efx.c 83.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

101 102 103 104 105 106 107 108 109
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
110 111
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
112
 *
113
 * This is only used in MSI-X interrupt mode
114
 */
115 116
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
117 118
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
119 120 121 122 123 124 125

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
126 127
 * monitor.
 * On Falcon-based NICs, this will:
128 129
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
130 131
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
132
 */
S
stephen hemminger 已提交
133
static unsigned int efx_monitor_interval = 1 * HZ;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166
 * The default (0) means to assign an interrupt to each core.
167 168 169 170 171
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

172 173
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
174 175
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

176
static unsigned irq_adapt_low_thresh = 8000;
177 178 179 180
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

181
static unsigned irq_adapt_high_thresh = 16000;
182 183 184 185
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

186 187 188 189 190 191 192
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

193 194 195 196 197
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
198

199
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
200
static void efx_soft_disable_interrupts(struct efx_nic *efx);
201
static void efx_remove_channel(struct efx_channel *channel);
202
static void efx_remove_channels(struct efx_nic *efx);
203
static const struct efx_channel_type efx_default_channel_type;
204
static void efx_remove_port(struct efx_nic *efx);
205
static void efx_init_napi_channel(struct efx_channel *channel);
206
static void efx_fini_napi(struct efx_nic *efx);
207
static void efx_fini_napi_channel(struct efx_channel *channel);
208 209 210
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
211 212 213

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
214
		if ((efx->state == STATE_READY) ||	\
215
		    (efx->state == STATE_RECOVERY) ||	\
216
		    (efx->state == STATE_DISABLED))	\
217 218 219
			ASSERT_RTNL();			\
	} while (0)

220 221
static int efx_check_disabled(struct efx_nic *efx)
{
222
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 224 225 226 227 228 229
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

230 231 232 233 234 235 236 237 238 239 240 241 242
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
243
static int efx_process_channel(struct efx_channel *channel, int budget)
244
{
245
	int spent;
246

247
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
248
		return 0;
249

250
	spent = efx_nic_process_eventq(channel, budget);
251 252 253 254
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

255
		efx_rx_flush_packet(channel);
256
		efx_fast_push_rx_descriptors(rx_queue, true);
257 258
	}

259
	return spent;
260 261 262 263 264 265 266 267 268 269 270
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
271
	struct efx_nic *efx = channel->efx;
272
	int spent;
273

274 275 276
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
277

278
	spent = efx_process_channel(channel, budget);
279

280
	if (spent < budget) {
281
		if (efx_channel_has_rx_queue(channel) &&
282 283 284 285
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
286 287
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
292 293 294
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
295
					efx->type->push_irq_moderation(channel);
296
				}
297 298 299 300 301
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

302 303
		efx_filter_rfs_expire(channel);

304
		/* There is no race here; although napi_disable() will
305
		 * only wait for napi_complete(), this isn't a problem
306
		 * since efx_nic_eventq_read_ack() will have no effect if
307 308
		 * interrupts have already been disabled.
		 */
309
		napi_complete(napi);
310
		efx_nic_eventq_read_ack(channel);
311 312
	}

313
	return spent;
314 315 316 317 318 319 320 321 322
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
323 324 325
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

326
	netif_dbg(efx, probe, efx->net_dev,
327
		  "chan %d create event queue\n", channel->channel);
328

329 330 331 332 333 334
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

335
	return efx_nic_probe_eventq(channel);
336 337 338
}

/* Prepare channel's event queue */
339
static int efx_init_eventq(struct efx_channel *channel)
340
{
341
	struct efx_nic *efx = channel->efx;
342 343 344 345
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

346
	netif_dbg(efx, drv, efx->net_dev,
347
		  "chan %d init event queue\n", channel->channel);
348

349 350
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
351
		efx->type->push_irq_moderation(channel);
352 353 354 355
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
356 357
}

358 359 360 361 362 363
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

364
	/* Make sure the NAPI handler sees the enabled flag set */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

382 383
static void efx_fini_eventq(struct efx_channel *channel)
{
384 385 386
	if (!channel->eventq_init)
		return;

387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
389

390
	efx_nic_fini_eventq(channel);
391
	channel->eventq_init = false;
392 393 394 395
}

static void efx_remove_eventq(struct efx_channel *channel)
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
398

399
	efx_nic_remove_eventq(channel);
400 401 402 403 404 405 406 407
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

408
/* Allocate and initialise a channel structure. */
409 410 411 412 413 414 415 416
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

417 418 419
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
420

421 422 423
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
424

425 426 427 428 429 430
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
431

432 433 434 435
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
436

437 438 439 440 441 442 443 444 445 446 447 448 449
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
450

451 452 453 454 455 456 457 458
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
459

