efx.c 70.1 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41
const char *const efx_loopback_mode_names[] = {
42
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
47 48 49
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
50 51 52 53 54 55
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
58 59
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 61
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 64
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65
	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 67
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 70 71
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72
const char *const efx_reset_type_names[] = {
73 74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156
 * The default (0) means to assign an interrupt to each core.
157 158 159 160 161
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

162 163 164 165
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

166 167 168 169 170 171 172 173 174 175
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

176 177 178 179 180 181 182
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

183 184 185 186 187
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
188 189

static void efx_remove_channels(struct efx_nic *efx);
190
static void efx_remove_port(struct efx_nic *efx);
191
static void efx_init_napi(struct efx_nic *efx);
192
static void efx_fini_napi(struct efx_nic *efx);
193
static void efx_fini_napi_channel(struct efx_channel *channel);
194 195 196
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
197 198 199

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
200 201
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
218
static int efx_process_channel(struct efx_channel *channel, int budget)
219
{
B
Ben Hutchings 已提交
220
	struct efx_nic *efx = channel->efx;
221
	int spent;
222

223
	if (unlikely(efx->reset_pending || !channel->enabled))
B
Ben Hutchings 已提交
224
		return 0;
225

226 227
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
228
		return 0;
229 230 231 232 233 234 235 236 237 238

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

239
	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
240

241
	return spent;
242 243 244 245 246 247 248 249 250 251
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
252 253 254
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
255
	channel->work_pending = false;
256 257
	smp_wmb();

258
	efx_nic_eventq_read_ack(channel);
259 260 261 262 263 264 265 266 267 268 269
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
270
	struct efx_nic *efx = channel->efx;
271
	int spent;
272

273 274 275
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
276

277
	spent = efx_process_channel(channel, budget);
278

279
	if (spent < budget) {
B
Ben Hutchings 已提交
280
		if (channel->channel < efx->n_rx_channels &&
281 282 283 284
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
285 286
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
287
					efx->type->push_irq_moderation(channel);
288
				}
289 290
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
291 292 293
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
294
					efx->type->push_irq_moderation(channel);
295
				}
296 297 298 299 300
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

301 302
		efx_filter_rfs_expire(channel);

303
		/* There is no race here; although napi_disable() will
304
		 * only wait for napi_complete(), this isn't a problem
305 306 307
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
308
		napi_complete(napi);
309 310 311
		efx_channel_processed(channel);
	}

312
	return spent;
313 314 315 316 317 318 319 320
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
321 322
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
323 324 325 326 327
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

328
	BUG_ON(channel->channel >= efx->n_channels);
329
	BUG_ON(!channel->enabled);
330
	BUG_ON(!efx->loopback_selftest);
331 332

	/* Disable interrupts and wait for ISRs to complete */
333
	efx_nic_disable_interrupts(efx);
334
	if (efx->legacy_irq) {
335
		synchronize_irq(efx->legacy_irq);
336 337
		efx->legacy_irq_enabled = false;
	}
338
	if (channel->irq)
339 340 341 342 343 344
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
345
	efx_process_channel(channel, channel->eventq_mask + 1);
346 347 348 349 350 351

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
352 353
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
354
	efx_nic_enable_interrupts(efx);
355 356 357 358 359 360 361 362 363
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
364 365 366
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

367 368
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "chan %d create event queue\n", channel->channel);
369

370 371 372 373 374 375
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

376
	return efx_nic_probe_eventq(channel);
377 378 379
}

/* Prepare channel's event queue */
380
static void efx_init_eventq(struct efx_channel *channel)
381
{
382 383
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
384 385 386

	channel->eventq_read_ptr = 0;

387
	efx_nic_init_eventq(channel);
388 389 390 391
}

static void efx_fini_eventq(struct efx_channel *channel)
{
392 393
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
394

395
	efx_nic_fini_eventq(channel);
396 397 398 399
}

static void efx_remove_eventq(struct efx_channel *channel)
{
400 401
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
402

403
	efx_nic_remove_eventq(channel);
404 405 406 407 408 409 410 411
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

429
		channel->napi_dev = NULL;
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

