efx.c 87.0 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
81 82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
119 120
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	int spent;
248

249
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
250
		return 0;
251

252
	spent = efx_nic_process_eventq(channel, budget);
253 254 255 256
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

257
		efx_rx_flush_packet(channel);
258
		efx_fast_push_rx_descriptors(rx_queue, true);
259 260
	}

261
	return spent;
262 263 264 265 266 267 268 269 270 271 272
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
273
	struct efx_nic *efx = channel->efx;
274
	int spent;
275

276 277 278
	if (!efx_channel_lock_napi(channel))
		return budget;

279 280 281
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
282

283
	spent = efx_process_channel(channel, budget);
284

285
	if (spent < budget) {
286
		if (efx_channel_has_rx_queue(channel) &&
287 288 289 290
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
291 292
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
297 298 299
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303 304 305 306
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

307 308
		efx_filter_rfs_expire(channel);

309
		/* There is no race here; although napi_disable() will
310
		 * only wait for napi_complete(), this isn't a problem
311
		 * since efx_nic_eventq_read_ack() will have no effect if
312 313
		 * interrupts have already been disabled.
		 */
314
		napi_complete(napi);
315
		efx_nic_eventq_read_ack(channel);
316 317
	}

318
	efx_channel_unlock_napi(channel);
319
	return spent;
320 321 322 323 324 325 326 327 328
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
329 330 331
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

332
	netif_dbg(efx, probe, efx->net_dev,
333
		  "chan %d create event queue\n", channel->channel);
334

335 336 337 338 339 340
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

341
	return efx_nic_probe_eventq(channel);
342 343 344
}

/* Prepare channel's event queue */
345
static int efx_init_eventq(struct efx_channel *channel)
346
{
347
	struct efx_nic *efx = channel->efx;
348 349 350 351
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

352
	netif_dbg(efx, drv, efx->net_dev,
353
		  "chan %d init event queue\n", channel->channel);
354

355 356
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
357
		efx->type->push_irq_moderation(channel);
358 359 360 361
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
362 363
}

364
/* Enable event queue processing and NAPI */
365
void efx_start_eventq(struct efx_channel *channel)
366 367 368 369
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

370
	/* Make sure the NAPI handler sees the enabled flag set */
371 372 373
	channel->enabled = true;
	smp_wmb();

374
	efx_channel_enable(channel);
375 376 377 378 379
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
380
void efx_stop_eventq(struct efx_channel *channel)
381 382 383 384 385
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
386 387
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
388 389 390
	channel->enabled = false;
}

391 392
static void efx_fini_eventq(struct efx_channel *channel)
{
393 394 395
	if (!channel->eventq_init)
		return;

396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
398

399
	efx_nic_fini_eventq(channel);
400
	channel->eventq_init = false;
401 402 403 404
}

static void efx_remove_eventq(struct efx_channel *channel)
{
405 406
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
407

408
	efx_nic_remove_eventq(channel);
409 410 411 412 413 414 415 416
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

417
/* Allocate and initialise a channel structure. */
418 419 420 421 422 423 424 425
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

426 427 428
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
429

430 431 432
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
433

434 435 436 437 438 439
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
440

441 442 443 444
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
445

446 447 448 449 450 451 452 453 454 455 456 457 458
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
459

460 461 462 463 464 465 466 467
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
468

469 470 471
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
472
			tx_queue->channel = channel;
473 474
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
475 476 477
	}

	rx_queue = &channel->rx_queue;
478 479
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
480 481 482 483 484 485
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

486 487 488 489 490 491
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

492 493
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
494

495 496 497 498
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

499 500
	rc = efx_probe_eventq(channel);
	if (rc)
501
		goto fail;
502 503 504 505

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
506
			goto fail;
507 508 509 510 511
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
512
			goto fail;
513 514 515 516
	}

	return 0;

517 518
fail:
	efx_remove_channel(channel);
519 520 521
	return rc;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
540

541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

545 546
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
547 548
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
549 550
}

551 552 553 554 555 556 557 558
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

559 560 561 562 563 564
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

582 583 584 585
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
586
static void efx_start_datapath(struct efx_nic *efx)
587
{
588
	bool old_rx_scatter = efx->rx_scatter;
589 590 591
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
592
	size_t rx_buf_len;
593

594 595 596 597
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
598
	efx->rx_dma_len = (efx->rx_prefix_size +
599 600
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
601
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
602
		      efx->rx_ip_align + efx->rx_dma_len);
603
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
604
		efx->rx_scatter = efx->type->always_rx_scatter;
605 606
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
607
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
608
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
609 610 611
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
612 613 614 615 616 617 618 619
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

620 621 622 623 624 625 626 627 628 629 630
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
631

J
Jon Cooper 已提交
632
	/* RX filters may also have scatter-enabled flags */
633
	if (efx->rx_scatter != old_rx_scatter)
634
		efx->type->filter_update_rx_scatter(efx);
635

636 637 638 639 640 641 642 643 644 645
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