460 461 462
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
463
			tx_queue->channel = channel;
464 465
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 467 468
	}

	rx_queue = &channel->rx_queue;
469 470
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 472 473 474 475 476
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485

486 487 488 489
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

490 491
	rc = efx_probe_eventq(channel);
	if (rc)
492
		goto fail;
493 494 495 496

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
497
			goto fail;
498 499 500 501 502
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
503
			goto fail;
504 505 506 507
	}

	return 0;

508 509
fail:
	efx_remove_channel(channel);
510 511 512
	return rc;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
531

532 533 534 535
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

536 537
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
538 539
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
540 541
}

542 543 544 545 546 547 548 549
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

550 551 552 553 554 555
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

573 574 575 576
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
577
static void efx_start_datapath(struct efx_nic *efx)
578
{
579
	bool old_rx_scatter = efx->rx_scatter;
580 581 582
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
583
	size_t rx_buf_len;
584

585 586 587 588
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
589
	efx->rx_dma_len = (efx->rx_prefix_size +
590 591
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
592
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
593
		      efx->rx_ip_align + efx->rx_dma_len);
594
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
595
		efx->rx_scatter = efx->type->always_rx_scatter;
596 597
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
598
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
599
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
600 601 602
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
603 604 605 606 607 608 609 610
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

611 612 613 614 615 616 617 618 619 620 621
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
622

J
Jon Cooper 已提交
623
	/* RX filters may also have scatter-enabled flags */
624
	if (efx->rx_scatter != old_rx_scatter)
625
		efx->type->filter_update_rx_scatter(efx);
626

627 628 629 630 631 632 633 634 635 636
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

637 638
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
639
		efx_for_each_channel_tx_queue(tx_queue, channel) {
640
			efx_init_tx_queue(tx_queue);
641 642
			atomic_inc(&efx->active_queues);
		}
643

644
		efx_for_each_channel_rx_queue(rx_queue, channel) {
645
			efx_init_rx_queue(rx_queue);
646
			atomic_inc(&efx->active_queues);
647 648 649
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
650
		}
651

652
		WARN_ON(channel->rx_pkt_n_frags);
653 654
	}

655 656
	efx_ptp_start_datapath(efx);

657 658
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
659 660
}

661
static void efx_stop_datapath(struct efx_nic *efx)
662 663 664 665
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
666
	int rc;
667 668 669 670

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

671 672
	efx_ptp_stop_datapath(efx);

673 674 675 676 677 678
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

679
	efx_for_each_channel(channel, efx) {
680 681 682 683 684 685 686 687 688 689
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
690
	}
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
710 711
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
712
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
713 714 715 716 717 718 719 720 721
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

722 723
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
724 725 726

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
727
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
728 729
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
730
	channel->type->post_remove(channel);
731 732
}

733 734 735 736 737 738 739 740 741 742 743 744 745
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
746
	unsigned i, next_buffer_table = 0;
747
	int rc, rc2;
748 749 750 751

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
774

775
	efx_device_detach_sync(efx);
776
	efx_stop_all(efx);
B
Ben Hutchings 已提交
777
	efx_soft_disable_interrupts(efx);
778

779
	/* Clone channels (where possible) */
780 781
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
782 783 784
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

803 804
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
805 806

	for (i = 0; i < efx->n_channels; i++) {
807 808 809 810 811 812 813
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
814
	}
815

816
out:
817 818 819 820 821 822 823 824 825
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
826

827 828 829 830 831 832 833 834 835 836
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
837 838 839 840 841 842 843 844 845 846 847 848 849 850
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

851
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
852
{
853
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
854 855
}

856 857
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
858
	.post_remove		= efx_channel_dummy_op_void,
859 860 861 862 863 864 865 866 867 868
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

869 870 871 872
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

873 874 875 876 877 878 879 880 881 882
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
883
void efx_link_status_changed(struct efx_nic *efx)
884
{
885 886
	struct efx_link_state *link_state = &efx->link_state;

887 888 889 890 891 892 893
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

894
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
895 896
		efx->n_link_state_changes++;

897
		if (link_state->up)
898 899 900 901 902 903
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
904
	if (link_state->up)
905
		netif_info(efx, link, efx->net_dev,
906
			   "link up at %uMbps %s-duplex (MTU %d)\n",
907
			   link_state->speed, link_state->fd ? "full" : "half",
908
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
909
	else
910
		netif_info(efx, link, efx->net_dev, "link down\n");
911 912
}

B
Ben Hutchings 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

926
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

941 942
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
943 944 945 946 947 948 949 950
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
951
{
B
Ben Hutchings 已提交
952 953
	enum efx_phy_mode phy_mode;
	int rc;
954