467 468 469 470 471 472
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

473 474
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


507 508 509 510 511 512 513 514
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
515 516
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
517 518 519
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
520
				number -= efx->n_rx_channels;
521 522
			}
		}
523 524
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
525 526 527 528
			 "%s%s-%d", efx->name, type, number);
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

555 556 557 558
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
559
static void efx_init_channels(struct efx_nic *efx)
560 561 562 563 564
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

565 566 567 568 569 570
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
571
			      efx->type->rx_buffer_hash_size +
572
			      efx->type->rx_buffer_padding);
573 574
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
575 576 577

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
578 579
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
580

581
		efx_init_eventq(channel);
582

583 584
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
585 586 587 588

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

589 590
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

606 607
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
608

609 610 611
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
612 613
	channel->work_pending = false;
	channel->enabled = true;
614
	smp_wmb();
615

616
	/* Fill the queues before enabling NAPI */
617 618
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
619 620

	napi_enable(&channel->napi_str);
621 622 623 624 625 626 627 628 629 630 631
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

632 633
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
634

635
	channel->enabled = false;
636 637 638 639 640 641 642 643
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
644
	int rc;
645 646 647 648

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

649
	rc = efx_nic_flush_queues(efx);
650 651 652 653 654
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
655 656
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
657 658
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
659
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
660
	} else {
661 662
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
663
	}
664

665
	efx_for_each_channel(channel, efx) {
666 667
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
668 669 670

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
671
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
672 673 674 675 676 677 678 679 680 681
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

682 683
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
684 685 686

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
687
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
688 689 690 691
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
	efx_fini_channels(efx);

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

737 738
	efx_init_napi(efx);

739
	/* Destroy old channels */
740 741
	for (i = 0; i < efx->n_channels; i++) {
		efx_fini_napi_channel(other_channel[i]);
742
		efx_remove_channel(other_channel[i]);
743
	}
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

	efx_init_channels(efx);
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

765
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
766
{
767
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
768 769 770 771 772 773 774 775 776 777 778 779
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
780
void efx_link_status_changed(struct efx_nic *efx)
781
{
782 783
	struct efx_link_state *link_state = &efx->link_state;

784 785 786 787 788 789 790
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

791
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
792 793
		efx->n_link_state_changes++;

794
		if (link_state->up)
795 796 797 798 799 800
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
801
	if (link_state->up) {
802 803 804 805 806
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
807
	} else {
808
		netif_info(efx, link, efx->net_dev, "link down\n");
809 810 811 812
	}

}

B
Ben Hutchings 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

826
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

841 842
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
843 844 845 846 847 848 849 850
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
851
{
B
Ben Hutchings 已提交
852 853
	enum efx_phy_mode phy_mode;
	int rc;
854

B
Ben Hutchings 已提交
855
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
856

857 858 859 860 861 862
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
863 864
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
865 866 867 868 869
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
870
	rc = efx->type->reconfigure_port(efx);
871

B
Ben Hutchings 已提交
872 873
	if (rc)
		efx->phy_mode = phy_mode;
874

B
Ben Hutchings 已提交
875
	return rc;
876 877 878 879
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
880
int efx_reconfigure_port(struct efx_nic *efx)
881
{
B
Ben Hutchings 已提交
882 883
	int rc;

884 885 886
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
887
	rc = __efx_reconfigure_port(efx);
888
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
889 890

	return rc;
891 892
}

893 894 895
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
896 897 898 899 900
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
901
	if (efx->port_enabled)
902
		efx->type->reconfigure_mac(efx);
903 904 905
	mutex_unlock(&efx->mac_lock);
}

906 907 908 909
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

910
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
911

912 913 914
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

915 916
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
917
	if (rc)
918
		return rc;
919

920 921
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
922 923 924 925 926 927 928 929

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

930
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
931

932 933
	mutex_lock(&efx->mac_lock);

934
	rc = efx->phy_op->init(efx);
935
	if (rc)
936
		goto fail1;
937

938
	efx->port_initialized = true;
939

B
Ben Hutchings 已提交
940 941
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
942
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
943 944 945 946 947 948

