efx.c 75.7 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 86
};

87 88
#define EFX_MAX_MTU (9 * 1024)

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109
static unsigned int separate_tx_channels;
110
module_param(separate_tx_channels, uint, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121 122
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123
 */
S
stephen hemminger 已提交
124
static unsigned int efx_monitor_interval = 1 * HZ;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157
 * The default (0) means to assign an interrupt to each core.
158 159 160 161 162
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164 165 166
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167
static unsigned irq_adapt_low_thresh = 8000;
168 169 170 171
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

172
static unsigned irq_adapt_high_thresh = 16000;
173 174 175 176
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
189

190 191 192
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
193
static void efx_remove_channels(struct efx_nic *efx);
194
static const struct efx_channel_type efx_default_channel_type;
195
static void efx_remove_port(struct efx_nic *efx);
196
static void efx_init_napi_channel(struct efx_channel *channel);
197
static void efx_fini_napi(struct efx_nic *efx);
198
static void efx_fini_napi_channel(struct efx_channel *channel);
199 200 201
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
202 203 204

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
205
		if ((efx->state == STATE_READY) ||	\
206
		    (efx->state == STATE_DISABLED))	\
207 208 209
			ASSERT_RTNL();			\
	} while (0)

210 211 212 213 214 215 216 217 218 219
static int efx_check_disabled(struct efx_nic *efx)
{
	if (efx->state == STATE_DISABLED) {
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

220 221 222 223 224 225 226 227 228 229 230 231 232
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
233
static int efx_process_channel(struct efx_channel *channel, int budget)
234
{
235
	int spent;
236

237
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
238
		return 0;
239

240
	spent = efx_nic_process_eventq(channel, budget);
241 242 243 244 245 246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
250 251 252 253
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
254 255
	}

256
	return spent;
257 258 259 260 261 262 263 264 265 266
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
267 268 269
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
270
	channel->work_pending = false;
271 272
	smp_wmb();

273
	efx_nic_eventq_read_ack(channel);
274 275 276 277 278 279 280 281 282 283 284
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
285
	struct efx_nic *efx = channel->efx;
286
	int spent;
287

288 289 290
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
291

292
	spent = efx_process_channel(channel, budget);
293

294
	if (spent < budget) {
295
		if (efx_channel_has_rx_queue(channel) &&
296 297 298 299
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
300 301
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
302
					efx->type->push_irq_moderation(channel);
303
				}
304 305
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
306 307 308
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
309
					efx->type->push_irq_moderation(channel);
310
				}
311 312 313 314 315
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

316 317
		efx_filter_rfs_expire(channel);

318
		/* There is no race here; although napi_disable() will
319
		 * only wait for napi_complete(), this isn't a problem
320 321 322
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
323
		napi_complete(napi);
324 325 326
		efx_channel_processed(channel);
	}

327
	return spent;
328 329 330 331 332 333 334 335
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
336 337
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
338 339 340 341 342
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

343
	BUG_ON(channel->channel >= efx->n_channels);
344
	BUG_ON(!channel->enabled);
345
	BUG_ON(!efx->loopback_selftest);
346 347

	/* Disable interrupts and wait for ISRs to complete */
348
	efx_nic_disable_interrupts(efx);
349
	if (efx->legacy_irq) {
350
		synchronize_irq(efx->legacy_irq);
351 352
		efx->legacy_irq_enabled = false;
	}
353
	if (channel->irq)
354 355 356 357 358 359
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
360
	efx_process_channel(channel, channel->eventq_mask + 1);
361 362 363 364 365 366

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
367 368
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
369
	efx_nic_enable_interrupts(efx);
370 371 372 373 374 375 376 377 378
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
379 380 381
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

382
	netif_dbg(efx, probe, efx->net_dev,
383
		  "chan %d create event queue\n", channel->channel);
384

385 386 387 388 389 390
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

391
	return efx_nic_probe_eventq(channel);
392 393 394
}

/* Prepare channel's event queue */
395
static void efx_init_eventq(struct efx_channel *channel)
396
{
397 398
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
399 400 401

	channel->eventq_read_ptr = 0;

402
	efx_nic_init_eventq(channel);
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

433 434
static void efx_fini_eventq(struct efx_channel *channel)
{
435 436
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
437