646 647
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
648
		efx_for_each_channel_tx_queue(tx_queue, channel) {
649
			efx_init_tx_queue(tx_queue);
650 651
			atomic_inc(&efx->active_queues);
		}
652

653
		efx_for_each_channel_rx_queue(rx_queue, channel) {
654
			efx_init_rx_queue(rx_queue);
655
			atomic_inc(&efx->active_queues);
656 657 658
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
659
		}
660

661
		WARN_ON(channel->rx_pkt_n_frags);
662 663
	}

664 665
	efx_ptp_start_datapath(efx);

666 667
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
668 669
}

670
static void efx_stop_datapath(struct efx_nic *efx)
671 672 673 674
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
675
	int rc;
676 677 678 679

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

680 681
	efx_ptp_stop_datapath(efx);

682 683 684 685 686 687
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

688
	efx_for_each_channel(channel, efx) {
689 690 691 692 693 694 695 696 697 698
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
699
	}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
719 720
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
721
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
722 723 724 725 726 727 728 729 730
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

731 732
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
733 734 735

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
736
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
739
	channel->type->post_remove(channel);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
755
	unsigned i, next_buffer_table = 0;
756
	int rc, rc2;
757 758 759 760

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
783

784
	efx_device_detach_sync(efx);
785
	efx_stop_all(efx);
B
Ben Hutchings 已提交
786
	efx_soft_disable_interrupts(efx);
787

788
	/* Clone channels (where possible) */
789 790
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
791 792 793
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

812 813
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
814 815

	for (i = 0; i < efx->n_channels; i++) {
816 817 818 819 820 821 822
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
823
	}
824

825
out:
826 827 828 829 830 831 832 833 834
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
835

836 837 838 839 840 841 842 843 844 845
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

860
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
861
{
862
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
863 864
}

865 866
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
867
	.post_remove		= efx_channel_dummy_op_void,
868 869 870 871 872 873 874 875 876 877
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

878 879 880 881
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

882 883 884 885 886 887 888 889 890 891
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
892
void efx_link_status_changed(struct efx_nic *efx)
893
{
894 895
	struct efx_link_state *link_state = &efx->link_state;

896 897 898 899 900 901 902
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

903
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
904 905
		efx->n_link_state_changes++;

906
		if (link_state->up)
907 908 909 910 911 912
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
913
	if (link_state->up)
914
		netif_info(efx, link, efx->net_dev,
915
			   "link up at %uMbps %s-duplex (MTU %d)\n",
916
			   link_state->speed, link_state->fd ? "full" : "half",
917
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
918
	else
919
		netif_info(efx, link, efx->net_dev, "link down\n");
920 921
}

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

935
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

950 951
static void efx_fini_port(struct efx_nic *efx);

952 953 954 955 956 957 958 959 960 961
/* We assume that efx->type->reconfigure_mac will always try to sync RX
 * filters and therefore needs to read-lock the filter table against freeing
 */
void efx_mac_reconfigure(struct efx_nic *efx)
{
	down_read(&efx->filter_sem);
	efx->type->reconfigure_mac(efx);
	up_read(&efx->filter_sem);
}

B
Ben Hutchings 已提交
962 963 964 965 966 967 968 969
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
970
{
B
Ben Hutchings 已提交
971 972
	enum efx_phy_mode phy_mode;
	int rc;
973

B
Ben Hutchings 已提交
974
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
975

B
Ben Hutchings 已提交
976 977
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
978 979 980 981 982
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
983
	rc = efx->type->reconfigure_port(efx);
984

B
Ben Hutchings 已提交
985 986
	if (rc)
		efx->phy_mode = phy_mode;
987

B
Ben Hutchings 已提交
988
	return rc;
989 990 991 992
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
993
int efx_reconfigure_port(struct efx_nic *efx)
994
{
B
Ben Hutchings 已提交
995 996
	int rc;

997 998 999
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
1000
	rc = __efx_reconfigure_port(efx);
1001
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
1002 1003

	return rc;
1004 1005
}

1006 1007 1008
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
1009 1010 1011 1012 1013
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1014
	if (efx->port_enabled)
1015
		efx_mac_reconfigure(efx);
1016 1017 1018
	mutex_unlock(&efx->mac_lock);
}

1019 1020 1021 1022
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1023
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1024

1025 1026 1027
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1028 1029
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1030
	if (rc)
1031
		return rc;
1032

1033
	/* Initialise MAC address to permanent address */
1034
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1035 1036 1037 1038 1039 1040 1041 1042

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1043
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1044

1045 1046
	mutex_lock(&efx->mac_lock);

1047
	rc = efx->phy_op->init(efx);
1048
	if (rc)
1049
		goto fail1;
1050

1051
	efx->port_initialized = true;
1052

B
Ben Hutchings 已提交
1053 1054
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1055
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
1056 1057 1058

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1059
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1060 1061
		goto fail2;

