efx.c 84.8 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
81 82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
119 120
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	int spent;
248

249
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
250
		return 0;
251

252
	spent = efx_nic_process_eventq(channel, budget);
253 254 255 256
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

257
		efx_rx_flush_packet(channel);
258
		efx_fast_push_rx_descriptors(rx_queue, true);
259 260
	}

261
	return spent;
262 263 264 265 266 267 268 269 270 271 272
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
273
	struct efx_nic *efx = channel->efx;
274
	int spent;
275

276 277 278
	if (!efx_channel_lock_napi(channel))
		return budget;

279 280 281
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
282

283
	spent = efx_process_channel(channel, budget);
284

285
	if (spent < budget) {
286
		if (efx_channel_has_rx_queue(channel) &&
287 288 289 290
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
291 292
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
297 298 299
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303 304 305 306
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

307 308
		efx_filter_rfs_expire(channel);

309
		/* There is no race here; although napi_disable() will
310
		 * only wait for napi_complete(), this isn't a problem
311
		 * since efx_nic_eventq_read_ack() will have no effect if
312 313
		 * interrupts have already been disabled.
		 */
314
		napi_complete(napi);
315
		efx_nic_eventq_read_ack(channel);
316 317
	}

318
	efx_channel_unlock_napi(channel);
319
	return spent;
320 321 322 323 324 325 326 327 328
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
329 330 331
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

332
	netif_dbg(efx, probe, efx->net_dev,
333
		  "chan %d create event queue\n", channel->channel);
334

335 336 337 338 339 340
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

341
	return efx_nic_probe_eventq(channel);
342 343 344
}

/* Prepare channel's event queue */
345
static int efx_init_eventq(struct efx_channel *channel)
346
{
347
	struct efx_nic *efx = channel->efx;
348 349 350 351
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

352
	netif_dbg(efx, drv, efx->net_dev,
353
		  "chan %d init event queue\n", channel->channel);
354

355 356
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
357
		efx->type->push_irq_moderation(channel);
358 359 360 361
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
362 363
}

364
/* Enable event queue processing and NAPI */
365
void efx_start_eventq(struct efx_channel *channel)
366 367 368 369
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

370
	/* Make sure the NAPI handler sees the enabled flag set */
371 372 373
	channel->enabled = true;
	smp_wmb();

374
	efx_channel_enable(channel);
375 376 377 378 379
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
380
void efx_stop_eventq(struct efx_channel *channel)
381 382 383 384 385
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
386 387
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
388 389 390
	channel->enabled = false;
}

391 392
static void efx_fini_eventq(struct efx_channel *channel)
{
393 394 395
	if (!channel->eventq_init)
		return;

396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
398

399
	efx_nic_fini_eventq(channel);
400
	channel->eventq_init = false;
401 402 403 404
}

static void efx_remove_eventq(struct efx_channel *channel)
{
405 406
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
407

408
	efx_nic_remove_eventq(channel);
409 410 411 412 413 414 415 416
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

417
/* Allocate and initialise a channel structure. */
418 419 420 421 422 423 424 425
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

426 427 428
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
429

430 431 432
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
433

434 435 436 437 438 439
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
440

441 442 443 444
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
445

446 447 448 449 450 451 452 453 454 455 456 457 458
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
459

460 461 462 463 464 465 466 467
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
468

469 470 471
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
472
			tx_queue->channel = channel;
473 474
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
475 476 477
	}

	rx_queue = &channel->rx_queue;
478 479
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
480 481 482 483 484 485
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

486 487 488 489 490 491
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

492 493
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
494

495 496 497 498
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

499 500
	rc = efx_probe_eventq(channel);
	if (rc)
501
		goto fail;
502 503 504 505

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
506
			goto fail;
507 508 509 510 511
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
512
			goto fail;
513 514 515 516
	}

	return 0;

517 518
fail:
	efx_remove_channel(channel);
519 520 521
	return rc;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
540

541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

545 546
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
547 548
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
549 550
}

551 552 553 554 555 556 557 558
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

559 560 561 562 563 564
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

582 583 584 585
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
586
static void efx_start_datapath(struct efx_nic *efx)
587
{
588
	bool old_rx_scatter = efx->rx_scatter;
589 590 591
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
592
	size_t rx_buf_len;
593