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

949
	mutex_unlock(&efx->mac_lock);
950
	return 0;
951

952
fail2:
953
	efx->phy_op->fini(efx);
954 955
fail1:
	mutex_unlock(&efx->mac_lock);
956
	return rc;
957 958 959 960
}

static void efx_start_port(struct efx_nic *efx)
{
961
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
962 963 964
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
965
	efx->port_enabled = true;
966 967 968

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
969
	efx->type->reconfigure_mac(efx);
970

971 972 973
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
974
/* Prevent efx_mac_work() and efx_monitor() from working */
975 976
static void efx_stop_port(struct efx_nic *efx)
{
977
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
978 979

	mutex_lock(&efx->mac_lock);
980
	efx->port_enabled = false;
981 982 983
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
984
	if (efx_dev_registered(efx)) {
985 986
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
987 988 989 990 991
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
992
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
993 994 995 996

	if (!efx->port_initialized)
		return;

997
	efx->phy_op->fini(efx);
998
	efx->port_initialized = false;
999

1000
	efx->link_state.up = false;
1001 1002 1003 1004 1005
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1006
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1007

1008
	efx->type->remove_port(efx);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1024
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1025 1026 1027

	rc = pci_enable_device(pci_dev);
	if (rc) {
1028 1029
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1041 1042 1043 1044 1045
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1046 1047 1048
		dma_mask >>= 1;
	}
	if (rc) {
1049 1050
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1051 1052
		goto fail2;
	}
1053 1054
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1055 1056 1057 1058 1059 1060
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1061 1062
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1063 1064 1065
		goto fail2;
	}

1066 1067
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1068
	if (rc) {
1069 1070
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1071 1072 1073
		rc = -EIO;
		goto fail3;
	}
1074 1075
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1076
	if (!efx->membase) {
1077 1078 1079 1080
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1081 1082 1083
		rc = -ENOMEM;
		goto fail4;
	}
1084 1085 1086 1087
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1088 1089 1090 1091

	return 0;

 fail4:
1092
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1093
 fail3:
1094
	efx->membase_phys = 0;
1095 1096 1097 1098 1099 1100 1101 1102
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1103
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1104 1105 1106 1107 1108 1109 1110

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1111
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1112
		efx->membase_phys = 0;
1113 1114 1115 1116 1117
	}

	pci_disable_device(efx->pci_dev);
}

1118
static int efx_wanted_parallelism(void)
1119
{
1120
	cpumask_var_t thread_mask;
1121 1122
	int count;
	int cpu;
1123 1124 1125

	if (rss_cpus)
		return rss_cpus;
1126

1127
	if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1128
		printk(KERN_WARNING
1129
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1130 1131 1132
		return 1;
	}

1133 1134
	count = 0;
	for_each_online_cpu(cpu) {
1135
		if (!cpumask_test_cpu(cpu, thread_mask)) {
1136
			++count;
1137 1138
			cpumask_or(thread_mask, thread_mask,
				   topology_thread_cpumask(cpu));
1139 1140 1141
		}
	}

1142
	free_cpumask_var(thread_mask);
1143 1144 1145
	return count;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
	int i, rc;

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1168 1169 1170
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1171
static int efx_probe_interrupts(struct efx_nic *efx)
1172
{
1173 1174
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1175 1176 1177
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1178
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1179
		int n_channels;
1180

1181
		n_channels = efx_wanted_parallelism();
B
Ben Hutchings 已提交
1182 1183 1184
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1185

B
Ben Hutchings 已提交
1186
		for (i = 0; i < n_channels; i++)
1187
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1188
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1189
		if (rc > 0) {
1190 1191 1192 1193 1194
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1195 1196
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1197
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1198
					     n_channels);
1199 1200 1201
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
1213 1214 1215 1216 1217
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
B
Ben Hutchings 已提交
1218
			for (i = 0; i < n_channels; i++)
1219 1220
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1221 1222 1223
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1224 1225
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1226 1227 1228 1229 1230
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1231
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1232 1233
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1234 1235
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1236
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1237
		} else {
1238 1239
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1240 1241 1242 1243 1244 1245
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1246
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1247 1248
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1249 1250
		efx->legacy_irq = efx->pci_dev->irq;
	}
1251 1252

	return 0;
1253 1254 1255 1256 1257 1258 1259
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1260
	efx_for_each_channel(channel, efx)
1261 1262 1263 1264 1265 1266 1267 1268
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1269
static void efx_set_channels(struct efx_nic *efx)
1270
{
1271 1272 1273
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1274
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1275
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1276 1277 1278 1279 1280 1281 1282 1283 1284