B
Ben Hutchings 已提交
955
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
956

B
Ben Hutchings 已提交
957 958
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
959 960 961 962 963
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
964
	rc = efx->type->reconfigure_port(efx);
965

B
Ben Hutchings 已提交
966 967
	if (rc)
		efx->phy_mode = phy_mode;
968

B
Ben Hutchings 已提交
969
	return rc;
970 971 972 973
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
974
int efx_reconfigure_port(struct efx_nic *efx)
975
{
B
Ben Hutchings 已提交
976 977
	int rc;

978 979 980
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
981
	rc = __efx_reconfigure_port(efx);
982
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
983 984

	return rc;
985 986
}

987 988 989
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
990 991 992 993 994
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
995
	if (efx->port_enabled)
996
		efx->type->reconfigure_mac(efx);
997 998 999
	mutex_unlock(&efx->mac_lock);
}

1000 1001 1002 1003
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1004
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1005

1006 1007 1008
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1009 1010
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1011
	if (rc)
1012
		return rc;
1013

1014 1015
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1016 1017 1018 1019 1020 1021 1022 1023

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1024
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1025

1026 1027
	mutex_lock(&efx->mac_lock);

1028
	rc = efx->phy_op->init(efx);
1029
	if (rc)
1030
		goto fail1;
1031

1032
	efx->port_initialized = true;
1033

B
Ben Hutchings 已提交
1034 1035
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1036
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1037 1038 1039 1040 1041 1042

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1043
	mutex_unlock(&efx->mac_lock);
1044
	return 0;
1045

1046
fail2:
1047
	efx->phy_op->fini(efx);
1048 1049
fail1:
	mutex_unlock(&efx->mac_lock);
1050
	return rc;
1051 1052 1053 1054
}

static void efx_start_port(struct efx_nic *efx)
{
1055
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1056 1057 1058
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1059
	efx->port_enabled = true;
1060

1061
	/* Ensure MAC ingress/egress is enabled */
1062
	efx->type->reconfigure_mac(efx);
1063

1064 1065 1066
	mutex_unlock(&efx->mac_lock);
}

1067 1068 1069 1070 1071
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1072 1073
static void efx_stop_port(struct efx_nic *efx)
{
1074
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075

1076 1077
	EFX_ASSERT_RESET_SERIALISED(efx);

1078
	mutex_lock(&efx->mac_lock);
1079
	efx->port_enabled = false;
1080 1081 1082
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1083 1084
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1085 1086 1087 1088

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1089 1090 1091 1092
}

static void efx_fini_port(struct efx_nic *efx)
{
1093
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1094 1095 1096 1097

	if (!efx->port_initialized)
		return;

1098
	efx->phy_op->fini(efx);
1099
	efx->port_initialized = false;
1100

1101
	efx->link_state.up = false;
1102 1103 1104 1105 1106
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1107
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1108

1109
	efx->type->remove_port(efx);
1110 1111 1112 1113 1114 1115 1116 1117
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1189 1190 1191 1192 1193
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1194
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1195 1196
	int rc;

1197
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1198 1199 1200

	rc = pci_enable_device(pci_dev);
	if (rc) {
1201 1202
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1214
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1215
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1216 1217 1218
			if (rc == 0)
				break;
		}
1219 1220 1221
		dma_mask >>= 1;
	}
	if (rc) {
1222 1223
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1224 1225
		goto fail2;
	}
1226 1227
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1228

1229 1230
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1231
	if (rc) {
1232 1233
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1234 1235 1236
		rc = -EIO;
		goto fail3;
	}
1237
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1238
	if (!efx->membase) {
1239 1240
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1241
			  (unsigned long long)efx->membase_phys, mem_map_size);
1242 1243 1244
		rc = -ENOMEM;
		goto fail4;
	}
1245 1246
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1247 1248
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1249 1250 1251 1252

	return 0;

 fail4:
1253
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1254
 fail3:
1255
	efx->membase_phys = 0;
1256 1257 1258 1259 1260 1261 1262 1263
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1264
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1265 1266 1267 1268 1269 1270 1271

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1272
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1273
		efx->membase_phys = 0;
1274 1275 1276 1277 1278
	}

	pci_disable_device(efx->pci_dev);
}

1279
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1280
{
1281
	cpumask_var_t thread_mask;
1282
	unsigned int count;
1283
	int cpu;
1284

1285 1286 1287 1288 1289 1290 1291 1292
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1304 1305
	}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1317 1318 1319 1320 1321 1322 1323 1324
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1325
static int efx_probe_interrupts(struct efx_nic *efx)
1326
{
1327 1328
	unsigned int extra_channels = 0;
	unsigned int i, j;
1329
	int rc;
1330