594 595 596 597
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
598
	efx->rx_dma_len = (efx->rx_prefix_size +
599 600
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
601
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
602
		      efx->rx_ip_align + efx->rx_dma_len);
603
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
604
		efx->rx_scatter = efx->type->always_rx_scatter;
605 606
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
607
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
608
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
609 610 611
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
612 613 614 615 616 617 618 619
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

620 621 622 623 624 625 626 627 628 629 630
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
631

J
Jon Cooper 已提交
632
	/* RX filters may also have scatter-enabled flags */
633
	if (efx->rx_scatter != old_rx_scatter)
634
		efx->type->filter_update_rx_scatter(efx);
635

636 637 638 639 640 641 642 643 644 645
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

646 647
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
648
		efx_for_each_channel_tx_queue(tx_queue, channel) {
649
			efx_init_tx_queue(tx_queue);
650 651
			atomic_inc(&efx->active_queues);
		}
652

653
		efx_for_each_channel_rx_queue(rx_queue, channel) {
654
			efx_init_rx_queue(rx_queue);
655
			atomic_inc(&efx->active_queues);
656 657 658
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
659
		}
660

661
		WARN_ON(channel->rx_pkt_n_frags);
662 663
	}

664 665
	efx_ptp_start_datapath(efx);

666 667
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
668 669
}

670
static void efx_stop_datapath(struct efx_nic *efx)
671 672 673 674
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
675
	int rc;
676 677 678 679

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

680 681
	efx_ptp_stop_datapath(efx);

682 683 684 685 686 687
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

688
	efx_for_each_channel(channel, efx) {
689 690 691 692 693 694 695 696 697 698
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
699
	}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
719 720
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
721
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
722 723 724 725 726 727 728 729 730
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

731 732
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
733 734 735

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
736
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
739
	channel->type->post_remove(channel);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
755
	unsigned i, next_buffer_table = 0;
756
	int rc, rc2;
757 758 759 760

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
783

784
	efx_device_detach_sync(efx);
785
	efx_stop_all(efx);
B
Ben Hutchings 已提交
786
	efx_soft_disable_interrupts(efx);
787

788
	/* Clone channels (where possible) */
789 790
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
791 792 793
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

812 813
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
814 815

	for (i = 0; i < efx->n_channels; i++) {
816 817 818 819 820 821 822
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
823
	}
824

825
out:
826 827 828 829 830 831 832 833 834
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
835

836 837 838 839 840 841 842 843 844 845
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

860
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
861
{
862
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
863 864
}

865 866
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
867
	.post_remove		= efx_channel_dummy_op_void,
868 869 870 871 872 873 874 875 876 877
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

878 879 880 881
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

882 883 884 885 886 887 888 889 890 891
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
892
void efx_link_status_changed(struct efx_nic *efx)
893
{
894 895
	struct efx_link_state *link_state = &efx->link_state;

896 897 898 899 900 901 902
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

903
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
904 905
		efx->n_link_state_changes++;

906
		if (link_state->up)
907 908 909 910 911 912
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
913
	if (link_state->up)
914
		netif_info(efx, link, efx->net_dev,
915
			   "link up at %uMbps %s-duplex (MTU %d)\n",
916
			   link_state->speed, link_state->fd ? "full" : "half",
917
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
918
	else
919
		netif_info(efx, link, efx->net_dev, "link down\n");
920 921
}

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

935
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

950 951
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
952 953 954 955 956 957 958 959
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
960
{
B
Ben Hutchings 已提交
961 962
	enum efx_phy_mode phy_mode;
	int rc;
963

B
Ben Hutchings 已提交
964
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
965

B
Ben Hutchings 已提交
966 967
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
968 969 970 971 972
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
973
	rc = efx->type->reconfigure_port(efx);
974

B
Ben Hutchings 已提交
975 976
	if (rc)
		efx->phy_mode = phy_mode;
977

B
Ben Hutchings 已提交
978
	return rc;
979 980 981 982
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
983
int efx_reconfigure_port(struct efx_nic *efx)
984
{
B
Ben Hutchings 已提交
985 986
	int rc;

987 988 989
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
990
	rc = __efx_reconfigure_port(efx);
991
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
992 993

	return rc;
994 995
}

996 997 998
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
999 1000 1001 1002 1003
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1004
	if (efx->port_enabled)
1005
		efx->type->reconfigure_mac(efx);
1006 1007 1008
	mutex_unlock(&efx->mac_lock);
}