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1285 1286 1287 1288
}

static int efx_probe_nic(struct efx_nic *efx)
{
1289
	size_t i;
1290 1291
	int rc;

1292
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1293 1294

	/* Carry out hardware-type specific initialisation */
1295
	rc = efx->type->probe(efx);
1296 1297 1298
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1299
	/* Determine the number of channels and queues by trying to hook
1300
	 * in MSI-X interrupts. */
1301 1302 1303
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1304

1305 1306
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1307
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1308 1309
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1310

1311
	efx_set_channels(efx);
1312 1313
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1314 1315

	/* Initialise the interrupt moderation settings */
1316 1317
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1318 1319

	return 0;
1320 1321 1322 1323

fail:
	efx->type->remove(efx);
	return rc;
1324 1325 1326 1327
}

static void efx_remove_nic(struct efx_nic *efx)
{
1328
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1329 1330

	efx_remove_interrupts(efx);
1331
	efx->type->remove(efx);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1346
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1347 1348 1349 1350 1351
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1352
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1353 1354 1355
		goto fail2;
	}

1356
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1357 1358 1359
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1360

B
Ben Hutchings 已提交
1361 1362 1363 1364 1365 1366 1367
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1368 1369
	return 0;

B
Ben Hutchings 已提交
1370 1371
 fail4:
	efx_remove_channels(efx);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1397
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1398 1399 1400 1401 1402 1403
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

1404
	if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1405 1406 1407
		netif_tx_wake_all_queues(efx->net_dev);

	efx_for_each_channel(channel, efx)
1408 1409
		efx_start_channel(channel);

1410 1411
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
1412
	efx_nic_enable_interrupts(efx);
1413

1414 1415 1416 1417 1418 1419
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
1420
	if (efx->reset_pending)
1421 1422
		efx_mcdi_mode_poll(efx);

1423 1424 1425 1426
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1427 1428
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1429 1430 1431 1432 1433 1434
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1435

1436
	efx->type->start_stats(efx);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1447
	cancel_work_sync(&efx->mac_work);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1465
	efx->type->stop_stats(efx);
1466

1467 1468 1469
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1470
	/* Disable interrupts and wait for ISR to complete */
1471
	efx_nic_disable_interrupts(efx);
1472
	if (efx->legacy_irq) {
1473
		synchronize_irq(efx->legacy_irq);
1474 1475
		efx->legacy_irq_enabled = false;
	}
1476
	efx_for_each_channel(channel, efx) {
1477 1478
		if (channel->irq)
			synchronize_irq(channel->irq);
1479
	}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1490
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1491 1492 1493 1494
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1495
	if (efx_dev_registered(efx)) {
1496
		netif_tx_stop_all_queues(efx->net_dev);
1497 1498 1499 1500 1501 1502 1503
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1504
	efx_remove_filters(efx);
1505
	efx_remove_channels(efx);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1516
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
1517
{
1518 1519
	if (usecs == 0)
		return 0;
1520 1521 1522 1523 1524
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1525
/* Set interrupt moderation parameters */
1526 1527 1528
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1529
{
1530
	struct efx_channel *channel;
1531 1532
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1533 1534 1535

	EFX_ASSERT_RESET_SERIALISED(efx);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX)
		return -EINVAL;

	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1546
	efx->irq_rx_adaptive = rx_adaptive;
1547
	efx->irq_rx_moderation = rx_ticks;
1548
	efx_for_each_channel(channel, efx) {
1549
		if (efx_channel_has_rx_queue(channel))
1550
			channel->irq_moderation = rx_ticks;
1551
		else if (efx_channel_has_tx_queues(channel))
1552 1553
			channel->irq_moderation = tx_ticks;
	}
1554 1555

	return 0;
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
	*rx_adaptive = efx->irq_rx_adaptive;
	*rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
		*tx_usecs =
			efx->channel[efx->tx_channel_offset]->irq_moderation *
			EFX_IRQ_MOD_RESOLUTION;
}

