

375
	return efx_nic_probe_eventq(channel);
376 377 378
}

/* Prepare channel's event queue */
379
static void efx_init_eventq(struct efx_channel *channel)
380
{
381 382
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
383 384 385

	channel->eventq_read_ptr = 0;

386
	efx_nic_init_eventq(channel);
387 388 389 390
}

static void efx_fini_eventq(struct efx_channel *channel)
{
391 392
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
393

394
	efx_nic_fini_eventq(channel);
395 396 397 398
}

static void efx_remove_eventq(struct efx_channel *channel)
{
399 400
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
401

402
	efx_nic_remove_eventq(channel);
403 404 405 406 407 408 409 410
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

428
		channel->napi_dev = NULL;
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

466 467 468 469 470 471
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

472 473
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


506 507 508 509 510 511 512 513
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
514 515
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
516 517 518
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
519
				number -= efx->n_rx_channels;
520 521
			}
		}
522 523
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
524 525 526 527
			 "%s%s-%d", efx->name, type, number);
	}
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

554 555 556 557
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
558
static void efx_init_channels(struct efx_nic *efx)
559 560 561 562 563
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

564 565 566 567 568 569
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
570
			      efx->type->rx_buffer_hash_size +
571
			      efx->type->rx_buffer_padding);
572 573
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
574 575 576

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
577 578
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
579

580
		efx_init_eventq(channel);
581

582 583
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
584 585 586 587

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

588 589
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

605 606
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
607

608 609 610
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
611 612
	channel->work_pending = false;
	channel->enabled = true;
613
	smp_wmb();
614

615
	/* Fill the queues before enabling NAPI */
616 617
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
618 619

	napi_enable(&channel->napi_str);
620 621 622 623 624 625 626 627 628 629 630
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

631 632
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
633

634
	channel->enabled = false;
635 636 637 638 639 640 641 642
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
643
	int rc;
644 645 646 647

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

648
	rc = efx_nic_flush_queues(efx);
649 650 651 652 653
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
654 655
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
656 657
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
658
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
659
	} else {
660 661
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
662
	}
663

664
	efx_for_each_channel(channel, efx) {
665 666
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
667 668 669

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
670
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
671 672 673 674 675 676 677 678 679 680
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

681 682
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
683 684 685

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
686
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
687 688 689 690
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
	efx_fini_channels(efx);

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

736 737
	efx_init_napi(efx);

738
	/* Destroy old channels */
739 740
	for (i = 0; i < efx->n_channels; i++) {
		efx_fini_napi_channel(other_channel[i]);
741
		efx_remove_channel(other_channel[i]);
742
	}
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

	efx_init_channels(efx);
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

764
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
765
{
766
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
767 768 769 770 771 772 773 774 775 776 777 778
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
779
void efx_link_status_changed(struct efx_nic *efx)
780
{
781 782
	struct efx_link_state *link_state = &efx->link_state;

783 784 785 786 787 788 789
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

790
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
791 792
		efx->n_link_state_changes++;

793
		if (link_state->up)
794 795 796 797 798 799
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
800
	if (link_state->up)
801 802 803 804 805
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
806
	else
807
		netif_info(efx, link, efx->net_dev, "link down\n");
808 809
}

B
Ben Hutchings 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

823
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

838 839
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
840 841 842 843 844 845 846 847
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
848
{
B
Ben Hutchings 已提交
849 850
	enum efx_phy_mode phy_mode;
	int rc;
851

B
Ben Hutchings 已提交
852
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
853

854
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
855 856
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
857

B
Ben Hutchings 已提交
858 859
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
860 861 862 863 864
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
865
	rc = efx->type->reconfigure_port(efx);
866

B
Ben Hutchings 已提交
867 868
	if (rc)
		efx->phy_mode = phy_mode;
869

B
Ben Hutchings 已提交
870
	return rc;
871 872 873 874
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
875
int efx_reconfigure_port(struct efx_nic *efx)
876
{
B
Ben Hutchings 已提交
877 878
	int rc;

879 880 881
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
882
	rc = __efx_reconfigure_port(efx);
883
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
884 885

	return rc;
886 887
}

888 889 890
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
891 892 893 894 895
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
896
	if (efx->port_enabled)
897
		efx->type->reconfigure_mac(efx);
898 899 900
	mutex_unlock(&efx->mac_lock);
}

901 902 903 904
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

905
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
906

907 908 909
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

910 911
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
912
	if (rc)
913
		return rc;
914