438
	efx_nic_fini_eventq(channel);
439 440 441 442
}

static void efx_remove_eventq(struct efx_channel *channel)
{
443 444
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
445

446
	efx_nic_remove_eventq(channel);
447 448 449 450 451 452 453 454
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

455
/* Allocate and initialise a channel structure. */
456 457 458 459 460 461 462 463
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

464 465 466
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
467

468 469 470
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
471

472 473 474 475 476 477
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
478

479 480 481 482
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
483

484 485 486 487 488 489 490 491 492 493 494 495 496
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
497

498 499 500 501 502 503 504 505
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
506

507 508 509
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
510
			tx_queue->channel = channel;
511 512
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
513 514 515
	}

	rx_queue = &channel->rx_queue;
516 517
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
518 519 520 521 522 523
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

524 525 526 527 528 529
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

530 531
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
532

533 534 535 536
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

537 538
	rc = efx_probe_eventq(channel);
	if (rc)
539
		goto fail;
540 541 542 543

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
544
			goto fail;
545 546 547 548 549
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
550
			goto fail;
551 552 553 554 555 556
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

557 558
fail:
	efx_remove_channel(channel);
559 560 561
	return rc;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
580

581 582 583 584
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

585 586 587 588
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
589 590
}

591 592 593 594 595 596 597 598
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

599 600 601 602 603 604
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

622 623 624 625
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
626
static void efx_start_datapath(struct efx_nic *efx)
627 628 629 630 631
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

632 633 634 635 636 637
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
638
			      efx->type->rx_buffer_hash_size +
639
			      efx->type->rx_buffer_padding);
640 641
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
642

643 644 645 646 647 648 649 650 651 652
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

653 654
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
655 656
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
657 658 659 660

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

661
		efx_for_each_channel_rx_queue(rx_queue, channel) {
662
			efx_init_rx_queue(rx_queue);
663 664
			efx_nic_generate_fill_event(rx_queue);
		}
665 666 667 668 669

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

670 671
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
672 673
}

674
static void efx_stop_datapath(struct efx_nic *efx)
675 676 677 678
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
679
	struct pci_dev *dev = efx->pci_dev;
680
	int rc;
681 682 683 684

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/* Only perform flush if dma is enabled */
	if (dev->is_busmaster) {
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
703
	}
704

705
	efx_for_each_channel(channel, efx) {
706 707 708 709 710 711 712 713 714 715
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
716 717 718

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
719
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
720 721 722 723 724 725 726 727 728
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

729 730
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
731 732 733

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
734
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
735 736
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
737
	channel->type->post_remove(channel);
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
753
	unsigned i, next_buffer_table = 0;
754 755 756 757 758
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
781 782

	efx_stop_all(efx);
783
	efx_stop_interrupts(efx, true);
784

785
	/* Clone channels (where possible) */
786 787
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
788 789 790
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

809 810
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
811 812

	for (i = 0; i < efx->n_channels; i++) {
813 814 815 816 817 818 819
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
820
	}
821

822
out:
823 824 825 826 827 828 829 830 831
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
832

833
	efx_start_interrupts(efx, true);
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

849
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
850
{
851
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
852 853
}

854 855
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
856
	.post_remove		= efx_channel_dummy_op_void,
857 858 859 860 861 862 863 864 865 866
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

867 868 869 870
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

871 872 873 874 875 876 877 878 879 880
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
881
void efx_link_status_changed(struct efx_nic *efx)
882
{
883 884
	struct efx_link_state *link_state = &efx->link_state;

885 886 887 888 889 890 891
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

892
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
893 894
		efx->n_link_state_changes++;

895
		if (link_state->up)
896 897 898 899 900 901
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
902
	if (link_state->up)
903 904 905 906 907
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
908
	else
909
		netif_info(efx, link, efx->net_dev, "link down\n");
910 911
}

B
Ben Hutchings 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

925
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

940 941
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
942 943 944 945 946 947 948 949
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
950
{
B
Ben Hutchings 已提交
951 952
	enum efx_phy_mode phy_mode;
	int rc;
953

B
Ben Hutchings 已提交
954
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
955

956
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
957 958
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
959

B
Ben Hutchings 已提交
960 961
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
962 963 964 965 966
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
967
	rc = efx->type->reconfigure_port(efx);
968