1576 1577 1578 1579 1580 1581
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1582
/* Run periodically off the general workqueue */
1583 1584 1585 1586 1587
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1588 1589 1590
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1591
	BUG_ON(efx->type->monitor == NULL);
1592 1593 1594

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1595 1596 1597 1598 1599 1600
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1617
	struct efx_nic *efx = netdev_priv(net_dev);
1618
	struct mii_ioctl_data *data = if_mii(ifr);
1619 1620 1621

	EFX_ASSERT_RESET_SERIALISED(efx);

1622 1623 1624 1625 1626 1627
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1628 1629 1630 1631 1632 1633 1634 1635
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1636
static void efx_init_napi(struct efx_nic *efx)
1637 1638 1639 1640 1641
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1642 1643
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1644
	}
1645 1646 1647 1648 1649 1650 1651
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1652 1653 1654 1655 1656 1657
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1658 1659
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1676
	struct efx_nic *efx = netdev_priv(net_dev);
1677 1678
	struct efx_channel *channel;

1679
	efx_for_each_channel(channel, efx)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1694
	struct efx_nic *efx = netdev_priv(net_dev);
1695 1696
	EFX_ASSERT_RESET_SERIALISED(efx);

1697 1698
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1699

1700 1701
	if (efx->state == STATE_DISABLED)
		return -EIO;
1702 1703
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1704 1705
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1706

1707 1708 1709 1710
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1721
	struct efx_nic *efx = netdev_priv(net_dev);
1722

1723 1724
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1725

1726 1727 1728 1729 1730 1731
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1732 1733 1734 1735

	return 0;
}

1736
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1737
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1738
{
1739
	struct efx_nic *efx = netdev_priv(net_dev);
1740 1741
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1742
	spin_lock_bh(&efx->stats_lock);
1743

1744
	efx->type->update_stats(efx);
1745 1746 1747 1748 1749

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1750
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1768 1769
	spin_unlock_bh(&efx->stats_lock);

1770 1771 1772 1773 1774 1775
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1776
	struct efx_nic *efx = netdev_priv(net_dev);
1777

1778 1779 1780
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1781

1782
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1783 1784 1785 1786 1787 1788
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1789
	struct efx_nic *efx = netdev_priv(net_dev);
1790 1791 1792 1793 1794 1795 1796 1797 1798
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1799
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1800 1801

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1802 1803 1804 1805

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1806
	net_dev->mtu = new_mtu;
1807
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1808 1809
	mutex_unlock(&efx->mac_lock);

1810
	efx_init_channels(efx);
1811 1812 1813 1814 1815 1816 1817

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1818
	struct efx_nic *efx = netdev_priv(net_dev);
1819 1820 1821 1822 1823 1824
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1825 1826 1827
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1828 1829 1830 1831 1832 1833
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1834
	mutex_lock(&efx->mac_lock);
1835
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1836
	mutex_unlock(&efx->mac_lock);
1837 1838 1839 1840

	return 0;
}

1841
/* Context: netif_addr_lock held, BHs disabled. */
1842 1843
static void efx_set_multicast_list(struct net_device *net_dev)
{
1844
	struct efx_nic *efx = netdev_priv(net_dev);
1845
	struct netdev_hw_addr *ha;
1846 1847 1848 1849
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1850
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1851 1852

	/* Build multicast hash table */
1853
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1854 1855 1856
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1857 1858
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1859 1860 1861 1862
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1863 1864 1865 1866 1867 1868
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1869

1870 1871 1872
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1873 1874
}

1875
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1886 1887 1888
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1889
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1890 1891 1892 1893 1894 1895
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
1896
	.ndo_set_rx_mode	= efx_set_multicast_list,
1897
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1898 1899 1900
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1901
	.ndo_setup_tc		= efx_setup_tc,
1902 1903 1904
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1905 1906
};

1907 1908 1909 1910 1911 1912 1913
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1914 1915 1916
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1917
	struct net_device *net_dev = ptr;
1918

1919 1920 1921
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1922 1923 1924 1925 1926 1927 1928 1929

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1930 1931 1932 1933 1934 1935 1936 1937
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1938 1939 1940
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1941
	struct efx_channel *channel;
1942 1943 1944 1945
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1946
	net_dev->netdev_ops = &efx_netdev_ops;
1947 1948
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