915 916
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
917 918 919 920 921 922 923 924

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

925
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
926

927 928
	mutex_lock(&efx->mac_lock);

929
	rc = efx->phy_op->init(efx);
930
	if (rc)
931
		goto fail1;
932

933
	efx->port_initialized = true;
934

B
Ben Hutchings 已提交
935 936
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
937
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
938 939 940 941 942 943

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

944
	mutex_unlock(&efx->mac_lock);
945
	return 0;
946

947
fail2:
948
	efx->phy_op->fini(efx);
949 950
fail1:
	mutex_unlock(&efx->mac_lock);
951
	return rc;
952 953 954 955
}

static void efx_start_port(struct efx_nic *efx)
{
956
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
957 958 959
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
960
	efx->port_enabled = true;
961 962 963

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
964
	efx->type->reconfigure_mac(efx);
965

966 967 968
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
969
/* Prevent efx_mac_work() and efx_monitor() from working */
970 971
static void efx_stop_port(struct efx_nic *efx)
{
972
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
973 974

	mutex_lock(&efx->mac_lock);
975
	efx->port_enabled = false;
976 977 978
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
979 980
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
981 982 983 984
}

static void efx_fini_port(struct efx_nic *efx)
{
985
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
986 987 988 989

	if (!efx->port_initialized)
		return;

990
	efx->phy_op->fini(efx);
991
	efx->port_initialized = false;
992

993
	efx->link_state.up = false;
994 995 996 997 998
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
999
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1000

1001
	efx->type->remove_port(efx);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1017
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1018 1019 1020

	rc = pci_enable_device(pci_dev);
	if (rc) {
1021 1022
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1034 1035 1036 1037 1038
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1039 1040 1041
		dma_mask >>= 1;
	}
	if (rc) {
1042 1043
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1044 1045
		goto fail2;
	}
1046 1047
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1048 1049 1050 1051 1052 1053
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1054 1055
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1056 1057 1058
		goto fail2;
	}

1059 1060
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1061
	if (rc) {
1062 1063
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1064 1065 1066
		rc = -EIO;
		goto fail3;
	}
1067 1068
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1069
	if (!efx->membase) {
1070 1071 1072 1073
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1074 1075 1076
		rc = -ENOMEM;
		goto fail4;
	}
1077 1078 1079 1080
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1081 1082 1083 1084

	return 0;

 fail4:
1085
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1086
 fail3:
1087
	efx->membase_phys = 0;
1088 1089 1090 1091 1092 1093 1094 1095
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1096
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1097 1098 1099 1100 1101 1102 1103

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1104
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1105
		efx->membase_phys = 0;
1106 1107 1108 1109 1110
	}

	pci_disable_device(efx->pci_dev);
}

1111
static int efx_wanted_parallelism(void)
1112
{
1113
	cpumask_var_t thread_mask;
1114 1115
	int count;
	int cpu;
1116 1117 1118

	if (rss_cpus)
		return rss_cpus;
1119

1120
	if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1121
		printk(KERN_WARNING
1122
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1123 1124 1125
		return 1;
	}

1126 1127
	count = 0;
	for_each_online_cpu(cpu) {
1128
		if (!cpumask_test_cpu(cpu, thread_mask)) {
1129
			++count;
1130 1131
			cpumask_or(thread_mask, thread_mask,
				   topology_thread_cpumask(cpu));
1132 1133 1134
		}
	}

1135
	free_cpumask_var(thread_mask);
1136 1137 1138
	return count;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
	int i, rc;

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1161 1162 1163
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1164
static int efx_probe_interrupts(struct efx_nic *efx)
1165
{
1166 1167
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1168 1169 1170
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1171
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1172
		int n_channels;
1173

1174
		n_channels = efx_wanted_parallelism();
B
Ben Hutchings 已提交
1175 1176 1177
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1178

B
Ben Hutchings 已提交
1179
		for (i = 0; i < n_channels; i++)
1180
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1181
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1182
		if (rc > 0) {
1183 1184 1185 1186 1187
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1188 1189
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1190
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1191
					     n_channels);
1192 1193 1194
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
1206 1207 1208 1209 1210
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
B
Ben Hutchings 已提交
1211
			for (i = 0; i < n_channels; i++)
1212 1213
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1214 1215 1216
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1217 1218
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1219 1220 1221 1222 1223
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1224
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1225 1226
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1227 1228
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1229
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1230
		} else {
1231 1232
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1233 1234 1235 1236 1237 1238
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1239
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1240 1241
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1242 1243
		efx->legacy_irq = efx->pci_dev->irq;
	}
1244 1245

	return 0;
1246 1247 1248 1249 1250 1251 1252
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1253
	efx_for_each_channel(channel, efx)
1254 1255 1256 1257 1258 1259 1260 1261
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1262
static void efx_set_channels(struct efx_nic *efx)
1263
{
1264 1265 1266
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1267
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1268
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1269 1270 1271 1272 1273 1274 1275 1276 1277