1062
	mutex_unlock(&efx->mac_lock);
1063
	return 0;
1064

1065
fail2:
1066
	efx->phy_op->fini(efx);
1067 1068
fail1:
	mutex_unlock(&efx->mac_lock);
1069
	return rc;
1070 1071 1072 1073
}

static void efx_start_port(struct efx_nic *efx)
{
1074
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1075 1076 1077
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1078
	efx->port_enabled = true;
1079

1080
	/* Ensure MAC ingress/egress is enabled */
1081
	efx_mac_reconfigure(efx);
1082

1083 1084 1085
	mutex_unlock(&efx->mac_lock);
}

1086 1087 1088 1089 1090
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1091 1092
static void efx_stop_port(struct efx_nic *efx)
{
1093
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1094

1095 1096
	EFX_ASSERT_RESET_SERIALISED(efx);

1097
	mutex_lock(&efx->mac_lock);
1098
	efx->port_enabled = false;
1099 1100 1101
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1102 1103
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1104 1105 1106 1107

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1108 1109 1110 1111
}

static void efx_fini_port(struct efx_nic *efx)
{
1112
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1113 1114 1115 1116

	if (!efx->port_initialized)
		return;

1117
	efx->phy_op->fini(efx);
1118
	efx->port_initialized = false;
1119

1120
	efx->link_state.up = false;
1121 1122 1123 1124 1125
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1126
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1127

1128
	efx->type->remove_port(efx);
1129 1130 1131 1132 1133 1134 1135 1136
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1208 1209 1210 1211 1212
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1213
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1214
	int rc, bar;
1215

1216
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1217

1218 1219
	bar = efx->type->mem_bar;

1220 1221
	rc = pci_enable_device(pci_dev);
	if (rc) {
1222 1223
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1235
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1236
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1237 1238 1239
			if (rc == 0)
				break;
		}
1240 1241 1242
		dma_mask >>= 1;
	}
	if (rc) {
1243 1244
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1245 1246
		goto fail2;
	}
1247 1248
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1249

1250 1251
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1252
	if (rc) {
1253 1254
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1255 1256 1257
		rc = -EIO;
		goto fail3;
	}
1258
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1259
	if (!efx->membase) {
1260 1261
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1262
			  (unsigned long long)efx->membase_phys, mem_map_size);
1263 1264 1265
		rc = -ENOMEM;
		goto fail4;
	}
1266 1267
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1268 1269
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1270 1271 1272 1273

	return 0;

 fail4:
1274
	pci_release_region(efx->pci_dev, bar);
1275
 fail3:
1276
	efx->membase_phys = 0;
1277 1278 1279 1280 1281 1282 1283 1284
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1285 1286
	int bar;

1287
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1288 1289 1290 1291 1292 1293 1294

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1295 1296
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1297
		efx->membase_phys = 0;
1298 1299 1300 1301 1302
	}

	pci_disable_device(efx->pci_dev);
}

1303 1304 1305 1306 1307 1308 1309 1310 1311
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
}

1312
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1313
{
1314
	cpumask_var_t thread_mask;
1315
	unsigned int count;
1316
	int cpu;
1317

1318 1319 1320 1321 1322 1323 1324 1325
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1337 1338
	}

1339 1340 1341
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1353
	}
1354
#endif
1355 1356 1357 1358 1359 1360 1361

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1362
static int efx_probe_interrupts(struct efx_nic *efx)
1363
{
1364 1365
	unsigned int extra_channels = 0;
	unsigned int i, j;
1366
	int rc;
1367

1368 1369 1370 1371
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1372
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1373
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1374
		unsigned int n_channels;
1375

1376
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1377 1378
		if (separate_tx_channels)
			n_channels *= 2;
1379
		n_channels += extra_channels;
1380
		n_channels = min(n_channels, efx->max_channels);
1381

B
Ben Hutchings 已提交
1382
		for (i = 0; i < n_channels; i++)
1383
			xentries[i].entry = i;
1384 1385 1386 1387 1388 1389 1390 1391
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1392 1393
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1394
				  " available (%d < %u).\n", rc, n_channels);
1395 1396
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1397
			n_channels = rc;
1398 1399
		}

1400
		if (rc > 0) {
B
Ben Hutchings 已提交
1401
			efx->n_channels = n_channels;
1402 1403
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1404
			if (separate_tx_channels) {
1405 1406 1407 1408
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1409
			} else {
1410 1411
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1412
			}
1413
			for (i = 0; i < efx->n_channels; i++)
1414 1415
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1416 1417 1418 1419 1420
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1421
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1422 1423
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1424 1425
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1426
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1427
		} else {
1428 1429
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1430 1431 1432 1433 1434 1435
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1436
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1437 1438
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1439 1440
		efx->legacy_irq = efx->pci_dev->irq;
	}
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1457
	/* RSS might be usable on VFs even if it is disabled on the PF */
1458 1459 1460 1461 1462 1463 1464 1465 1466
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1467

1468
	return 0;
1469 1470
}

1471
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1472
{
1473 1474
	struct efx_channel *channel, *end_channel;
	int rc;
1475