1949
	rtnl_lock();
1950 1951 1952 1953

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1954
	efx_update_name(efx);
1955 1956 1957 1958 1959

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

1960 1961
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
1962 1963
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
1964 1965
	}

1966 1967 1968
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1969
	rtnl_unlock();
1970

B
Ben Hutchings 已提交
1971 1972
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1973 1974
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1975 1976 1977
		goto fail_registered;
	}

1978
	return 0;
B
Ben Hutchings 已提交
1979

1980 1981
fail_locked:
	rtnl_unlock();
1982
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1983 1984
	return rc;

B
Ben Hutchings 已提交
1985 1986 1987
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1988 1989 1990 1991
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
1992
	struct efx_channel *channel;
1993 1994 1995 1996 1997
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1998
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1999 2000 2001 2002

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2003 2004 2005 2006
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2007

2008
	if (efx_dev_registered(efx)) {
2009
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
2010
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2021 2022
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2023
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2024 2025 2026
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2027 2028 2029
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2030
	efx_fini_channels(efx);
2031 2032
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2033
	efx->type->fini(efx);
2034 2035
}

B
Ben Hutchings 已提交
2036 2037 2038 2039 2040
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2041
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2042 2043 2044
{
	int rc;

B
Ben Hutchings 已提交
2045
	EFX_ASSERT_RESET_SERIALISED(efx);
2046

2047
	rc = efx->type->init(efx);
2048
	if (rc) {
2049
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2050
		goto fail;
2051 2052
	}

2053 2054 2055
	if (!ok)
		goto fail;

2056
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2057 2058 2059 2060
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2061 2062
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2063 2064
	}

2065
	efx->type->reconfigure_mac(efx);
2066

2067
	efx_init_channels(efx);
B
Ben Hutchings 已提交
2068
	efx_restore_filters(efx);
2069 2070 2071 2072 2073 2074 2075 2076 2077

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2078 2079 2080

	mutex_unlock(&efx->mac_lock);

2081 2082 2083
	return rc;
}

2084 2085
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2086
 *
2087
 * Caller must hold the rtnl_lock.
2088
 */
2089
int efx_reset(struct efx_nic *efx, enum reset_type method)
2090
{
2091 2092
	int rc, rc2;
	bool disabled;
2093

2094 2095
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2096

2097
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2098
	efx_reset_down(efx, method);
2099

2100
	rc = efx->type->reset(efx, method);
2101
	if (rc) {
2102
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2103
		goto out;
2104 2105
	}

2106 2107 2108 2109
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2110 2111 2112 2113 2114 2115 2116

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2117
out:
2118
	/* Leave device stopped if necessary */
2119 2120 2121 2122 2123 2124
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2125 2126
	}

2127
	if (disabled) {
2128
		dev_close(efx->net_dev);
2129
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2130 2131
		efx->state = STATE_DISABLED;
	} else {
2132
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2133
		netif_device_attach(efx->net_dev);
2134
	}
2135 2136 2137 2138 2139 2140 2141 2142
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2143
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2144
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2145

2146
	if (!pending)
2147 2148
		return;

2149
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2150
	 * flags set so that efx_pci_probe_main will be retried */
2151
	if (efx->state != STATE_RUNNING) {
2152 2153
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2154 2155 2156 2157
		return;
	}

	rtnl_lock();
2158
	(void)efx_reset(efx, fls(pending) - 1);
2159
	rtnl_unlock();
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2172 2173
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2174 2175
		break;
	default:
2176
		method = efx->type->map_reset_reason(type);
2177 2178 2179
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2180 2181
		break;
	}
2182

2183
	set_bit(method, &efx->reset_pending);
2184

2185 2186 2187 2188
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2189
	queue_work(reset_workqueue, &efx->reset_work);
2190 2191 2192 2193 2194 2195 2196 2197 2198
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2199
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2200 2201
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2202
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2203 2204
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2205
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2206
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2207
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2208
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2209
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2210 2211 2212 2213 2214
	{0}			/* end of list */
};

/**************************************************************************
 *
2215
 * Dummy PHY/MAC operations
2216
 *
2217
 * Can be used for some unimplemented operations
2218 2219 2220 2221 2222 2223 2224 2225 2226
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2227 2228