1009 1010 1011 1012
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1013
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1014

1015 1016 1017
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1018 1019
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1020
	if (rc)
1021
		return rc;
1022

1023
	/* Initialise MAC address to permanent address */
1024
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1025 1026 1027 1028 1029 1030 1031 1032

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1033
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1034

1035 1036
	mutex_lock(&efx->mac_lock);

1037
	rc = efx->phy_op->init(efx);
1038
	if (rc)
1039
		goto fail1;
1040

1041
	efx->port_initialized = true;
1042

B
Ben Hutchings 已提交
1043 1044
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1045
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1046 1047 1048 1049 1050 1051

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1052
	mutex_unlock(&efx->mac_lock);
1053
	return 0;
1054

1055
fail2:
1056
	efx->phy_op->fini(efx);
1057 1058
fail1:
	mutex_unlock(&efx->mac_lock);
1059
	return rc;
1060 1061 1062 1063
}

static void efx_start_port(struct efx_nic *efx)
{
1064
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1065 1066 1067
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1068
	efx->port_enabled = true;
1069

1070
	/* Ensure MAC ingress/egress is enabled */
1071
	efx->type->reconfigure_mac(efx);
1072

1073 1074 1075
	mutex_unlock(&efx->mac_lock);
}

1076 1077 1078 1079 1080
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1081 1082
static void efx_stop_port(struct efx_nic *efx)
{
1083
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1084

1085 1086
	EFX_ASSERT_RESET_SERIALISED(efx);

1087
	mutex_lock(&efx->mac_lock);
1088
	efx->port_enabled = false;
1089 1090 1091
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1092 1093
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1094 1095 1096 1097

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1098 1099 1100 1101
}

static void efx_fini_port(struct efx_nic *efx)
{
1102
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1103 1104 1105 1106

	if (!efx->port_initialized)
		return;

1107
	efx->phy_op->fini(efx);
1108
	efx->port_initialized = false;
1109

1110
	efx->link_state.up = false;
1111 1112 1113 1114 1115
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1116
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1117

1118
	efx->type->remove_port(efx);
1119 1120 1121 1122 1123 1124 1125 1126
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1198 1199 1200 1201 1202
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1203
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1204 1205
	int rc;

1206
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1207 1208 1209

	rc = pci_enable_device(pci_dev);
	if (rc) {
1210 1211
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1223
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1224
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1225 1226 1227
			if (rc == 0)
				break;
		}
1228 1229 1230
		dma_mask >>= 1;
	}
	if (rc) {
1231 1232
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1233 1234
		goto fail2;
	}
1235 1236
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1237

1238 1239
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1240
	if (rc) {
1241 1242
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1243 1244 1245
		rc = -EIO;
		goto fail3;
	}
1246
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1247
	if (!efx->membase) {
1248 1249
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1250
			  (unsigned long long)efx->membase_phys, mem_map_size);
1251 1252 1253
		rc = -ENOMEM;
		goto fail4;
	}
1254 1255
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1256 1257
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1258 1259 1260 1261

	return 0;

 fail4:
1262
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1263
 fail3:
1264
	efx->membase_phys = 0;
1265 1266 1267 1268 1269 1270 1271 1272
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1273
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1274 1275 1276 1277 1278 1279 1280

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1281
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1282
		efx->membase_phys = 0;
1283 1284 1285 1286 1287
	}

	pci_disable_device(efx->pci_dev);
}

1288
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1289
{
1290
	cpumask_var_t thread_mask;
1291
	unsigned int count;
1292
	int cpu;
1293

1294 1295 1296 1297 1298 1299 1300 1301
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1313 1314
	}

1315 1316 1317
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1329
	}
1330
#endif
1331 1332 1333 1334 1335 1336 1337

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1338
static int efx_probe_interrupts(struct efx_nic *efx)
1339
{
1340 1341
	unsigned int extra_channels = 0;
	unsigned int i, j;
1342
	int rc;
1343

1344 1345 1346 1347
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1348
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1349
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1350
		unsigned int n_channels;
1351

1352
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1353 1354
		if (separate_tx_channels)
			n_channels *= 2;
1355
		n_channels += extra_channels;
1356
		n_channels = min(n_channels, efx->max_channels);
1357