1476 1477
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1478 1479
	efx->irq_soft_enabled = true;
	smp_wmb();
1480 1481

	efx_for_each_channel(channel, efx) {
1482 1483 1484 1485 1486
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1487 1488 1489 1490
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1504 1505
}

B
Ben Hutchings 已提交
1506
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1507 1508 1509
{
	struct efx_channel *channel;

1510 1511 1512
	if (efx->state == STATE_DISABLED)
		return;

1513 1514
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1515 1516 1517 1518
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1519 1520 1521 1522 1523 1524 1525
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1526
		if (!channel->type->keep_eventq)
1527
			efx_fini_eventq(channel);
1528
	}
1529 1530 1531

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1532 1533
}

1534
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1535
{
1536 1537
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1538 1539 1540 1541 1542 1543 1544 1545

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1546
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1547 1548

	efx_for_each_channel(channel, efx) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1567
		if (channel->type->keep_eventq)
1568
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1569 1570
	}

1571 1572 1573
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1587
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1588 1589
}

1590 1591 1592 1593 1594
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1595
	efx_for_each_channel(channel, efx)
1596 1597 1598 1599 1600 1601 1602 1603
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1604
static void efx_set_channels(struct efx_nic *efx)
1605
{
1606 1607 1608
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1609
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1610
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1611

1612 1613
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1614 1615 1616
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1617 1618 1619 1620 1621
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1622 1623 1624 1625
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1626 1627 1628 1629 1630 1631
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1632
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1633 1634

	/* Carry out hardware-type specific initialisation */
1635
	rc = efx->type->probe(efx);
1636 1637 1638
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1639
	/* Determine the number of channels and queues by trying to hook
1640
	 * in MSI-X interrupts. */
1641 1642
	rc = efx_probe_interrupts(efx);
	if (rc)
1643
		goto fail1;
1644

1645 1646
	efx_set_channels(efx);

1647 1648 1649
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1650

1651
	if (efx->n_channels > 1)
1652 1653 1654
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1655

1656 1657
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1658 1659

	/* Initialise the interrupt moderation settings */
1660 1661
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1662 1663

	return 0;
1664

1665 1666 1667
fail2:
	efx_remove_interrupts(efx);
fail1:
1668 1669
	efx->type->remove(efx);
	return rc;
1670 1671 1672 1673
}

static void efx_remove_nic(struct efx_nic *efx)
{
1674
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1675 1676

	efx_remove_interrupts(efx);
1677
	efx->type->remove(efx);
1678 1679
}

1680 1681 1682 1683 1684
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);
1685 1686
	init_rwsem(&efx->filter_sem);
	down_write(&efx->filter_sem);
1687 1688
	rc = efx->type->filter_table_probe(efx);
	if (rc)
1689
		goto out_unlock;
1690 1691 1692 1693 1694 1695 1696 1697

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
1698 1699
			rc = -ENOMEM;
			goto out_unlock;
1700 1701 1702
		}
	}
#endif
1703 1704 1705
out_unlock:
	up_write(&efx->filter_sem);
	return rc;
1706 1707 1708 1709 1710 1711 1712
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
1713
	down_write(&efx->filter_sem);
1714
	efx->type->filter_table_remove(efx);
1715
	up_write(&efx->filter_sem);
1716 1717 1718 1719
}

static void efx_restore_filters(struct efx_nic *efx)
{
1720
	down_read(&efx->filter_sem);
1721
	efx->type->filter_table_restore(efx);
1722
	up_read(&efx->filter_sem);
1723 1724
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1737
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1738 1739 1740 1741 1742
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1743
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1744 1745 1746
		goto fail2;
	}

1747 1748 1749 1750 1751
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1752
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1753

1754 1755 1756 1757 1758 1759 1760 1761
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1762 1763 1764 1765
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1766
		goto fail4;
B
Ben Hutchings 已提交
1767 1768
	}

1769 1770
	rc = efx_probe_channels(efx);
	if (rc)
1771
		goto fail5;
1772

1773 1774
	return 0;

1775
 fail5:
1776
	efx_remove_filters(efx);
1777 1778 1779 1780
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1781 1782 1783 1784 1785 1786 1787 1788
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1789 1790 1791 1792 1793 1794
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1795
 */
1796 1797 1798
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1799
	BUG_ON(efx->state == STATE_DISABLED);
1800 1801 1802

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1803 1804
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1805 1806 1807
		return;

	efx_start_port(efx);
1808
	efx_start_datapath(efx);
1809

1810 1811
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1812 1813
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1814 1815 1816 1817 1818

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1819 1820 1821 1822 1823
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1824

1825
	efx->type->start_stats(efx);
1826 1827 1828 1829
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1830 1831
}

1832 1833 1834 1835 1836
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1837 1838 1839 1840 1841 1842 1843 1844
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1845 1846 1847 1848 1849 1850 1851
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1852
	efx->type->stop_stats(efx);
1853 1854
	efx_stop_port(efx);