1331 1332 1333 1334
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1335
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1336
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1337
		unsigned int n_channels;
1338

1339
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1340 1341
		if (separate_tx_channels)
			n_channels *= 2;
1342
		n_channels += extra_channels;
1343
		n_channels = min(n_channels, efx->max_channels);
1344

B
Ben Hutchings 已提交
1345
		for (i = 0; i < n_channels; i++)
1346
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1347
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1348
		if (rc > 0) {
1349 1350
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1351
				  " available (%d < %u).\n", rc, n_channels);
1352 1353
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1354 1355
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1356
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1357
					     n_channels);
1358 1359 1360
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1361
			efx->n_channels = n_channels;
1362 1363
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1364
			if (separate_tx_channels) {
1365 1366 1367 1368
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1369
			} else {
1370 1371
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1372
			}
1373
			for (i = 0; i < efx->n_channels; i++)
1374 1375
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1376 1377 1378
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1379 1380
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1381 1382 1383 1384 1385
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1386
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1387 1388
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1389 1390
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1391
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1392
		} else {
1393 1394
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1395 1396 1397 1398 1399 1400
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1401
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1402 1403
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1404 1405
		efx->legacy_irq = efx->pci_dev->irq;
	}
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1422
	/* RSS might be usable on VFs even if it is disabled on the PF */
1423
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1424 1425
			   efx->n_rx_channels : efx_vf_size(efx));

1426
	return 0;
1427 1428
}

1429
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1430
{
1431 1432
	struct efx_channel *channel, *end_channel;
	int rc;
1433

1434 1435
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1436 1437
	efx->irq_soft_enabled = true;
	smp_wmb();
1438 1439

	efx_for_each_channel(channel, efx) {
1440 1441 1442 1443 1444
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1445 1446 1447 1448
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1462 1463
}

B
Ben Hutchings 已提交
1464
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1465 1466 1467
{
	struct efx_channel *channel;

1468 1469 1470
	if (efx->state == STATE_DISABLED)
		return;

1471 1472
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1473 1474 1475 1476
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1477 1478 1479 1480 1481 1482 1483
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1484
		if (!channel->type->keep_eventq)
1485
			efx_fini_eventq(channel);
1486
	}
1487 1488 1489

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1490 1491
}

1492
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1493
{
1494 1495
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1496 1497 1498 1499 1500 1501 1502 1503

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1504
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1505 1506

	efx_for_each_channel(channel, efx) {
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1525
		if (channel->type->keep_eventq)
1526
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1527 1528
	}

1529 1530 1531
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1545
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1546 1547
}

1548 1549 1550 1551 1552
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1553
	efx_for_each_channel(channel, efx)
1554 1555 1556 1557 1558 1559 1560 1561
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1562
static void efx_set_channels(struct efx_nic *efx)
1563
{
1564 1565 1566
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1567
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1568
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1569

1570 1571
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1572 1573 1574
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1575 1576 1577 1578 1579
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1580 1581 1582 1583
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1584 1585 1586 1587
}

static int efx_probe_nic(struct efx_nic *efx)
{
1588
	size_t i;
1589 1590
	int rc;

1591
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1592 1593

	/* Carry out hardware-type specific initialisation */
1594
	rc = efx->type->probe(efx);
1595 1596 1597
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1598
	/* Determine the number of channels and queues by trying to hook
1599
	 * in MSI-X interrupts. */
1600 1601
	rc = efx_probe_interrupts(efx);
	if (rc)
1602
		goto fail1;
1603

1604 1605 1606
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1607

1608 1609
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1610
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1611
		efx->rx_indir_table[i] =
1612
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1613

1614
	efx_set_channels(efx);
1615 1616
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1617 1618

	/* Initialise the interrupt moderation settings */
1619 1620
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1621 1622

	return 0;
1623

1624 1625 1626
fail2:
	efx_remove_interrupts(efx);
fail1:
1627 1628
	efx->type->remove(efx);
	return rc;
1629 1630 1631 1632
}

static void efx_remove_nic(struct efx_nic *efx)
{
1633
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1634 1635

	efx_remove_interrupts(efx);
1636
	efx->type->remove(efx);
1637 1638
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1689
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1690 1691 1692 1693 1694
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1695
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1696 1697 1698
		goto fail2;
	}

1699 1700 1701 1702 1703
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1704
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1705

B
Ben Hutchings 已提交
1706 1707 1708 1709
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1710
		goto fail3;
B
Ben Hutchings 已提交
1711 1712
	}

1713 1714 1715 1716
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1717 1718
	return 0;

B
Ben Hutchings 已提交
1719
 fail4:
1720
	efx_remove_filters(efx);
1721 1722 1723 1724 1725 1726 1727 1728
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1729 1730 1731 1732 1733 1734
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1735
 */
1736 1737 1738
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1739
	BUG_ON(efx->state == STATE_DISABLED);
1740 1741 1742