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1278 1279 1280 1281
}

static int efx_probe_nic(struct efx_nic *efx)
{
1282
	size_t i;
1283 1284
	int rc;

1285
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1286 1287

	/* Carry out hardware-type specific initialisation */
1288
	rc = efx->type->probe(efx);
1289 1290 1291
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1292
	/* Determine the number of channels and queues by trying to hook
1293
	 * in MSI-X interrupts. */
1294 1295 1296
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1297

1298 1299
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1300
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1301 1302
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1303

1304
	efx_set_channels(efx);
1305 1306
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1307 1308

	/* Initialise the interrupt moderation settings */
1309 1310
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1311 1312

	return 0;
1313 1314 1315 1316

fail:
	efx->type->remove(efx);
	return rc;
1317 1318 1319 1320
}

static void efx_remove_nic(struct efx_nic *efx)
{
1321
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1322 1323

	efx_remove_interrupts(efx);
1324
	efx->type->remove(efx);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1339
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1340 1341 1342 1343 1344
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1345
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1346 1347 1348
		goto fail2;
	}

1349
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1350 1351 1352
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1353

B
Ben Hutchings 已提交
1354 1355 1356 1357 1358 1359 1360
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1361 1362
	return 0;

B
Ben Hutchings 已提交
1363 1364
 fail4:
	efx_remove_channels(efx);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1390
	if (!netif_running(efx->net_dev))
1391 1392 1393 1394 1395 1396
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

1397
	if (netif_device_present(efx->net_dev))
1398 1399 1400
		netif_tx_wake_all_queues(efx->net_dev);

	efx_for_each_channel(channel, efx)
1401 1402
		efx_start_channel(channel);

1403 1404
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
1405
	efx_nic_enable_interrupts(efx);
1406

1407 1408 1409 1410 1411 1412
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
1413
	if (efx->reset_pending)
1414 1415
		efx_mcdi_mode_poll(efx);

1416 1417 1418 1419
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1420 1421
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1422 1423 1424 1425 1426 1427
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1428

1429
	efx->type->start_stats(efx);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1440
	cancel_work_sync(&efx->mac_work);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1458
	efx->type->stop_stats(efx);
1459

1460 1461 1462
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1463
	/* Disable interrupts and wait for ISR to complete */
1464
	efx_nic_disable_interrupts(efx);
1465
	if (efx->legacy_irq) {
1466
		synchronize_irq(efx->legacy_irq);
1467 1468
		efx->legacy_irq_enabled = false;
	}
1469
	efx_for_each_channel(channel, efx) {
1470 1471
		if (channel->irq)
			synchronize_irq(channel->irq);
1472
	}
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1483
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1484 1485 1486 1487
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1488 1489 1490
	netif_tx_stop_all_queues(efx->net_dev);
	netif_tx_lock_bh(efx->net_dev);
	netif_tx_unlock_bh(efx->net_dev);
1491 1492 1493 1494
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1495
	efx_remove_filters(efx);
1496
	efx_remove_channels(efx);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1507
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1508
{
1509 1510
	if (usecs == 0)
		return 0;
1511
	if (usecs * 1000 < quantum_ns)
1512
		return 1; /* never round down to 0 */
1513
	return usecs * 1000 / quantum_ns;
1514 1515
}

1516
/* Set interrupt moderation parameters */
1517 1518 1519
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1520
{
1521
	struct efx_channel *channel;
1522 1523 1524 1525 1526
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1527 1528 1529

	EFX_ASSERT_RESET_SERIALISED(efx);

1530
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1531 1532
		return -EINVAL;

1533 1534 1535
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1536 1537 1538 1539 1540 1541 1542
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1543
	efx->irq_rx_adaptive = rx_adaptive;
1544
	efx->irq_rx_moderation = rx_ticks;
1545
	efx_for_each_channel(channel, efx) {
1546
		if (efx_channel_has_rx_queue(channel))
1547
			channel->irq_moderation = rx_ticks;
1548
		else if (efx_channel_has_tx_queues(channel))
1549 1550
			channel->irq_moderation = tx_ticks;
	}
1551 1552

	return 0;
1553 1554
}

1555 1556 1557
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1558 1559 1560 1561
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1562
	*rx_adaptive = efx->irq_rx_adaptive;
1563 1564 1565
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1566 1567 1568 1569 1570 1571 1572 1573