1855 1856 1857 1858 1859 1860
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1861 1862 1863
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1864 1865 1866 1867
}

static void efx_remove_all(struct efx_nic *efx)
{
1868
	efx_remove_channels(efx);
1869
	efx_remove_filters(efx);
1870 1871 1872
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1883
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1884
{
1885 1886
	if (usecs == 0)
		return 0;
1887
	if (usecs * 1000 < quantum_ns)
1888
		return 1; /* never round down to 0 */
1889
	return usecs * 1000 / quantum_ns;
1890 1891
}

1892
/* Set interrupt moderation parameters */
1893 1894 1895
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1896
{
1897
	struct efx_channel *channel;
1898 1899 1900 1901 1902
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1903 1904 1905

	EFX_ASSERT_RESET_SERIALISED(efx);

1906
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1907 1908
		return -EINVAL;

1909 1910 1911
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1912 1913 1914 1915 1916 1917 1918
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1919
	efx->irq_rx_adaptive = rx_adaptive;
1920
	efx->irq_rx_moderation = rx_ticks;
1921
	efx_for_each_channel(channel, efx) {
1922
		if (efx_channel_has_rx_queue(channel))
1923
			channel->irq_moderation = rx_ticks;
1924
		else if (efx_channel_has_tx_queues(channel))
1925 1926
			channel->irq_moderation = tx_ticks;
	}
1927 1928

	return 0;
1929 1930
}

1931 1932 1933
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1934 1935 1936 1937
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1938
	*rx_adaptive = efx->irq_rx_adaptive;
1939 1940 1941
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1942 1943 1944 1945 1946 1947 1948 1949

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1950
		*tx_usecs = DIV_ROUND_UP(
1951
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1952 1953
			efx->timer_quantum_ns,
			1000);
1954 1955
}

1956 1957 1958 1959 1960 1961
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1962
/* Run periodically off the general workqueue */
1963 1964 1965 1966 1967
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1968 1969 1970
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1971
	BUG_ON(efx->type->monitor == NULL);
1972 1973 1974

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1975 1976 1977 1978 1979 1980
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1997
	struct efx_nic *efx = netdev_priv(net_dev);
1998
	struct mii_ioctl_data *data = if_mii(ifr);
1999

2000
	if (cmd == SIOCSHWTSTAMP)
2001 2002 2003
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
2004

2005 2006 2007 2008 2009 2010
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2011 2012 2013 2014 2015 2016 2017 2018
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2019 2020 2021 2022 2023 2024 2025
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2026 2027
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2028 2029
}

2030
static void efx_init_napi(struct efx_nic *efx)
2031 2032 2033
{
	struct efx_channel *channel;

2034 2035
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2036 2037 2038 2039
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2040
	if (channel->napi_dev) {
2041
		netif_napi_del(&channel->napi_str);
2042 2043
		napi_hash_del(&channel->napi_str);
	}
2044
	channel->napi_dev = NULL;
2045 2046 2047 2048 2049 2050
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2051 2052
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2069
	struct efx_nic *efx = netdev_priv(net_dev);
2070 2071
	struct efx_channel *channel;

2072
	efx_for_each_channel(channel, efx)
2073 2074 2075 2076 2077
		efx_schedule_channel(channel);
}

#endif

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2109 2110 2111 2112 2113 2114 2115 2116 2117
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2118
	struct efx_nic *efx = netdev_priv(net_dev);
2119 2120
	int rc;

2121 2122
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2123

2124 2125 2126
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2127 2128
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2129 2130
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2131

2132 2133 2134 2135
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2136
	efx_start_all(efx);
2137
	efx_selftest_async_start(efx);
2138 2139 2140 2141 2142 2143 2144 2145 2146
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2147
	struct efx_nic *efx = netdev_priv(net_dev);
2148

2149 2150
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2151

2152 2153
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2154 2155 2156 2157

	return 0;
}

2158
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2159 2160
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2161
{
2162
	struct efx_nic *efx = netdev_priv(net_dev);
2163

2164
	spin_lock_bh(&efx->stats_lock);
2165
	efx->type->update_stats(efx, NULL, stats);
2166 2167
	spin_unlock_bh(&efx->stats_lock);

2168 2169 2170 2171 2172 2173
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2174
	struct efx_nic *efx = netdev_priv(net_dev);
2175

2176 2177 2178
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2179

2180
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2181 2182 2183 2184 2185 2186
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2187
	struct efx_nic *efx = netdev_priv(net_dev);
2188
	int rc;
2189

2190 2191 2192
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2193 2194 2195
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2196
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2197

2198 2199 2200
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2201
	mutex_lock(&efx->mac_lock);
2202
	net_dev->mtu = new_mtu;
2203
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2204 2205
	mutex_unlock(&efx->mac_lock);

2206
	efx_start_all(efx);
2207
	netif_device_attach(efx->net_dev);
2208
	return 0;
2209 2210 2211 2212
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2213
	struct efx_nic *efx = netdev_priv(net_dev);
2214
	struct sockaddr *addr = data;
2215
	u8 *new_addr = addr->sa_data;
2216 2217
	u8 old_addr[6];
	int rc;
2218 2219

	if (!is_valid_ether_addr(new_addr)) {
2220 2221 2222
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2223
		return -EADDRNOTAVAIL;
2224 2225
	}