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1743
	if (efx->port_enabled || !netif_running(efx->net_dev))
1744 1745 1746
		return;

	efx_start_port(efx);
1747
	efx_start_datapath(efx);
1748

1749 1750
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1751 1752
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1753 1754 1755 1756 1757

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1758 1759 1760 1761 1762
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1763

1764
	efx->type->start_stats(efx);
1765 1766 1767 1768
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1769 1770
}

1771 1772 1773 1774 1775
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1776 1777 1778 1779 1780 1781 1782 1783
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1784 1785 1786 1787 1788 1789 1790
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1791
	efx->type->stop_stats(efx);
1792 1793
	efx_stop_port(efx);

1794 1795 1796 1797 1798 1799
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1800 1801 1802
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1803 1804 1805 1806
}

static void efx_remove_all(struct efx_nic *efx)
{
1807
	efx_remove_channels(efx);
1808
	efx_remove_filters(efx);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1819
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1820
{
1821 1822
	if (usecs == 0)
		return 0;
1823
	if (usecs * 1000 < quantum_ns)
1824
		return 1; /* never round down to 0 */
1825
	return usecs * 1000 / quantum_ns;
1826 1827
}

1828
/* Set interrupt moderation parameters */
1829 1830 1831
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1832
{
1833
	struct efx_channel *channel;
1834 1835 1836 1837 1838
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1839 1840 1841

	EFX_ASSERT_RESET_SERIALISED(efx);

1842
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1843 1844
		return -EINVAL;

1845 1846 1847
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1848 1849 1850 1851 1852 1853 1854
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1855
	efx->irq_rx_adaptive = rx_adaptive;
1856
	efx->irq_rx_moderation = rx_ticks;
1857
	efx_for_each_channel(channel, efx) {
1858
		if (efx_channel_has_rx_queue(channel))
1859
			channel->irq_moderation = rx_ticks;
1860
		else if (efx_channel_has_tx_queues(channel))
1861 1862
			channel->irq_moderation = tx_ticks;
	}
1863 1864

	return 0;
1865 1866
}

1867 1868 1869
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1870 1871 1872 1873
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1874
	*rx_adaptive = efx->irq_rx_adaptive;
1875 1876 1877
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1878 1879 1880 1881 1882 1883 1884 1885

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1886
		*tx_usecs = DIV_ROUND_UP(
1887
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1888 1889
			efx->timer_quantum_ns,
			1000);
1890 1891
}

1892 1893 1894 1895 1896 1897
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1898
/* Run periodically off the general workqueue */
1899 1900 1901 1902 1903
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1904 1905 1906
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1907
	BUG_ON(efx->type->monitor == NULL);
1908 1909 1910

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1911 1912 1913 1914 1915 1916
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1933
	struct efx_nic *efx = netdev_priv(net_dev);
1934
	struct mii_ioctl_data *data = if_mii(ifr);
1935

1936
	if (cmd == SIOCSHWTSTAMP)
1937 1938 1939
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1940

1941 1942 1943 1944 1945 1946
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1947 1948 1949 1950 1951 1952 1953 1954
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1955 1956 1957 1958 1959 1960 1961 1962 1963
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1964
static void efx_init_napi(struct efx_nic *efx)
1965 1966 1967
{
	struct efx_channel *channel;

1968 1969
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1970 1971 1972 1973 1974 1975 1976
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1977 1978 1979 1980 1981 1982
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1983 1984
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2001
	struct efx_nic *efx = netdev_priv(net_dev);
2002 2003
	struct efx_channel *channel;

2004
	efx_for_each_channel(channel, efx)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2019
	struct efx_nic *efx = netdev_priv(net_dev);
2020 2021
	int rc;

2022 2023
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2024

2025 2026 2027
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2028 2029
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2030 2031
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2032

2033 2034 2035 2036
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2037
	efx_start_all(efx);
2038
	efx_selftest_async_start(efx);
2039 2040 2041 2042 2043 2044 2045 2046 2047
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2048
	struct efx_nic *efx = netdev_priv(net_dev);
2049

2050 2051
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2052

2053 2054
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2055 2056 2057 2058

	return 0;
}

2059
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2060 2061
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2062
{
2063
	struct efx_nic *efx = netdev_priv(net_dev);
2064

2065
	spin_lock_bh(&efx->stats_lock);
2066
	efx->type->update_stats(efx, NULL, stats);
2067 2068
	spin_unlock_bh(&efx->stats_lock);

2069 2070 2071 2072 2073 2074
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2075
	struct efx_nic *efx = netdev_priv(net_dev);
2076