B
Ben Hutchings 已提交
969 970
	if (rc)
		efx->phy_mode = phy_mode;
971

B
Ben Hutchings 已提交
972
	return rc;
973 974 975 976
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
977
int efx_reconfigure_port(struct efx_nic *efx)
978
{
B
Ben Hutchings 已提交
979 980
	int rc;

981 982 983
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
984
	rc = __efx_reconfigure_port(efx);
985
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
986 987

	return rc;
988 989
}

990 991 992
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
993 994 995 996 997
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
998
	if (efx->port_enabled)
999
		efx->type->reconfigure_mac(efx);
1000 1001 1002
	mutex_unlock(&efx->mac_lock);
}

1003 1004 1005 1006
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1007
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1008

1009 1010 1011
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1012 1013
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1014
	if (rc)
1015
		return rc;
1016

1017 1018
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1019 1020 1021 1022 1023 1024 1025 1026

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1027
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1028

1029 1030
	mutex_lock(&efx->mac_lock);

1031
	rc = efx->phy_op->init(efx);
1032
	if (rc)
1033
		goto fail1;
1034

1035
	efx->port_initialized = true;
1036

B
Ben Hutchings 已提交
1037 1038
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1039
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1040 1041 1042 1043 1044 1045

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1046
	mutex_unlock(&efx->mac_lock);
1047
	return 0;
1048

1049
fail2:
1050
	efx->phy_op->fini(efx);
1051 1052
fail1:
	mutex_unlock(&efx->mac_lock);
1053
	return rc;
1054 1055 1056 1057
}

static void efx_start_port(struct efx_nic *efx)
{
1058
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1059 1060 1061
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1062
	efx->port_enabled = true;
1063 1064 1065

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1066
	efx->type->reconfigure_mac(efx);
1067

1068 1069 1070
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1071
/* Prevent efx_mac_work() and efx_monitor() from working */
1072 1073
static void efx_stop_port(struct efx_nic *efx)
{
1074
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075 1076

	mutex_lock(&efx->mac_lock);
1077
	efx->port_enabled = false;
1078 1079 1080
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1081 1082
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1083 1084 1085 1086
}

static void efx_fini_port(struct efx_nic *efx)
{
1087
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1088 1089 1090 1091

	if (!efx->port_initialized)
		return;

1092
	efx->phy_op->fini(efx);
1093
	efx->port_initialized = false;
1094

1095
	efx->link_state.up = false;
1096 1097 1098 1099 1100
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1101
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1102

1103
	efx->type->remove_port(efx);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1119
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1120 1121 1122

	rc = pci_enable_device(pci_dev);
	if (rc) {
1123 1124
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1136 1137
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1138 1139 1140
			if (rc == 0)
				break;
		}
1141 1142 1143
		dma_mask >>= 1;
	}
	if (rc) {
1144 1145
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1146 1147
		goto fail2;
	}
1148 1149
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1150
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1151
	if (rc) {
1152 1153
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1154 1155
		 * but just in case...
		 */
1156 1157
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1158 1159 1160
		goto fail2;
	}

1161 1162
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1163
	if (rc) {
1164 1165
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1166 1167 1168
		rc = -EIO;
		goto fail3;
	}
1169 1170
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1171
	if (!efx->membase) {
1172 1173 1174 1175
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1176 1177 1178
		rc = -ENOMEM;
		goto fail4;
	}
1179 1180 1181 1182
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1183 1184 1185 1186

	return 0;

 fail4:
1187
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1188
 fail3:
1189
	efx->membase_phys = 0;
1190 1191 1192 1193 1194 1195 1196 1197
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1198
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1199 1200 1201 1202 1203 1204 1205

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1206
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1207
		efx->membase_phys = 0;
1208 1209 1210 1211 1212
	}

	pci_disable_device(efx->pci_dev);
}

1213
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1214
{
1215
	cpumask_var_t thread_mask;
1216
	unsigned int count;
1217
	int cpu;
1218

1219 1220 1221 1222 1223 1224 1225 1226
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1238 1239
	}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1251 1252 1253 1254 1255
	}

	return count;
}

1256 1257 1258 1259
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1260 1261
	unsigned int i;
	int rc;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1279 1280 1281
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1282
static int efx_probe_interrupts(struct efx_nic *efx)
1283
{
1284 1285
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1286 1287
	unsigned int extra_channels = 0;
	unsigned int i, j;
1288
	int rc;
1289