B
Ben Hutchings 已提交
1358
		for (i = 0; i < n_channels; i++)
1359
			xentries[i].entry = i;
1360 1361 1362 1363 1364 1365 1366 1367
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1368 1369
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1370
				  " available (%d < %u).\n", rc, n_channels);
1371 1372
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1373
			n_channels = rc;
1374 1375
		}

1376
		if (rc > 0) {
B
Ben Hutchings 已提交
1377
			efx->n_channels = n_channels;
1378 1379
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1380
			if (separate_tx_channels) {
1381 1382 1383 1384
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1385
			} else {
1386 1387
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1388
			}
1389
			for (i = 0; i < efx->n_channels; i++)
1390 1391
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1392 1393 1394 1395 1396
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1397
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1398 1399
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1400 1401
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1402
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1403
		} else {
1404 1405
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1406 1407 1408 1409 1410 1411
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1412
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1413 1414
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1415 1416
		efx->legacy_irq = efx->pci_dev->irq;
	}
1417

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1433
	/* RSS might be usable on VFs even if it is disabled on the PF */
1434 1435 1436 1437 1438 1439 1440 1441 1442
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1443
	return 0;
1444 1445
}

1446
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1447
{
1448 1449
	struct efx_channel *channel, *end_channel;
	int rc;
1450

1451 1452
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1453 1454
	efx->irq_soft_enabled = true;
	smp_wmb();
1455 1456

	efx_for_each_channel(channel, efx) {
1457 1458 1459 1460 1461
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1462 1463 1464 1465
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1479 1480
}

B
Ben Hutchings 已提交
1481
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1482 1483 1484
{
	struct efx_channel *channel;

1485 1486 1487
	if (efx->state == STATE_DISABLED)
		return;

1488 1489
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1490 1491 1492 1493
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1494 1495 1496 1497 1498 1499 1500
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1501
		if (!channel->type->keep_eventq)
1502
			efx_fini_eventq(channel);
1503
	}
1504 1505 1506

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1507 1508
}

1509
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1510
{
1511 1512
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1513 1514 1515 1516 1517 1518 1519 1520

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1521
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1522 1523

	efx_for_each_channel(channel, efx) {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1542
		if (channel->type->keep_eventq)
1543
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1544 1545
	}

1546 1547 1548
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1562
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1563 1564
}

1565 1566 1567 1568 1569
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1570
	efx_for_each_channel(channel, efx)
1571 1572 1573 1574 1575 1576 1577 1578
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1579
static void efx_set_channels(struct efx_nic *efx)
1580
{
1581 1582 1583
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1584
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1585
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1586

1587 1588
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1589 1590 1591
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1592 1593 1594 1595 1596
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1597 1598 1599 1600
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1601 1602 1603 1604
}

static int efx_probe_nic(struct efx_nic *efx)
{
1605
	size_t i;
1606 1607
	int rc;

1608
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1609 1610

	/* Carry out hardware-type specific initialisation */
1611
	rc = efx->type->probe(efx);
1612 1613 1614
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1615
	/* Determine the number of channels and queues by trying to hook
1616
	 * in MSI-X interrupts. */
1617 1618
	rc = efx_probe_interrupts(efx);
	if (rc)
1619
		goto fail1;
1620

1621 1622
	efx_set_channels(efx);

1623 1624 1625
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1626

1627
	if (efx->n_channels > 1)
1628
		netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1629
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1630
		efx->rx_indir_table[i] =
1631
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1632

1633 1634
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1635 1636

	/* Initialise the interrupt moderation settings */
1637 1638
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1639 1640

	return 0;
1641

1642 1643 1644
fail2:
	efx_remove_interrupts(efx);
fail1:
1645 1646
	efx->type->remove(efx);
	return rc;
1647 1648 1649 1650
}

static void efx_remove_nic(struct efx_nic *efx)
{
1651
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1652 1653

	efx_remove_interrupts(efx);
1654
	efx->type->remove(efx);
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1707
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1708 1709 1710 1711 1712
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1713
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1714 1715 1716
		goto fail2;
	}

1717 1718 1719 1720 1721
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1722
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1723

B
Ben Hutchings 已提交
1724 1725 1726 1727
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1728
		goto fail3;
B
Ben Hutchings 已提交
1729 1730
	}

1731 1732 1733 1734
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1735 1736
	return 0;