2226 2227
	/* save old address */
	ether_addr_copy(old_addr, net_dev->dev_addr);
2228
	ether_addr_copy(net_dev->dev_addr, new_addr);
2229 2230 2231 2232 2233 2234 2235
	if (efx->type->sriov_mac_address_changed) {
		rc = efx->type->sriov_mac_address_changed(efx);
		if (rc) {
			ether_addr_copy(net_dev->dev_addr, old_addr);
			return rc;
		}
	}
2236 2237

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2238
	mutex_lock(&efx->mac_lock);
2239
	efx_mac_reconfigure(efx);
B
Ben Hutchings 已提交
2240
	mutex_unlock(&efx->mac_lock);
2241 2242 2243 2244

	return 0;
}

2245
/* Context: netif_addr_lock held, BHs disabled. */
2246
static void efx_set_rx_mode(struct net_device *net_dev)
2247
{
2248
	struct efx_nic *efx = netdev_priv(net_dev);
2249

2250 2251 2252
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2253 2254
}

2255
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2256 2257 2258 2259 2260
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2261
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2262 2263 2264 2265

	return 0;
}

2266
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2267 2268
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2269
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2270 2271 2272 2273 2274 2275
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2276
	.ndo_set_rx_mode	= efx_set_rx_mode,
2277
	.ndo_set_features	= efx_set_features,
2278
#ifdef CONFIG_SFC_SRIOV
2279 2280 2281 2282
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2283
#endif
S
Stephen Hemminger 已提交
2284 2285 2286
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2287
	.ndo_setup_tc		= efx_setup_tc,
2288 2289 2290
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2291 2292 2293
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2294 2295
};

2296 2297 2298 2299 2300 2301 2302
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2303 2304 2305
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2306
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2307

2308
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2309 2310
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2311 2312 2313 2314 2315 2316 2317 2318

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2319 2320 2321 2322 2323 2324
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2325
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2326

2327 2328 2329
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2330
	struct efx_channel *channel;
2331 2332 2333 2334
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2335 2336
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2337
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2338
	net_dev->ethtool_ops = &efx_ethtool_ops;
2339
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2340

2341
	rtnl_lock();
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2356 2357 2358
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2359
	efx_update_name(efx);
2360

2361 2362 2363
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2364 2365 2366 2367
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2368 2369
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2370 2371
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2372 2373
	}

2374 2375
	efx_associate(efx);

2376
	rtnl_unlock();
2377

B
Ben Hutchings 已提交
2378 2379
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2380 2381
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2382 2383 2384
		goto fail_registered;
	}

2385
	return 0;
B
Ben Hutchings 已提交
2386

2387 2388
fail_registered:
	rtnl_lock();
2389
	efx_dissociate(efx);
2390
	unregister_netdevice(net_dev);
2391
fail_locked:
2392
	efx->state = STATE_UNINIT;
2393
	rtnl_unlock();
2394
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2395
	return rc;
2396 2397 2398 2399 2400 2401 2402
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2403
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2404

2405 2406
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2407 2408 2409 2410 2411

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2412 2413 2414 2415 2416 2417 2418 2419
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2420 2421
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2422
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2423 2424 2425
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2426 2427 2428
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2429
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2430
	efx_disable_interrupts(efx);
2431 2432

	mutex_lock(&efx->mac_lock);
2433 2434
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2435
	efx->type->fini(efx);
2436 2437
}

B
Ben Hutchings 已提交
2438 2439 2440 2441 2442
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2443
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2444 2445 2446
{
	int rc;

B
Ben Hutchings 已提交
2447
	EFX_ASSERT_RESET_SERIALISED(efx);
2448

2449 2450 2451 2452
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2453
	rc = efx->type->init(efx);
2454
	if (rc) {
2455
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2456
		goto fail;
2457 2458
	}

2459 2460 2461
	if (!ok)
		goto fail;

2462
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2463 2464 2465
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2466 2467
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2468 2469
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2470 2471
	}

2472 2473 2474
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2475 2476 2477 2478 2479 2480 2481 2482 2483

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

2484
	down_read(&efx->filter_sem);
B
Ben Hutchings 已提交
2485
	efx_restore_filters(efx);
2486
	up_read(&efx->filter_sem);
2487 2488
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2489 2490 2491 2492 2493 2494 2495 2496 2497

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2498 2499 2500

	mutex_unlock(&efx->mac_lock);

2501 2502 2503
	return rc;
}

2504 2505
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2506
 *
2507
 * Caller must hold the rtnl_lock.
2508
 */
2509
int efx_reset(struct efx_nic *efx, enum reset_type method)
2510
{
2511 2512
	int rc, rc2;
	bool disabled;
2513

2514 2515
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2516

2517
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2518
	efx_reset_down(efx, method);
2519