1290 1291 1292 1293
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1294
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1295
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1296
		unsigned int n_channels;
1297

1298
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1299 1300
		if (separate_tx_channels)
			n_channels *= 2;
1301
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1302
		n_channels = min(n_channels, max_channels);
1303

B
Ben Hutchings 已提交
1304
		for (i = 0; i < n_channels; i++)
1305
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1306
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1307
		if (rc > 0) {
1308 1309
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1310
				  " available (%d < %u).\n", rc, n_channels);
1311 1312
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1313 1314
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1315
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1316
					     n_channels);
1317 1318 1319
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1320
			efx->n_channels = n_channels;
1321 1322
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1323
			if (separate_tx_channels) {
1324 1325 1326 1327
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1328
			} else {
1329 1330
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1331
			}
1332 1333 1334 1335 1336
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1337
			for (i = 0; i < efx->n_channels; i++)
1338 1339
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1340 1341 1342
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1343 1344
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1345 1346 1347 1348 1349
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1350
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1351 1352
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1353 1354
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1355
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1356
		} else {
1357 1358
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1359 1360 1361 1362 1363 1364
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1365
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1366 1367
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1368 1369
		efx->legacy_irq = efx->pci_dev->irq;
	}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1386
	/* RSS might be usable on VFs even if it is disabled on the PF */
1387
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1388 1389
			   efx->n_rx_channels : efx_vf_size(efx));

1390
	return 0;
1391 1392
}

1393
/* Enable interrupts, then probe and start the event queues */
1394
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1395 1396 1397
{
	struct efx_channel *channel;

1398 1399
	BUG_ON(efx->state == STATE_DISABLED);

1400 1401 1402 1403 1404
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1405 1406
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1407 1408 1409 1410 1411 1412
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1413
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1414 1415 1416
{
	struct efx_channel *channel;

1417 1418 1419
	if (efx->state == STATE_DISABLED)
		return;

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1433 1434
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1435 1436 1437
	}
}

1438 1439 1440 1441 1442
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1443
	efx_for_each_channel(channel, efx)
1444 1445 1446 1447 1448 1449 1450 1451
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1452
static void efx_set_channels(struct efx_nic *efx)
1453
{
1454 1455 1456
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1457
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1458
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1459

1460 1461
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1462 1463 1464
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1465 1466 1467 1468 1469
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1470 1471 1472 1473
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1474 1475 1476 1477
}

static int efx_probe_nic(struct efx_nic *efx)
{
1478
	size_t i;
1479 1480
	int rc;

1481
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1482 1483

	/* Carry out hardware-type specific initialisation */
1484
	rc = efx->type->probe(efx);
1485 1486 1487
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1488
	/* Determine the number of channels and queues by trying to hook
1489
	 * in MSI-X interrupts. */
1490 1491 1492
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1493

1494 1495
	efx->type->dimension_resources(efx);

1496 1497
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1498
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1499
		efx->rx_indir_table[i] =
1500
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1501

1502
	efx_set_channels(efx);
1503 1504
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1505 1506

	/* Initialise the interrupt moderation settings */
1507 1508
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1509 1510

	return 0;
1511 1512 1513 1514

fail:
	efx->type->remove(efx);
	return rc;
1515 1516 1517 1518
}

static void efx_remove_nic(struct efx_nic *efx)
{
1519
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1520 1521

	efx_remove_interrupts(efx);
1522
	efx->type->remove(efx);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1537
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1538 1539 1540 1541 1542
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1543
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1544 1545 1546
		goto fail2;
	}

1547 1548 1549 1550 1551
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1552
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1553

B
Ben Hutchings 已提交
1554 1555 1556 1557
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1558
		goto fail3;
B
Ben Hutchings 已提交
1559 1560
	}

1561 1562 1563 1564
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1565 1566
	return 0;

B
Ben Hutchings 已提交
1567
 fail4:
1568
	efx_remove_filters(efx);
1569 1570 1571 1572 1573 1574 1575 1576
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1577 1578 1579 1580 1581 1582
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1583
 */
1584 1585 1586
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1587
	BUG_ON(efx->state == STATE_DISABLED);
1588 1589 1590

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1591
	if (efx->port_enabled || !netif_running(efx->net_dev))
1592 1593 1594
		return;

	efx_start_port(efx);
1595
	efx_start_datapath(efx);
1596

1597 1598 1599 1600
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1601 1602
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1603 1604 1605 1606 1607 1608
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1609