2077 2078 2079
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2080

2081
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2082 2083 2084 2085 2086 2087
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2088
	struct efx_nic *efx = netdev_priv(net_dev);
2089
	int rc;
2090

2091 2092 2093
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2094 2095 2096
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2097
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2098

2099 2100 2101
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2102
	mutex_lock(&efx->mac_lock);
2103
	net_dev->mtu = new_mtu;
2104
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2105 2106
	mutex_unlock(&efx->mac_lock);

2107
	efx_start_all(efx);
2108
	netif_device_attach(efx->net_dev);
2109
	return 0;
2110 2111 2112 2113
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2114
	struct efx_nic *efx = netdev_priv(net_dev);
2115 2116 2117 2118
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2119 2120 2121
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2122
		return -EADDRNOTAVAIL;
2123 2124 2125
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2126
	efx_sriov_mac_address_changed(efx);
2127 2128

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2129
	mutex_lock(&efx->mac_lock);
2130
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2131
	mutex_unlock(&efx->mac_lock);
2132 2133 2134 2135

	return 0;
}

2136
/* Context: netif_addr_lock held, BHs disabled. */
2137
static void efx_set_rx_mode(struct net_device *net_dev)
2138
{
2139
	struct efx_nic *efx = netdev_priv(net_dev);
2140

2141 2142 2143
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2144 2145
}

2146
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2147 2148 2149 2150 2151
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2152
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2153 2154 2155 2156

	return 0;
}

2157
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2158 2159
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2160
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2161 2162 2163 2164 2165 2166
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2167
	.ndo_set_rx_mode	= efx_set_rx_mode,
2168
	.ndo_set_features	= efx_set_features,
2169 2170 2171 2172 2173 2174
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2175 2176 2177
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2178
	.ndo_setup_tc		= efx_setup_tc,
2179 2180 2181
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2182 2183
};

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2204 2205 2206 2207 2208 2209 2210
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2211 2212 2213
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2214
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2215

2216 2217
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2218 2219
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2220 2221 2222 2223 2224 2225 2226 2227

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2228 2229 2230 2231 2232 2233
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2234
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2235

2236 2237 2238
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2239
	struct efx_channel *channel;
2240 2241 2242 2243
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2244 2245 2246 2247 2248 2249
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2250
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2251
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2252

2253
	rtnl_lock();
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2268 2269 2270
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2271
	efx_update_name(efx);
2272

2273 2274 2275
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2276 2277 2278 2279
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2280 2281
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2282 2283
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2284 2285
	}

2286 2287
	efx_associate(efx);

2288
	rtnl_unlock();
2289

B
Ben Hutchings 已提交
2290 2291
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2292 2293
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2294 2295 2296
		goto fail_registered;
	}

2297
	return 0;
B
Ben Hutchings 已提交
2298

2299 2300
fail_registered:
	rtnl_lock();
2301
	efx_dissociate(efx);
2302
	unregister_netdevice(net_dev);
2303
fail_locked:
2304
	efx->state = STATE_UNINIT;
2305
	rtnl_unlock();
2306
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2307
	return rc;
2308 2309 2310 2311 2312 2313 2314
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2315
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2316

2317 2318
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2319 2320 2321 2322 2323

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2324 2325 2326 2327 2328 2329 2330 2331
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2332 2333
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2334
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2335 2336 2337
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2338
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2339
	efx_disable_interrupts(efx);
2340 2341

	mutex_lock(&efx->mac_lock);
2342 2343
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2344
	efx->type->fini(efx);
2345 2346
}

B
Ben Hutchings 已提交
2347 2348 2349 2350 2351
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2352
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2353 2354 2355
{
	int rc;

B
Ben Hutchings 已提交
2356
	EFX_ASSERT_RESET_SERIALISED(efx);
2357

2358
	rc = efx->type->init(efx);
2359
	if (rc) {
2360
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2361
		goto fail;
2362 2363
	}

2364 2365 2366
	if (!ok)
		goto fail;

2367
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2368 2369 2370 2371
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2372 2373
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2374 2375
	}

2376 2377 2378
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2379
	efx_restore_filters(efx);
2380
	efx_sriov_reset(efx);
2381 2382 2383 2384 2385 2386 2387 2388 2389

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2390 2391 2392

	mutex_unlock(&efx->mac_lock);

2393 2394 2395
	return rc;
}

2396 2397
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2398
 *
2399
 * Caller must hold the rtnl_lock.
2400
 */
2401
int efx_reset(struct efx_nic *efx, enum reset_type method)
2402
{
2403 2404
	int rc, rc2;
	bool disabled;
2405

2406 2407
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2408

2409
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2410
	efx_reset_down(efx, method);
2411