2520
	rc = efx->type->reset(efx, method);
2521
	if (rc) {
2522
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2523
		goto out;
2524 2525
	}

2526 2527 2528
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2529 2530 2531 2532
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2533 2534 2535 2536 2537 2538 2539

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2540
out:
2541
	/* Leave device stopped if necessary */
2542 2543 2544
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2545 2546 2547 2548 2549
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2550 2551
	}

2552
	if (disabled) {
2553
		dev_close(efx->net_dev);
2554
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2555 2556
		efx->state = STATE_DISABLED;
	} else {
2557
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2558
		netif_device_attach(efx->net_dev);
2559
	}
2560 2561 2562
	return rc;
}

2563 2564 2565 2566 2567
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2568
int efx_try_recovery(struct efx_nic *efx)
2569 2570 2571 2572 2573 2574 2575
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2576
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2605 2606 2607 2608 2609
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2610
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2611 2612 2613 2614 2615 2616
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2617 2618 2619
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2620 2621 2622 2623
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2624

2625
	if (!pending)
2626 2627
		return;

2628
	rtnl_lock();
2629 2630 2631 2632 2633 2634

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2635
		(void)efx_reset(efx, method);
2636

2637
	rtnl_unlock();
2638 2639 2640 2641 2642 2643
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2644 2645 2646 2647 2648 2649 2650
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2651 2652 2653
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2654
	case RESET_TYPE_RECOVER_OR_ALL:
2655 2656
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2657
	case RESET_TYPE_RECOVER_OR_DISABLE:
2658
	case RESET_TYPE_MC_BIST:
2659
	case RESET_TYPE_MCDI_TIMEOUT:
2660
		method = type;
2661 2662
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2663 2664
		break;
	default:
2665
		method = efx->type->map_reset_reason(type);
2666 2667 2668
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2669 2670
		break;
	}
2671

2672
	set_bit(method, &efx->reset_pending);
2673 2674 2675 2676 2677 2678 2679
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2680

2681 2682 2683 2684
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2685
	queue_work(reset_workqueue, &efx->reset_work);
2686 2687 2688 2689 2690 2691 2692 2693 2694
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2695
static const struct pci_device_id efx_pci_table[] = {
2696 2697
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2698
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2699 2700
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2701
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2702
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2703
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2704
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2705
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2706 2707
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2708 2709
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2710 2711
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2712 2713 2714 2715 2716
	{0}			/* end of list */
};

/**************************************************************************
 *
2717
 * Dummy PHY/MAC operations
2718
 *
2719
 * Can be used for some unimplemented operations
2720 2721 2722 2723 2724 2725 2726 2727 2728
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2729 2730

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2731 2732 2733
{
	return false;
}
2734

2735
static const struct efx_phy_operations efx_dummy_phy_operations = {
2736
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2737
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2738
	.poll		 = efx_port_dummy_op_poll,
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2751
static int efx_init_struct(struct efx_nic *efx,
2752 2753
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2754
	int i;
2755 2756

	/* Initialise common structures */
2757 2758
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2759
	spin_lock_init(&efx->biu_lock);
2760 2761 2762
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2763 2764
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2765
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2766
	efx->pci_dev = pci_dev;
2767
	efx->msg_enable = debug;
2768
	efx->state = STATE_UNINIT;
2769 2770 2771
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2772
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2773 2774
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2775 2776
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2777 2778
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2779 2780 2781
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2782
	efx->mdio.dev = net_dev;
2783
	INIT_WORK(&efx->mac_work, efx_mac_work);
2784
	init_waitqueue_head(&efx->flush_wq);
2785 2786

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2787 2788 2789
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2790 2791
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2792 2793 2794 2795 2796 2797
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2798 2799 2800 2801
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2802
	if (!efx->workqueue)
2803
		goto fail;
2804

2805
	return 0;
2806 2807 2808 2809

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2810 2811 2812 2813
}

static void efx_fini_struct(struct efx_nic *efx)
{
2814 2815 2816 2817 2818
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2819 2820
	kfree(efx->vpd_sn);

2821 2822 2823 2824 2825 2826
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2849 2850 2851 2852 2853 2854
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2855
	efx_disable_interrupts(efx);
2856
	efx_nic_fini_interrupt(efx);
2857
	efx_fini_port(efx);
2858
	efx->type->fini(efx);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2876
	efx_dissociate(efx);
2877
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2878
	efx_disable_interrupts(efx);
2879 2880
	rtnl_unlock();

2881 2882 2883
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2884 2885
	efx_unregister_netdev(efx);

2886 2887
	efx_mtd_remove(efx);

2888 2889 2890
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2891
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2892 2893 2894

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2895 2896

	pci_disable_pcie_error_reporting(pci_dev);
2897 2898
};

2899 2900 2901 2902 2903 2904
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2905
static void efx_probe_vpd_strings(struct efx_nic *efx)
2906 2907 2908 2909
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2910
	int ro_start, ro_size, i, j;
2911 2912 2913 2914 2915 2916 2917 2918 2919