1610
	efx->type->start_stats(efx);
1611 1612 1613 1614 1615 1616 1617
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1618
	/* Make sure the hardware monitor and event self-test are stopped */
1619
	cancel_delayed_work_sync(&efx->monitor_work);
1620
	efx_selftest_async_cancel(efx);
1621
	/* Stop scheduled port reconfigurations */
1622
	cancel_work_sync(&efx->mac_work);
1623 1624
}

1625 1626 1627 1628 1629
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1630 1631 1632 1633 1634 1635 1636 1637
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1638
	efx->type->stop_stats(efx);
1639 1640
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1641
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1642 1643 1644 1645
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1646 1647 1648
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1649 1650 1651 1652
}

static void efx_remove_all(struct efx_nic *efx)
{
1653
	efx_remove_channels(efx);
1654
	efx_remove_filters(efx);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1665
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1666
{
1667 1668
	if (usecs == 0)
		return 0;
1669
	if (usecs * 1000 < quantum_ns)
1670
		return 1; /* never round down to 0 */
1671
	return usecs * 1000 / quantum_ns;
1672 1673
}

1674
/* Set interrupt moderation parameters */
1675 1676 1677
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1678
{
1679
	struct efx_channel *channel;
1680 1681 1682 1683 1684
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1685 1686 1687

	EFX_ASSERT_RESET_SERIALISED(efx);

1688
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1689 1690
		return -EINVAL;

1691 1692 1693
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1694 1695 1696 1697 1698 1699 1700
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1701
	efx->irq_rx_adaptive = rx_adaptive;
1702
	efx->irq_rx_moderation = rx_ticks;
1703
	efx_for_each_channel(channel, efx) {
1704
		if (efx_channel_has_rx_queue(channel))
1705
			channel->irq_moderation = rx_ticks;
1706
		else if (efx_channel_has_tx_queues(channel))
1707 1708
			channel->irq_moderation = tx_ticks;
	}
1709 1710

	return 0;
1711 1712
}

1713 1714 1715
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1716 1717 1718 1719
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1720
	*rx_adaptive = efx->irq_rx_adaptive;
1721 1722 1723
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1724 1725 1726 1727 1728 1729 1730 1731

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1732
		*tx_usecs = DIV_ROUND_UP(
1733
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1734 1735
			efx->timer_quantum_ns,
			1000);
1736 1737
}

1738 1739 1740 1741 1742 1743
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1744
/* Run periodically off the general workqueue */
1745 1746 1747 1748 1749
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1750 1751 1752
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1753
	BUG_ON(efx->type->monitor == NULL);
1754 1755 1756

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1757 1758 1759 1760 1761 1762
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1779
	struct efx_nic *efx = netdev_priv(net_dev);
1780
	struct mii_ioctl_data *data = if_mii(ifr);
1781

1782 1783 1784
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1785 1786 1787 1788 1789 1790
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1791 1792 1793 1794 1795 1796 1797 1798
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1799 1800 1801 1802 1803 1804 1805 1806 1807
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1808
static void efx_init_napi(struct efx_nic *efx)
1809 1810 1811
{
	struct efx_channel *channel;

1812 1813
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1814 1815 1816 1817 1818 1819 1820
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1821 1822 1823 1824 1825 1826
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1827 1828
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1845
	struct efx_nic *efx = netdev_priv(net_dev);
1846 1847
	struct efx_channel *channel;

1848
	efx_for_each_channel(channel, efx)
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1863
	struct efx_nic *efx = netdev_priv(net_dev);
1864 1865
	int rc;

1866 1867
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1868

1869 1870 1871
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1872 1873
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1874 1875
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1876

1877 1878 1879 1880
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1881
	efx_start_all(efx);
1882
	efx_selftest_async_start(efx);
1883 1884 1885 1886 1887 1888 1889 1890 1891
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1892
	struct efx_nic *efx = netdev_priv(net_dev);
1893

1894 1895
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1896

1897 1898
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1899 1900 1901 1902

	return 0;
}

1903
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1904 1905
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1906
{
1907
	struct efx_nic *efx = netdev_priv(net_dev);
1908 1909
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1910
	spin_lock_bh(&efx->stats_lock);
1911