B
Ben Hutchings 已提交
1737
 fail4:
1738
	efx_remove_filters(efx);
1739 1740 1741 1742 1743 1744 1745 1746
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1747 1748 1749 1750 1751 1752
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1753
 */
1754 1755 1756
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1757
	BUG_ON(efx->state == STATE_DISABLED);
1758 1759 1760

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1761 1762
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1763 1764 1765
		return;

	efx_start_port(efx);
1766
	efx_start_datapath(efx);
1767

1768 1769
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1770 1771
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1772 1773 1774 1775 1776

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1777 1778 1779 1780 1781
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1782

1783
	efx->type->start_stats(efx);
1784 1785 1786 1787
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1788 1789
}

1790 1791 1792 1793 1794
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1795 1796 1797 1798 1799 1800 1801 1802
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1803 1804 1805 1806 1807 1808 1809
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1810
	efx->type->stop_stats(efx);
1811 1812
	efx_stop_port(efx);

1813 1814 1815 1816 1817 1818
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1819 1820 1821
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1822 1823 1824 1825
}

static void efx_remove_all(struct efx_nic *efx)
{
1826
	efx_remove_channels(efx);
1827
	efx_remove_filters(efx);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1838
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1839
{
1840 1841
	if (usecs == 0)
		return 0;
1842
	if (usecs * 1000 < quantum_ns)
1843
		return 1; /* never round down to 0 */
1844
	return usecs * 1000 / quantum_ns;
1845 1846
}

1847
/* Set interrupt moderation parameters */
1848 1849 1850
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1851
{
1852
	struct efx_channel *channel;
1853 1854 1855 1856 1857
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1858 1859 1860

	EFX_ASSERT_RESET_SERIALISED(efx);

1861
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1862 1863
		return -EINVAL;

1864 1865 1866
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1867 1868 1869 1870 1871 1872 1873
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1874
	efx->irq_rx_adaptive = rx_adaptive;
1875
	efx->irq_rx_moderation = rx_ticks;
1876
	efx_for_each_channel(channel, efx) {
1877
		if (efx_channel_has_rx_queue(channel))
1878
			channel->irq_moderation = rx_ticks;
1879
		else if (efx_channel_has_tx_queues(channel))
1880 1881
			channel->irq_moderation = tx_ticks;
	}
1882 1883

	return 0;
1884 1885
}

1886 1887 1888
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1889 1890 1891 1892
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1893
	*rx_adaptive = efx->irq_rx_adaptive;
1894 1895 1896
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1897 1898 1899 1900 1901 1902 1903 1904

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1905
		*tx_usecs = DIV_ROUND_UP(
1906
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1907 1908
			efx->timer_quantum_ns,
			1000);
1909 1910
}

1911 1912 1913 1914 1915 1916
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1917
/* Run periodically off the general workqueue */
1918 1919 1920 1921 1922
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1923 1924 1925
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1926
	BUG_ON(efx->type->monitor == NULL);
1927 1928 1929

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1930 1931 1932 1933 1934 1935
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1952
	struct efx_nic *efx = netdev_priv(net_dev);
1953
	struct mii_ioctl_data *data = if_mii(ifr);
1954

1955
	if (cmd == SIOCSHWTSTAMP)
1956 1957 1958
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1959

1960 1961 1962 1963 1964 1965
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1966 1967 1968 1969 1970 1971 1972 1973
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1974 1975 1976 1977 1978 1979 1980
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
1981 1982
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
1983 1984
}

1985
static void efx_init_napi(struct efx_nic *efx)
1986 1987 1988
{
	struct efx_channel *channel;

1989 1990
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1991 1992 1993 1994
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
1995
	if (channel->napi_dev) {
1996
		netif_napi_del(&channel->napi_str);
1997 1998
		napi_hash_del(&channel->napi_str);
	}
1999
	channel->napi_dev = NULL;
2000 2001 2002 2003 2004 2005
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2006 2007
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2024
	struct efx_nic *efx = netdev_priv(net_dev);
2025 2026
	struct efx_channel *channel;

2027
	efx_for_each_channel(channel, efx)
2028 2029 2030 2031 2032
		efx_schedule_channel(channel);
}

#endif

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2064 2065 2066 2067 2068 2069 2070 2071 2072
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2073
	struct efx_nic *efx = netdev_priv(net_dev);
2074 2075
	int rc;