2412
	rc = efx->type->reset(efx, method);
2413
	if (rc) {
2414
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2415
		goto out;
2416 2417
	}

2418 2419 2420 2421
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2422 2423 2424 2425 2426 2427 2428

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2429
out:
2430
	/* Leave device stopped if necessary */
2431 2432 2433
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2434 2435 2436 2437 2438
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2439 2440
	}

2441
	if (disabled) {
2442
		dev_close(efx->net_dev);
2443
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2444 2445
		efx->state = STATE_DISABLED;
	} else {
2446
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2447
		netif_device_attach(efx->net_dev);
2448
	}
2449 2450 2451
	return rc;
}

2452 2453 2454 2455 2456
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2457
int efx_try_recovery(struct efx_nic *efx)
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2496 2497 2498 2499 2500
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2501
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2502 2503 2504 2505 2506 2507
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2508 2509 2510
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2511 2512 2513 2514
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2515

2516
	if (!pending)
2517 2518
		return;

2519
	rtnl_lock();
2520 2521 2522 2523 2524 2525

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2526
		(void)efx_reset(efx, method);
2527

2528
	rtnl_unlock();
2529 2530 2531 2532 2533 2534
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2535 2536 2537 2538 2539 2540 2541
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2542 2543 2544
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2545
	case RESET_TYPE_RECOVER_OR_ALL:
2546 2547
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2548
	case RESET_TYPE_RECOVER_OR_DISABLE:
2549
	case RESET_TYPE_MC_BIST:
2550
		method = type;
2551 2552
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2553 2554
		break;
	default:
2555
		method = efx->type->map_reset_reason(type);
2556 2557 2558
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2559 2560
		break;
	}
2561

2562
	set_bit(method, &efx->reset_pending);
2563 2564 2565 2566 2567 2568 2569
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2570

2571 2572 2573 2574
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2575
	queue_work(reset_workqueue, &efx->reset_work);
2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2585
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2586 2587
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2588
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2589 2590
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2591
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2592
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2593
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2594
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2595
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2596 2597
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2598 2599 2600 2601 2602
	{0}			/* end of list */
};

/**************************************************************************
 *
2603
 * Dummy PHY/MAC operations
2604
 *
2605
 * Can be used for some unimplemented operations
2606 2607 2608 2609 2610 2611 2612 2613 2614
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2615 2616

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2617 2618 2619
{
	return false;
}
2620

2621
static const struct efx_phy_operations efx_dummy_phy_operations = {
2622
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2623
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2624
	.poll		 = efx_port_dummy_op_poll,
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2637
static int efx_init_struct(struct efx_nic *efx,
2638 2639
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2640
	int i;
2641 2642

	/* Initialise common structures */
2643 2644
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2645
	spin_lock_init(&efx->biu_lock);
2646 2647 2648
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2649 2650
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2651
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2652
	efx->pci_dev = pci_dev;
2653
	efx->msg_enable = debug;
2654
	efx->state = STATE_UNINIT;
2655 2656 2657
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2658
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2659 2660
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2661 2662
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2663 2664
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2665 2666 2667
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2668
	efx->mdio.dev = net_dev;
2669
	INIT_WORK(&efx->mac_work, efx_mac_work);
2670
	init_waitqueue_head(&efx->flush_wq);
2671 2672

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2673 2674 2675
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2676 2677
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2678 2679 2680 2681 2682 2683
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2684 2685 2686 2687
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2688
	if (!efx->workqueue)
2689
		goto fail;
2690

2691
	return 0;
2692 2693 2694 2695

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2696 2697 2698 2699
}

static void efx_fini_struct(struct efx_nic *efx)
{
2700 2701 2702 2703 2704
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2705 2706
	kfree(efx->vpd_sn);

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2724 2725 2726 2727 2728 2729
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2730
	efx_disable_interrupts(efx);
2731
	efx_nic_fini_interrupt(efx);
2732
	efx_fini_port(efx);
2733
	efx->type->fini(efx);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2751
	efx_dissociate(efx);
2752
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2753
	efx_disable_interrupts(efx);
2754 2755
	rtnl_unlock();

2756
	efx_sriov_fini(efx);
2757 2758
	efx_unregister_netdev(efx);

2759 2760
	efx_mtd_remove(efx);

2761 2762 2763
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2764
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2765 2766 2767

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2768 2769

	pci_disable_pcie_error_reporting(pci_dev);
2770 2771
};

2772 2773 2774 2775 2776 2777
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2778
static void efx_probe_vpd_strings(struct efx_nic *efx)
2779 2780 2781 2782
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2783
	int ro_start, ro_size, i, j;
2784 2785 2786 2787 2788 2789 2790 2791 2792