1912
	efx->type->update_stats(efx);
1913 1914 1915 1916 1917

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1918
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1936 1937
	spin_unlock_bh(&efx->stats_lock);

1938 1939 1940 1941 1942 1943
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1944
	struct efx_nic *efx = netdev_priv(net_dev);
1945

1946 1947 1948
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1949

1950
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1951 1952 1953 1954 1955 1956
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1957
	struct efx_nic *efx = netdev_priv(net_dev);
1958
	int rc;
1959

1960 1961 1962
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1963 1964 1965 1966 1967
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1968
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1969

B
Ben Hutchings 已提交
1970
	mutex_lock(&efx->mac_lock);
1971
	net_dev->mtu = new_mtu;
1972
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1973 1974
	mutex_unlock(&efx->mac_lock);

1975
	efx_start_all(efx);
1976
	return 0;
1977 1978 1979 1980
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1981
	struct efx_nic *efx = netdev_priv(net_dev);
1982 1983 1984 1985
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1986 1987 1988
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1989
		return -EADDRNOTAVAIL;
1990 1991 1992
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1993
	efx_sriov_mac_address_changed(efx);
1994 1995

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1996
	mutex_lock(&efx->mac_lock);
1997
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1998
	mutex_unlock(&efx->mac_lock);
1999 2000 2001 2002

	return 0;
}

2003
/* Context: netif_addr_lock held, BHs disabled. */
2004
static void efx_set_rx_mode(struct net_device *net_dev)
2005
{
2006
	struct efx_nic *efx = netdev_priv(net_dev);
2007
	struct netdev_hw_addr *ha;
2008 2009 2010 2011
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

2012
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2013 2014

	/* Build multicast hash table */
2015
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2016 2017 2018
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2019 2020
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2021
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2022
			__set_bit_le(bit, mc_hash);
2023 2024
		}

2025 2026 2027 2028
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2029
		__set_bit_le(0xff, mc_hash);
2030
	}
2031

2032 2033 2034
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2035 2036
}

2037
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2048 2049 2050
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2051
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2052 2053 2054 2055 2056 2057
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2058
	.ndo_set_rx_mode	= efx_set_rx_mode,
2059
	.ndo_set_features	= efx_set_features,
2060 2061 2062 2063 2064 2065
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2066 2067 2068
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2069
	.ndo_setup_tc		= efx_setup_tc,
2070 2071 2072
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2073 2074
};

2075 2076 2077 2078 2079 2080 2081
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2082 2083 2084
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2085
	struct net_device *net_dev = ptr;
2086

2087 2088 2089
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2090 2091 2092 2093 2094 2095 2096 2097

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2098 2099 2100 2101 2102 2103 2104 2105
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2106 2107 2108
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2109
	struct efx_channel *channel;
2110 2111 2112 2113
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2114
	net_dev->netdev_ops = &efx_netdev_ops;
2115
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2116
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2117

2118
	rtnl_lock();
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2133 2134 2135
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2136
	efx_update_name(efx);
2137

2138 2139 2140
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2141 2142 2143 2144
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2145 2146
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2147 2148
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2149 2150
	}

2151
	rtnl_unlock();
2152

B
Ben Hutchings 已提交
2153 2154
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2155 2156
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2157 2158 2159
		goto fail_registered;
	}

2160
	return 0;
B
Ben Hutchings 已提交
2161

2162 2163 2164
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2165
fail_locked:
2166
	efx->state = STATE_UNINIT;
2167
	rtnl_unlock();
2168
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2169
	return rc;
2170 2171 2172 2173
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2174
	struct efx_channel *channel;
2175 2176 2177 2178 2179
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2180
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2181 2182 2183 2184

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2185 2186 2187 2188
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2189

2190 2191
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2192 2193 2194 2195 2196

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2197 2198 2199 2200 2201 2202 2203 2204
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2205 2206
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2207
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2208 2209 2210
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2211
	efx_stop_all(efx);
2212
	efx_stop_interrupts(efx, false);
2213 2214

	mutex_lock(&efx->mac_lock);
2215 2216
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2217
	efx->type->fini(efx);
2218 2219
}

B
Ben Hutchings 已提交
2220 2221 2222 2223 2224
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2225
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2226 2227 2228
{
	int rc;