2076 2077
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2078

2079 2080 2081
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2082 2083
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2084 2085
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2086

2087 2088 2089 2090
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2091
	efx_start_all(efx);
2092
	efx_selftest_async_start(efx);
2093 2094 2095 2096 2097 2098 2099 2100 2101
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2102
	struct efx_nic *efx = netdev_priv(net_dev);
2103

2104 2105
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2106

2107 2108
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2109 2110 2111 2112

	return 0;
}

2113
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2114 2115
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2116
{
2117
	struct efx_nic *efx = netdev_priv(net_dev);
2118

2119
	spin_lock_bh(&efx->stats_lock);
2120
	efx->type->update_stats(efx, NULL, stats);
2121 2122
	spin_unlock_bh(&efx->stats_lock);

2123 2124 2125 2126 2127 2128
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2129
	struct efx_nic *efx = netdev_priv(net_dev);
2130

2131 2132 2133
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2134

2135
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2136 2137 2138 2139 2140 2141
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2142
	struct efx_nic *efx = netdev_priv(net_dev);
2143
	int rc;
2144

2145 2146 2147
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2148 2149 2150
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2151
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2152

2153 2154 2155
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2156
	mutex_lock(&efx->mac_lock);
2157
	net_dev->mtu = new_mtu;
2158
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2159 2160
	mutex_unlock(&efx->mac_lock);

2161
	efx_start_all(efx);
2162
	netif_device_attach(efx->net_dev);
2163
	return 0;
2164 2165 2166 2167
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2168
	struct efx_nic *efx = netdev_priv(net_dev);
2169
	struct sockaddr *addr = data;
2170
	u8 *new_addr = addr->sa_data;
2171 2172

	if (!is_valid_ether_addr(new_addr)) {
2173 2174 2175
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2176
		return -EADDRNOTAVAIL;
2177 2178
	}

2179
	ether_addr_copy(net_dev->dev_addr, new_addr);
2180 2181
	if (efx->type->sriov_mac_address_changed)
		efx->type->sriov_mac_address_changed(efx);
2182 2183

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2184
	mutex_lock(&efx->mac_lock);
2185
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2186
	mutex_unlock(&efx->mac_lock);
2187 2188 2189 2190

	return 0;
}

2191
/* Context: netif_addr_lock held, BHs disabled. */
2192
static void efx_set_rx_mode(struct net_device *net_dev)
2193
{
2194
	struct efx_nic *efx = netdev_priv(net_dev);
2195

2196 2197 2198
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2199 2200
}

2201
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2202 2203 2204 2205 2206
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2207
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2208 2209 2210 2211

	return 0;
}

2212
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2213 2214
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2215
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2216 2217 2218 2219 2220 2221
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2222
	.ndo_set_rx_mode	= efx_set_rx_mode,
2223
	.ndo_set_features	= efx_set_features,
2224
#ifdef CONFIG_SFC_SRIOV
2225 2226 2227 2228
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2229
#endif
S
Stephen Hemminger 已提交
2230 2231 2232
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2233
	.ndo_setup_tc		= efx_setup_tc,
2234 2235 2236
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2237 2238 2239
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2240 2241
};

2242 2243 2244 2245 2246 2247 2248
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2249 2250 2251
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2252
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2253

2254
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2255 2256
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2257 2258 2259 2260 2261 2262 2263 2264

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2265 2266 2267 2268 2269 2270
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2271
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2272

2273 2274 2275
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2276
	struct efx_channel *channel;
2277 2278 2279 2280
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2281 2282
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2283
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2284
	net_dev->ethtool_ops = &efx_ethtool_ops;
2285
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2286

2287
	rtnl_lock();
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2302 2303 2304
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2305
	efx_update_name(efx);
2306

2307 2308 2309
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2310 2311 2312 2313
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2314 2315
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2316 2317
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2318 2319
	}

2320 2321
	efx_associate(efx);

2322
	rtnl_unlock();
2323

B
Ben Hutchings 已提交
2324 2325
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2326 2327
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2328 2329 2330
		goto fail_registered;
	}

2331
	return 0;
B
Ben Hutchings 已提交
2332

2333 2334
fail_registered:
	rtnl_lock();
2335
	efx_dissociate(efx);
2336
	unregister_netdevice(net_dev);
2337
fail_locked:
2338
	efx->state = STATE_UNINIT;
2339
	rtnl_unlock();
2340
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2341
	return rc;
2342 2343 2344 2345 2346 2347 2348
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2349
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2350