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2793 2794
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2795 2796 2797 2798
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2799 2800 2801
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2842 2843 2844
}


2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2857
	efx_init_napi(efx);
2858

2859
	rc = efx->type->init(efx);
2860
	if (rc) {
2861 2862
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2863
		goto fail3;
2864 2865 2866 2867
	}

	rc = efx_init_port(efx);
	if (rc) {
2868 2869
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2870
		goto fail4;
2871 2872
	}

2873
	rc = efx_nic_init_interrupt(efx);
2874
	if (rc)
2875
		goto fail5;
2876 2877 2878
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2879 2880 2881

	return 0;

2882 2883
 fail6:
	efx_nic_fini_interrupt(efx);
2884
 fail5:
2885 2886
	efx_fini_port(efx);
 fail4:
2887
	efx->type->fini(efx);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2898
 * theoretically).  It sets up PCI mappings, resets the NIC,
2899 2900 2901 2902 2903
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2904
static int efx_pci_probe(struct pci_dev *pci_dev,
2905
			 const struct pci_device_id *entry)
2906 2907 2908
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2909
	int rc;
2910 2911

	/* Allocate and initialise a struct net_device and struct efx_nic */
2912 2913
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2914 2915
	if (!net_dev)
		return -ENOMEM;
2916 2917 2918
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2919
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2920
			      NETIF_F_RXCSUM);
2921
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2922
		net_dev->features |= NETIF_F_TSO6;
2923 2924
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2925 2926 2927 2928
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2929
	pci_set_drvdata(pci_dev, efx);
2930
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2931
	rc = efx_init_struct(efx, pci_dev, net_dev);
2932 2933 2934
	if (rc)
		goto fail1;

2935
	netif_info(efx, probe, efx->net_dev,
2936
		   "Solarflare NIC detected\n");
2937

2938
	efx_probe_vpd_strings(efx);
2939

2940 2941 2942 2943 2944
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2945 2946 2947
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2948 2949 2950

	rc = efx_register_netdev(efx);
	if (rc)
2951
		goto fail4;
2952

2953 2954 2955 2956 2957
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2958
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2959

2960
	/* Try to create MTDs, but allow this to fail */
2961
	rtnl_lock();
2962
	rc = efx_mtd_probe(efx);
2963
	rtnl_unlock();
2964 2965 2966 2967
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2968 2969 2970 2971 2972
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2973 2974 2975
	return 0;

 fail4:
2976
	efx_pci_remove_main(efx);
2977 2978 2979 2980 2981
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2982
	WARN_ON(rc > 0);
2983
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2984 2985 2986 2987
	free_netdev(net_dev);
	return rc;
}

2988 2989 2990 2991
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2992 2993
	rtnl_lock();

2994 2995
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2996

2997
		efx_device_detach_sync(efx);
2998

2999
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3000
		efx_disable_interrupts(efx);
3001
	}
3002

3003 3004
	rtnl_unlock();

3005 3006 3007 3008 3009
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3010
	int rc;
3011 3012
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3013 3014
	rtnl_lock();

3015
	if (efx->state != STATE_DISABLED) {
3016 3017 3018
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3019

3020 3021 3022
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3023

3024
		efx_start_all(efx);
3025

3026
		netif_device_attach(efx->net_dev);
3027

3028
		efx->state = STATE_READY;
3029

3030 3031
		efx->type->resume_wol(efx);
	}
3032

3033 3034
	rtnl_unlock();

3035 3036 3037
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3038
	return 0;
3039 3040 3041 3042 3043

fail:
	rtnl_unlock();

	return rc;
3044 3045 3046 3047 3048 3049 3050 3051 3052
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3053
	efx->reset_pending = 0;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3080 3081
	rc = efx_pm_thaw(dev);
	return rc;
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3095
static const struct dev_pm_ops efx_pm_ops = {
3096 3097 3098 3099 3100 3101 3102 3103
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3104 3105 3106 3107
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3108 3109
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3126
		efx_disable_interrupts(efx);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3144
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3203
static struct pci_driver efx_pci_driver = {
3204
	.name		= KBUILD_MODNAME,
3205 3206 3207
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3208
	.driver.pm	= &efx_pm_ops,
3209
	.err_handler	= &efx_err_handlers,
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3232 3233 3234 3235
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3236 3237 3238 3239 3240
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3241 3242 3243 3244 3245 3246 3247 3248

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3249 3250
	destroy_workqueue(reset_workqueue);
 err_reset:
3251 3252
	efx_fini_sriov();
 err_sriov:
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3263
	destroy_workqueue(reset_workqueue);
3264
	efx_fini_sriov();
3265 3266 3267 3268 3269 3270 3271
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3272 3273
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3274 3275 3276
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);