B
Ben Hutchings 已提交
2229
	EFX_ASSERT_RESET_SERIALISED(efx);
2230

2231
	rc = efx->type->init(efx);
2232
	if (rc) {
2233
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2234
		goto fail;
2235 2236
	}

2237 2238 2239
	if (!ok)
		goto fail;

2240
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2241 2242 2243 2244
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2245 2246
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2247 2248
	}

2249
	efx->type->reconfigure_mac(efx);
2250

2251
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2252
	efx_restore_filters(efx);
2253
	efx_sriov_reset(efx);
2254 2255 2256 2257 2258 2259 2260 2261 2262

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2263 2264 2265

	mutex_unlock(&efx->mac_lock);

2266 2267 2268
	return rc;
}

2269 2270
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2271
 *
2272
 * Caller must hold the rtnl_lock.
2273
 */
2274
int efx_reset(struct efx_nic *efx, enum reset_type method)
2275
{
2276 2277
	int rc, rc2;
	bool disabled;
2278

2279 2280
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2281

2282
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2283
	efx_reset_down(efx, method);
2284

2285
	rc = efx->type->reset(efx, method);
2286
	if (rc) {
2287
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2288
		goto out;
2289 2290
	}

2291 2292 2293 2294
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2295 2296 2297 2298 2299 2300 2301

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2302
out:
2303
	/* Leave device stopped if necessary */
2304 2305 2306 2307 2308 2309
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2310 2311
	}

2312
	if (disabled) {
2313
		dev_close(efx->net_dev);
2314
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2315 2316
		efx->state = STATE_DISABLED;
	} else {
2317
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2318
		netif_device_attach(efx->net_dev);
2319
	}
2320 2321 2322 2323 2324 2325 2326 2327
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2328
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2329
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2330

2331
	if (!pending)
2332 2333
		return;

2334
	rtnl_lock();
2335 2336 2337 2338 2339 2340 2341 2342

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
		(void)efx_reset(efx, fls(pending) - 1);

2343
	rtnl_unlock();
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2356 2357
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2358 2359
		break;
	default:
2360
		method = efx->type->map_reset_reason(type);
2361 2362 2363
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2364 2365
		break;
	}
2366

2367
	set_bit(method, &efx->reset_pending);
2368 2369 2370 2371 2372 2373 2374
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2375

2376 2377 2378 2379
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2380
	queue_work(reset_workqueue, &efx->reset_work);
2381 2382 2383 2384 2385 2386 2387 2388 2389
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2390
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2391 2392
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2393
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2394 2395
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2396
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2397
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2398
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2399
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2400
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2401 2402 2403 2404 2405
	{0}			/* end of list */
};

/**************************************************************************
 *
2406
 * Dummy PHY/MAC operations
2407
 *
2408
 * Can be used for some unimplemented operations
2409 2410 2411 2412 2413 2414 2415 2416 2417
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2418 2419

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2420 2421 2422
{
	return false;
}
2423

2424
static const struct efx_phy_operations efx_dummy_phy_operations = {
2425
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2426
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2427
	.poll		 = efx_port_dummy_op_poll,
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2440
static int efx_init_struct(struct efx_nic *efx,
2441 2442
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2443
	int i;
2444 2445 2446

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2447 2448 2449
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2450 2451
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2452
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2453
	efx->pci_dev = pci_dev;
2454
	efx->msg_enable = debug;
2455
	efx->state = STATE_UNINIT;
2456 2457 2458 2459 2460 2461
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2462
	efx->mdio.dev = net_dev;
2463
	INIT_WORK(&efx->mac_work, efx_mac_work);
2464
	init_waitqueue_head(&efx->flush_wq);
2465 2466

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2467 2468 2469
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2470 2471 2472 2473 2474 2475 2476 2477
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2478 2479 2480 2481
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2482
	if (!efx->workqueue)
2483
		goto fail;
2484

2485
	return 0;
2486 2487 2488 2489

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2490 2491 2492 2493
}

static void efx_fini_struct(struct efx_nic *efx)
{
2494 2495 2496 2497 2498
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2516 2517 2518 2519 2520 2521
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

2522 2523 2524 2525
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2526
	efx_stop_interrupts(efx, false);
2527
	efx_nic_fini_interrupt(efx);
2528
	efx_fini_port(efx);
2529
	efx->type->fini(efx);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
2548
	efx_stop_interrupts(efx, false);
2549 2550
	rtnl_unlock();