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2229 2230 2231
{
	return false;
}
2232

2233
static const struct efx_phy_operations efx_dummy_phy_operations = {
2234
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2235
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2236
	.poll		 = efx_port_dummy_op_poll,
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2249
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2250 2251
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2252
	int i;
2253 2254 2255 2256

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2257 2258 2259
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2260 2261 2262
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2263
	efx->msg_enable = debug;
2264 2265 2266 2267 2268 2269 2270
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2271
	efx->mdio.dev = net_dev;
2272
	INIT_WORK(&efx->mac_work, efx_mac_work);
2273 2274

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2275 2276 2277
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2288 2289 2290 2291
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2292
	if (!efx->workqueue)
2293
		goto fail;
2294

2295
	return 0;
2296 2297 2298 2299

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2300 2301 2302 2303
}

static void efx_fini_struct(struct efx_nic *efx)
{
2304 2305 2306 2307 2308
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2326 2327 2328 2329
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2330
	efx_nic_fini_interrupt(efx);
2331 2332
	efx_fini_channels(efx);
	efx_fini_port(efx);
2333
	efx->type->fini(efx);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2359 2360
	efx_mtd_remove(efx);

2361 2362 2363 2364
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2365
	cancel_work_sync(&efx->reset_work);
2366 2367 2368 2369

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2370
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2389
	efx_init_napi(efx);
2390

2391
	rc = efx->type->init(efx);
2392
	if (rc) {
2393 2394
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2395
		goto fail3;
2396 2397 2398 2399
	}

	rc = efx_init_port(efx);
	if (rc) {
2400 2401
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2402
		goto fail4;
2403 2404
	}

2405
	efx_init_channels(efx);
2406

2407
	rc = efx_nic_init_interrupt(efx);
2408
	if (rc)
2409
		goto fail5;
2410 2411 2412

	return 0;

2413
 fail5:
2414
	efx_fini_channels(efx);
2415 2416
	efx_fini_port(efx);
 fail4:
2417
	efx->type->fini(efx);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2437
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2438 2439 2440 2441 2442
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
2443 2444
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2445 2446
	if (!net_dev)
		return -ENOMEM;
2447
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2448
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2449
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2450 2451
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2452 2453
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2454 2455 2456 2457
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2458
	efx = netdev_priv(net_dev);
2459
	pci_set_drvdata(pci_dev, efx);
2460
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2461 2462 2463 2464
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2465
	netif_info(efx, probe, efx->net_dev,
2466
		   "Solarflare NIC detected\n");
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2482
		cancel_work_sync(&efx->reset_work);
2483

2484
		if (rc == 0) {
2485
			if (efx->reset_pending) {
2486 2487 2488 2489 2490 2491 2492 2493 2494
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2495
		/* Retry if a recoverably reset event has been scheduled */
2496 2497 2498
		if (efx->reset_pending &
		    ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
		    !efx->reset_pending)
2499 2500
			goto fail3;

2501
		efx->reset_pending = 0;
2502 2503 2504
	}

	if (rc) {
2505
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2506 2507 2508
		goto fail4;
	}

2509 2510
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2511
	efx->state = STATE_RUNNING;
2512

2513 2514 2515 2516
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2517
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2518 2519 2520 2521

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2532
	WARN_ON(rc > 0);
2533
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2534 2535 2536 2537
	free_netdev(net_dev);
	return rc;
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2572 2573 2574
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2585
	efx->reset_pending = 0;
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2627
static const struct dev_pm_ops efx_pm_ops = {
2628 2629 2630 2631 2632 2633 2634 2635
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2636
static struct pci_driver efx_pci_driver = {
2637
	.name		= KBUILD_MODNAME,
2638 2639 2640
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2641
	.driver.pm	= &efx_pm_ops,
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2664 2665 2666 2667 2668
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2669 2670 2671 2672 2673 2674 2675 2676

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2677 2678
	destroy_workqueue(reset_workqueue);
 err_reset:
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2689
	destroy_workqueue(reset_workqueue);
2690 2691 2692 2693 2694 2695 2696
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2697 2698
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2699 2700 2701
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);