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1574
		*tx_usecs = DIV_ROUND_UP(
1575
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1576 1577
			efx->timer_quantum_ns,
			1000);
1578 1579
}

1580 1581 1582 1583 1584 1585
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1586
/* Run periodically off the general workqueue */
1587 1588 1589 1590 1591
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1592 1593 1594
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1595
	BUG_ON(efx->type->monitor == NULL);
1596 1597 1598

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1599 1600 1601 1602 1603 1604
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1621
	struct efx_nic *efx = netdev_priv(net_dev);
1622
	struct mii_ioctl_data *data = if_mii(ifr);
1623 1624 1625

	EFX_ASSERT_RESET_SERIALISED(efx);

1626 1627 1628 1629 1630 1631
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1632 1633 1634 1635 1636 1637 1638 1639
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1640
static void efx_init_napi(struct efx_nic *efx)
1641 1642 1643 1644 1645
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1646 1647
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1648
	}
1649 1650 1651 1652 1653 1654 1655
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1656 1657 1658 1659 1660 1661
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1662 1663
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1680
	struct efx_nic *efx = netdev_priv(net_dev);
1681 1682
	struct efx_channel *channel;

1683
	efx_for_each_channel(channel, efx)
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1698
	struct efx_nic *efx = netdev_priv(net_dev);
1699 1700
	EFX_ASSERT_RESET_SERIALISED(efx);

1701 1702
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1703

1704 1705
	if (efx->state == STATE_DISABLED)
		return -EIO;
1706 1707
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1708 1709
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1710

1711 1712 1713 1714
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1725
	struct efx_nic *efx = netdev_priv(net_dev);
1726

1727 1728
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1729

1730 1731 1732 1733 1734 1735
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1736 1737 1738 1739

	return 0;
}

1740
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1741 1742
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1743
{
1744
	struct efx_nic *efx = netdev_priv(net_dev);
1745 1746
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1747
	spin_lock_bh(&efx->stats_lock);
1748

1749
	efx->type->update_stats(efx);
1750 1751 1752 1753 1754

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1755
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1773 1774
	spin_unlock_bh(&efx->stats_lock);

1775 1776 1777 1778 1779 1780
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1781
	struct efx_nic *efx = netdev_priv(net_dev);
1782

1783 1784 1785
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1786

1787
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1788 1789 1790 1791 1792 1793
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1794
	struct efx_nic *efx = netdev_priv(net_dev);
1795 1796 1797 1798 1799 1800 1801 1802

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1803
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1804 1805

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1806 1807 1808 1809

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1810
	net_dev->mtu = new_mtu;
1811
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1812 1813
	mutex_unlock(&efx->mac_lock);

1814
	efx_init_channels(efx);
1815 1816

	efx_start_all(efx);
1817
	return 0;
1818 1819 1820 1821
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1822
	struct efx_nic *efx = netdev_priv(net_dev);
1823 1824 1825 1826 1827 1828
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1829 1830 1831
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1832 1833 1834 1835 1836 1837
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1838
	mutex_lock(&efx->mac_lock);
1839
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1840
	mutex_unlock(&efx->mac_lock);
1841 1842 1843 1844

	return 0;
}

1845
/* Context: netif_addr_lock held, BHs disabled. */
1846
static void efx_set_rx_mode(struct net_device *net_dev)
1847
{
1848
	struct efx_nic *efx = netdev_priv(net_dev);
1849
	struct netdev_hw_addr *ha;
1850 1851 1852 1853
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1854
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1855 1856

	/* Build multicast hash table */
1857
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1858 1859 1860
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1861 1862
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1863 1864 1865 1866
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1867 1868 1869 1870 1871 1872
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1873

1874 1875 1876
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1877 1878
}

1879
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1890 1891 1892
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1893
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1894 1895 1896 1897 1898 1899
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
1900
	.ndo_set_rx_mode	= efx_set_rx_mode,
1901
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1902 1903 1904
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1905
	.ndo_setup_tc		= efx_setup_tc,
1906 1907 1908
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1909 1910
};

1911 1912 1913 1914 1915 1916 1917
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1918 1919 1920
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1921
	struct net_device *net_dev = ptr;
1922