2551
	efx_sriov_fini(efx);
2552 2553
	efx_unregister_netdev(efx);

2554 2555
	efx_mtd_remove(efx);

2556 2557 2558
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2559
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2560 2561

	efx_fini_struct(efx);
2562
	pci_set_drvdata(pci_dev, NULL);
2563 2564 2565
	free_netdev(efx->net_dev);
};

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2629
	efx_init_napi(efx);
2630

2631
	rc = efx->type->init(efx);
2632
	if (rc) {
2633 2634
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2635
		goto fail3;
2636 2637 2638 2639
	}

	rc = efx_init_port(efx);
	if (rc) {
2640 2641
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2642
		goto fail4;
2643 2644
	}

2645
	rc = efx_nic_init_interrupt(efx);
2646
	if (rc)
2647
		goto fail5;
2648
	efx_start_interrupts(efx, false);
2649 2650 2651

	return 0;

2652
 fail5:
2653 2654
	efx_fini_port(efx);
 fail4:
2655
	efx->type->fini(efx);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2666
 * theoretically).  It sets up PCI mappings, resets the NIC,
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2677
	int rc;
2678 2679

	/* Allocate and initialise a struct net_device and struct efx_nic */
2680 2681
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2682 2683
	if (!net_dev)
		return -ENOMEM;
2684 2685 2686
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2687
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2688
			      NETIF_F_RXCSUM);
2689
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2690
		net_dev->features |= NETIF_F_TSO6;
2691 2692
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2693 2694 2695 2696
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2697
	pci_set_drvdata(pci_dev, efx);
2698
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2699
	rc = efx_init_struct(efx, pci_dev, net_dev);
2700 2701 2702
	if (rc)
		goto fail1;

2703
	netif_info(efx, probe, efx->net_dev,
2704
		   "Solarflare NIC detected\n");
2705

2706 2707
	efx_print_product_vpd(efx);

2708 2709 2710 2711 2712
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2713 2714 2715
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2716 2717 2718

	rc = efx_register_netdev(efx);
	if (rc)
2719
		goto fail4;
2720

2721 2722 2723 2724 2725
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2726
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2727

2728
	/* Try to create MTDs, but allow this to fail */
2729
	rtnl_lock();
2730
	rc = efx_mtd_probe(efx);
2731
	rtnl_unlock();
2732 2733 2734 2735
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2736 2737 2738
	return 0;

 fail4:
2739
	efx_pci_remove_main(efx);
2740 2741 2742 2743 2744
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2745
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2746
	WARN_ON(rc > 0);
2747
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2748 2749 2750 2751
	free_netdev(net_dev);
	return rc;
}

2752 2753 2754 2755
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2756 2757
	rtnl_lock();

2758 2759
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2760

2761
		efx_device_detach_sync(efx);
2762

2763 2764 2765
		efx_stop_all(efx);
		efx_stop_interrupts(efx, false);
	}
2766

2767 2768
	rtnl_unlock();

2769 2770 2771 2772 2773 2774 2775
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2776 2777
	rtnl_lock();

2778 2779
	if (efx->state != STATE_DISABLED) {
		efx_start_interrupts(efx, false);
2780

2781 2782 2783
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2784

2785
		efx_start_all(efx);
2786

2787
		netif_device_attach(efx->net_dev);
2788

2789
		efx->state = STATE_READY;
2790

2791 2792
		efx->type->resume_wol(efx);
	}
2793

2794 2795
	rtnl_unlock();

2796 2797 2798
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2809
	efx->reset_pending = 0;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2851
static const struct dev_pm_ops efx_pm_ops = {
2852 2853 2854 2855 2856 2857 2858 2859
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2860
static struct pci_driver efx_pci_driver = {
2861
	.name		= KBUILD_MODNAME,
2862 2863 2864
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2865
	.driver.pm	= &efx_pm_ops,
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2888 2889 2890 2891
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

2892 2893 2894 2895 2896
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2897 2898 2899 2900 2901 2902 2903 2904

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2905 2906
	destroy_workqueue(reset_workqueue);
 err_reset:
2907 2908
	efx_fini_sriov();
 err_sriov:
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2919
	destroy_workqueue(reset_workqueue);
2920
	efx_fini_sriov();
2921 2922 2923 2924 2925 2926 2927
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2928 2929
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2930 2931 2932
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);