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2920 2921
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2922 2923 2924 2925
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2926 2927 2928
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2969 2970 2971
}


2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2984
	efx_init_napi(efx);
2985

2986
	rc = efx->type->init(efx);
2987
	if (rc) {
2988 2989
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2990
		goto fail3;
2991 2992 2993 2994
	}

	rc = efx_init_port(efx);
	if (rc) {
2995 2996
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2997
		goto fail4;
2998 2999
	}

3000
	rc = efx_nic_init_interrupt(efx);
3001
	if (rc)
3002
		goto fail5;
3003 3004 3005
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
3006 3007 3008

	return 0;

3009 3010
 fail6:
	efx_nic_fini_interrupt(efx);
3011
 fail5:
3012 3013
	efx_fini_port(efx);
 fail4:
3014
	efx->type->fini(efx);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
3025
 * theoretically).  It sets up PCI mappings, resets the NIC,
3026 3027 3028 3029 3030
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3031
static int efx_pci_probe(struct pci_dev *pci_dev,
3032
			 const struct pci_device_id *entry)
3033 3034 3035
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3036
	int rc;
3037 3038

	/* Allocate and initialise a struct net_device and struct efx_nic */
3039 3040
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3041 3042
	if (!net_dev)
		return -ENOMEM;
3043 3044 3045
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3046
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3047
			      NETIF_F_RXCSUM);
3048
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3049
		net_dev->features |= NETIF_F_TSO6;
3050 3051
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3052 3053 3054 3055
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3056
	pci_set_drvdata(pci_dev, efx);
3057
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3058
	rc = efx_init_struct(efx, pci_dev, net_dev);
3059 3060 3061
	if (rc)
		goto fail1;

3062
	netif_info(efx, probe, efx->net_dev,
3063
		   "Solarflare NIC detected\n");
3064

3065 3066
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3067

3068 3069 3070 3071 3072
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3073 3074 3075
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3076 3077 3078

	rc = efx_register_netdev(efx);
	if (rc)
3079
		goto fail4;
3080

3081 3082 3083 3084 3085 3086
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3087

3088
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3089

3090
	/* Try to create MTDs, but allow this to fail */
3091
	rtnl_lock();
3092
	rc = efx_mtd_probe(efx);
3093
	rtnl_unlock();
3094 3095 3096 3097
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3098 3099 3100 3101 3102
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3103 3104 3105
	return 0;

 fail4:
3106
	efx_pci_remove_main(efx);
3107 3108 3109 3110 3111
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3112
	WARN_ON(rc > 0);
3113
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3114 3115 3116 3117
	free_netdev(net_dev);
	return rc;
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3138 3139 3140 3141
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3142 3143
	rtnl_lock();

3144 3145
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3146

3147
		efx_device_detach_sync(efx);
3148

3149
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3150
		efx_disable_interrupts(efx);
3151
	}
3152

3153 3154
	rtnl_unlock();

3155 3156 3157 3158 3159
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3160
	int rc;
3161 3162
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3163 3164
	rtnl_lock();

3165
	if (efx->state != STATE_DISABLED) {
3166 3167 3168
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3169

3170 3171 3172
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3173

3174
		efx_start_all(efx);
3175

3176
		netif_device_attach(efx->net_dev);
3177

3178
		efx->state = STATE_READY;
3179

3180 3181
		efx->type->resume_wol(efx);
	}
3182

3183 3184
	rtnl_unlock();

3185 3186 3187
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3188
	return 0;
3189 3190 3191 3192 3193

fail:
	rtnl_unlock();

	return rc;
3194 3195 3196 3197 3198 3199 3200 3201 3202
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3203
	efx->reset_pending = 0;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3230 3231
	rc = efx_pm_thaw(dev);
	return rc;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3245
static const struct dev_pm_ops efx_pm_ops = {
3246 3247 3248 3249 3250 3251 3252 3253
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3254 3255 3256 3257
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3258 3259
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3276
		efx_disable_interrupts(efx);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3293
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3294
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3353
static struct pci_driver efx_pci_driver = {
3354
	.name		= KBUILD_MODNAME,
3355 3356 3357
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3358
	.driver.pm	= &efx_pm_ops,
3359
	.err_handler	= &efx_err_handlers,
3360 3361 3362
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3385
#ifdef CONFIG_SFC_SRIOV
3386 3387 3388
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3389
#endif
3390

3391 3392 3393 3394 3395
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3396 3397 3398 3399 3400 3401 3402 3403

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3404 3405
	destroy_workqueue(reset_workqueue);
 err_reset:
3406
#ifdef CONFIG_SFC_SRIOV
3407 3408
	efx_fini_sriov();
 err_sriov:
3409
#endif
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3420
	destroy_workqueue(reset_workqueue);
3421
#ifdef CONFIG_SFC_SRIOV
3422
	efx_fini_sriov();
3423
#endif
3424 3425 3426 3427 3428 3429 3430
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3431 3432
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3433
MODULE_DESCRIPTION("Solarflare network driver");
3434 3435
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);