1923 1924 1925
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1926 1927 1928 1929 1930 1931 1932 1933

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1934 1935 1936 1937 1938 1939 1940 1941
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1942 1943 1944
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1945
	struct efx_channel *channel;
1946 1947 1948 1949
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1950
	net_dev->netdev_ops = &efx_netdev_ops;
1951 1952
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

1953
	rtnl_lock();
1954 1955 1956 1957

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1958
	efx_update_name(efx);
1959 1960 1961 1962 1963

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

1964 1965
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
1966 1967
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
1968 1969
	}

1970
	/* Always start with carrier off; PHY events will detect the link */
1971
	netif_carrier_off(net_dev);
1972

1973
	rtnl_unlock();
1974

B
Ben Hutchings 已提交
1975 1976
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1977 1978
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1979 1980 1981
		goto fail_registered;
	}

1982
	return 0;
B
Ben Hutchings 已提交
1983

1984 1985
fail_locked:
	rtnl_unlock();
1986
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1987 1988
	return rc;

B
Ben Hutchings 已提交
1989 1990 1991
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1992 1993 1994 1995
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
1996
	struct efx_channel *channel;
1997 1998 1999 2000 2001
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2002
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2003 2004 2005 2006

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2007 2008 2009 2010
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2011

2012 2013 2014
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
2015 2016 2017 2018 2019 2020 2021 2022
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2023 2024
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2025
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2026 2027 2028
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2029 2030 2031
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2032
	efx_fini_channels(efx);
2033 2034
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2035
	efx->type->fini(efx);
2036 2037
}

B
Ben Hutchings 已提交
2038 2039 2040 2041 2042
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2043
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2044 2045 2046
{
	int rc;

B
Ben Hutchings 已提交
2047
	EFX_ASSERT_RESET_SERIALISED(efx);
2048

2049
	rc = efx->type->init(efx);
2050
	if (rc) {
2051
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2052
		goto fail;
2053 2054
	}

2055 2056 2057
	if (!ok)
		goto fail;

2058
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2059 2060 2061 2062
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2063 2064
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2065 2066
	}

2067
	efx->type->reconfigure_mac(efx);
2068

2069
	efx_init_channels(efx);
B
Ben Hutchings 已提交
2070
	efx_restore_filters(efx);
2071 2072 2073 2074 2075 2076 2077 2078 2079

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2080 2081 2082

	mutex_unlock(&efx->mac_lock);

2083 2084 2085
	return rc;
}

2086 2087
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2088
 *
2089
 * Caller must hold the rtnl_lock.
2090
 */
2091
int efx_reset(struct efx_nic *efx, enum reset_type method)
2092
{
2093 2094
	int rc, rc2;
	bool disabled;
2095

2096 2097
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2098

2099
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2100
	efx_reset_down(efx, method);
2101

2102
	rc = efx->type->reset(efx, method);
2103
	if (rc) {
2104
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2105
		goto out;
2106 2107
	}

2108 2109 2110 2111
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2112 2113 2114 2115 2116 2117 2118

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2119
out:
2120
	/* Leave device stopped if necessary */
2121 2122 2123 2124 2125 2126
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2127 2128
	}

2129
	if (disabled) {
2130
		dev_close(efx->net_dev);
2131
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2132 2133
		efx->state = STATE_DISABLED;
	} else {
2134
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2135
		netif_device_attach(efx->net_dev);
2136
	}
2137 2138 2139 2140 2141 2142 2143 2144
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2145
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2146
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2147

2148
	if (!pending)
2149 2150
		return;

2151
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2152
	 * flags set so that efx_pci_probe_main will be retried */
2153
	if (efx->state != STATE_RUNNING) {
2154 2155
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2156 2157 2158 2159
		return;
	}

	rtnl_lock();
2160
	(void)efx_reset(efx, fls(pending) - 1);
2161
	rtnl_unlock();
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2174 2175
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2176 2177
		break;
	default:
2178
		method = efx->type->map_reset_reason(type);
2179 2180 2181
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2182 2183
		break;
	}
2184

2185
	set_bit(method, &efx->reset_pending);
2186

2187 2188 2189 2190
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2191
	queue_work(reset_workqueue, &efx->reset_work);
2192 2193 2194 2195 2196 2197 2198 2199 2200
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2201
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2202 2203
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2204
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2205 2206
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2207
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2208
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2209
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2210
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2211
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2212 2213 2214 2215 2216
	{0}			/* end of list */
};