2351 2352
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2353 2354 2355 2356 2357

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2358 2359 2360 2361 2362 2363 2364 2365
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2366 2367
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2368
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2369 2370 2371
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2372 2373 2374
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2375
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2376
	efx_disable_interrupts(efx);
2377 2378

	mutex_lock(&efx->mac_lock);
2379 2380
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2381
	efx->type->fini(efx);
2382 2383
}

B
Ben Hutchings 已提交
2384 2385 2386 2387 2388
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2389
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2390 2391 2392
{
	int rc;

B
Ben Hutchings 已提交
2393
	EFX_ASSERT_RESET_SERIALISED(efx);
2394

2395 2396 2397 2398
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2399
	rc = efx->type->init(efx);
2400
	if (rc) {
2401
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2402
		goto fail;
2403 2404
	}

2405 2406 2407
	if (!ok)
		goto fail;

2408
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2409 2410 2411 2412
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2413 2414
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2415 2416
	}

2417 2418 2419
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2420
	efx_restore_filters(efx);
2421 2422
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2423 2424 2425 2426 2427 2428 2429 2430 2431

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2432 2433 2434

	mutex_unlock(&efx->mac_lock);

2435 2436 2437
	return rc;
}

2438 2439
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2440
 *
2441
 * Caller must hold the rtnl_lock.
2442
 */
2443
int efx_reset(struct efx_nic *efx, enum reset_type method)
2444
{
2445 2446
	int rc, rc2;
	bool disabled;
2447

2448 2449
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2450

2451
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2452
	efx_reset_down(efx, method);
2453

2454
	rc = efx->type->reset(efx, method);
2455
	if (rc) {
2456
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2457
		goto out;
2458 2459
	}

2460 2461 2462
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2463 2464 2465 2466
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2467 2468 2469 2470 2471 2472 2473

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2474
out:
2475
	/* Leave device stopped if necessary */
2476 2477 2478
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2479 2480 2481 2482 2483
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2484 2485
	}

2486
	if (disabled) {
2487
		dev_close(efx->net_dev);
2488
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2489 2490
		efx->state = STATE_DISABLED;
	} else {
2491
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2492
		netif_device_attach(efx->net_dev);
2493
	}
2494 2495 2496
	return rc;
}

2497 2498 2499 2500 2501
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2502
int efx_try_recovery(struct efx_nic *efx)
2503 2504 2505 2506 2507 2508 2509
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2510
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2539 2540 2541 2542 2543
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2544
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2545 2546 2547 2548 2549 2550
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2551 2552 2553
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2554 2555 2556 2557
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2558

2559
	if (!pending)
2560 2561
		return;

2562
	rtnl_lock();
2563 2564 2565 2566 2567 2568

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2569
		(void)efx_reset(efx, method);
2570

2571
	rtnl_unlock();
2572 2573 2574 2575 2576 2577
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2578 2579 2580 2581 2582 2583 2584
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2585 2586 2587
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2588
	case RESET_TYPE_RECOVER_OR_ALL:
2589 2590
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2591
	case RESET_TYPE_RECOVER_OR_DISABLE:
2592
	case RESET_TYPE_MC_BIST:
2593
	case RESET_TYPE_MCDI_TIMEOUT:
2594
		method = type;
2595 2596
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2597 2598
		break;
	default:
2599
		method = efx->type->map_reset_reason(type);
2600 2601 2602
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2603 2604
		break;
	}
2605

2606
	set_bit(method, &efx->reset_pending);
2607 2608 2609 2610 2611 2612 2613
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2614

2615 2616 2617 2618
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2619
	queue_work(reset_workqueue, &efx->reset_work);
2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2629
static const struct pci_device_id efx_pci_table[] = {
2630 2631
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2632
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2633 2634
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2635
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2636
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2637
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2638
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2639
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2640 2641
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2642 2643
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2644 2645 2646 2647 2648
	{0}			/* end of list */
};

/**************************************************************************
 *
2649
 * Dummy PHY/MAC operations
2650
 *
2651
 * Can be used for some unimplemented operations
2652 2653 2654 2655 2656 2657 2658 2659 2660
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2661 2662