/**************************************************************************
 *
2217
 * Dummy PHY/MAC operations
2218
 *
2219
 * Can be used for some unimplemented operations
2220 2221 2222 2223 2224 2225 2226 2227 2228
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2229 2230

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2231 2232 2233
{
	return false;
}
2234

2235
static const struct efx_phy_operations efx_dummy_phy_operations = {
2236
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2237
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2238
	.poll		 = efx_port_dummy_op_poll,
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2251
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2252 2253
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2254
	int i;
2255 2256 2257 2258

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2259 2260 2261
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2262 2263 2264
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2265
	efx->msg_enable = debug;
2266 2267 2268 2269 2270 2271 2272
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2273
	efx->mdio.dev = net_dev;
2274
	INIT_WORK(&efx->mac_work, efx_mac_work);
2275 2276

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2277 2278 2279
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2290 2291 2292 2293
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2294
	if (!efx->workqueue)
2295
		goto fail;
2296

2297
	return 0;
2298 2299 2300 2301

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2302 2303 2304 2305
}

static void efx_fini_struct(struct efx_nic *efx)
{
2306 2307 2308 2309 2310
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2328 2329 2330 2331
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2332
	efx_nic_fini_interrupt(efx);
2333 2334
	efx_fini_channels(efx);
	efx_fini_port(efx);
2335
	efx->type->fini(efx);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2361 2362
	efx_mtd_remove(efx);

2363 2364 2365 2366
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2367
	cancel_work_sync(&efx->reset_work);
2368 2369 2370 2371

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2372
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2391
	efx_init_napi(efx);
2392

2393
	rc = efx->type->init(efx);
2394
	if (rc) {
2395 2396
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2397
		goto fail3;
2398 2399 2400 2401
	}

	rc = efx_init_port(efx);
	if (rc) {
2402 2403
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2404
		goto fail4;
2405 2406
	}

2407
	efx_init_channels(efx);
2408

2409
	rc = efx_nic_init_interrupt(efx);
2410
	if (rc)
2411
		goto fail5;
2412 2413 2414

	return 0;

2415
 fail5:
2416
	efx_fini_channels(efx);
2417 2418
	efx_fini_port(efx);
 fail4:
2419
	efx->type->fini(efx);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2430
 * theoretically).  It sets up PCI mappings, resets the NIC,
2431 2432 2433 2434 2435 2436 2437 2438
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2439
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2440 2441 2442 2443 2444
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
2445 2446
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2447 2448
	if (!net_dev)
		return -ENOMEM;
2449
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2450
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2451
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2452 2453
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2454 2455
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2456 2457 2458 2459
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2460
	efx = netdev_priv(net_dev);
2461
	pci_set_drvdata(pci_dev, efx);
2462
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2463 2464 2465 2466
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2467
	netif_info(efx, probe, efx->net_dev,
2468
		   "Solarflare NIC detected\n");
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2484
		cancel_work_sync(&efx->reset_work);
2485

2486
		if (rc == 0) {
2487
			if (efx->reset_pending) {
2488 2489 2490 2491 2492 2493 2494 2495 2496
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2497
		/* Retry if a recoverably reset event has been scheduled */
2498 2499 2500
		if (efx->reset_pending &
		    ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
		    !efx->reset_pending)
2501 2502
			goto fail3;

2503
		efx->reset_pending = 0;
2504 2505 2506
	}

	if (rc) {
2507
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2508 2509 2510
		goto fail4;
	}

2511 2512
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2513
	efx->state = STATE_RUNNING;
2514

2515 2516 2517 2518
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2519
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2520 2521 2522 2523

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2534
	WARN_ON(rc > 0);
2535
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2536 2537 2538 2539
	free_netdev(net_dev);
	return rc;
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2574 2575 2576
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2587
	efx->reset_pending = 0;
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2629
static const struct dev_pm_ops efx_pm_ops = {
2630 2631 2632 2633 2634 2635 2636 2637
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2638
static struct pci_driver efx_pci_driver = {
2639
	.name		= KBUILD_MODNAME,
2640 2641 2642
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2643
	.driver.pm	= &efx_pm_ops,
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2666 2667 2668 2669 2670
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2671 2672 2673 2674 2675 2676 2677 2678

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2679 2680
	destroy_workqueue(reset_workqueue);
 err_reset:
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2691
	destroy_workqueue(reset_workqueue);
2692 2693 2694 2695 2696 2697 2698
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2699 2700
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2701 2702 2703
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);