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2663 2664 2665
{
	return false;
}
2666

2667
static const struct efx_phy_operations efx_dummy_phy_operations = {
2668
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2669
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2670
	.poll		 = efx_port_dummy_op_poll,
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2683
static int efx_init_struct(struct efx_nic *efx,
2684 2685
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2686
	int i;
2687 2688

	/* Initialise common structures */
2689 2690
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2691
	spin_lock_init(&efx->biu_lock);
2692 2693 2694
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2695 2696
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2697
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2698
	efx->pci_dev = pci_dev;
2699
	efx->msg_enable = debug;
2700
	efx->state = STATE_UNINIT;
2701 2702 2703
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2704
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2705 2706
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2707 2708
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2709 2710
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2711 2712 2713
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2714
	efx->mdio.dev = net_dev;
2715
	INIT_WORK(&efx->mac_work, efx_mac_work);
2716
	init_waitqueue_head(&efx->flush_wq);
2717 2718

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2719 2720 2721
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2722 2723
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2724 2725 2726 2727 2728 2729
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2730 2731 2732 2733
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2734
	if (!efx->workqueue)
2735
		goto fail;
2736

2737
	return 0;
2738 2739 2740 2741

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2742 2743 2744 2745
}

static void efx_fini_struct(struct efx_nic *efx)
{
2746 2747 2748 2749 2750
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2751 2752
	kfree(efx->vpd_sn);

2753 2754 2755 2756 2757 2758
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2781 2782 2783 2784 2785 2786
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2787
	efx_disable_interrupts(efx);
2788
	efx_nic_fini_interrupt(efx);
2789
	efx_fini_port(efx);
2790
	efx->type->fini(efx);
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2808
	efx_dissociate(efx);
2809
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2810
	efx_disable_interrupts(efx);
2811 2812
	rtnl_unlock();

2813 2814 2815
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2816 2817
	efx_unregister_netdev(efx);

2818 2819
	efx_mtd_remove(efx);

2820 2821 2822
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2823
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2824 2825 2826

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2827 2828

	pci_disable_pcie_error_reporting(pci_dev);
2829 2830
};

2831 2832 2833 2834 2835 2836
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2837
static void efx_probe_vpd_strings(struct efx_nic *efx)
2838 2839 2840 2841
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2842
	int ro_start, ro_size, i, j;
2843 2844 2845 2846 2847 2848 2849 2850 2851

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2852 2853
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2854 2855 2856 2857
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2858 2859 2860
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2901 2902 2903
}


2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2916
	efx_init_napi(efx);
2917

2918
	rc = efx->type->init(efx);
2919
	if (rc) {
2920 2921
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2922
		goto fail3;
2923 2924 2925 2926
	}

	rc = efx_init_port(efx);
	if (rc) {
2927 2928
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2929
		goto fail4;
2930 2931
	}

2932
	rc = efx_nic_init_interrupt(efx);
2933
	if (rc)
2934
		goto fail5;
2935 2936 2937
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2938 2939 2940

	return 0;

2941 2942
 fail6:
	efx_nic_fini_interrupt(efx);
2943
 fail5:
2944 2945
	efx_fini_port(efx);
 fail4:
2946
	efx->type->fini(efx);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2957
 * theoretically).  It sets up PCI mappings, resets the NIC,
2958 2959 2960 2961 2962
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2963
static int efx_pci_probe(struct pci_dev *pci_dev,
2964
			 const struct pci_device_id *entry)
2965 2966 2967
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2968
	int rc;
2969 2970

	/* Allocate and initialise a struct net_device and struct efx_nic */
2971 2972
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2973 2974
	if (!net_dev)
		return -ENOMEM;
2975 2976 2977
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2978
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2979
			      NETIF_F_RXCSUM);
2980
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2981
		net_dev->features |= NETIF_F_TSO6;
2982 2983
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2984 2985 2986 2987
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2988
	pci_set_drvdata(pci_dev, efx);
2989
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2990
	rc = efx_init_struct(efx, pci_dev, net_dev);
2991 2992 2993
	if (rc)
		goto fail1;

2994
	netif_info(efx, probe, efx->net_dev,
2995
		   "Solarflare NIC detected\n");
2996

2997
	efx_probe_vpd_strings(efx);
2998

2999 3000 3001 3002 3003
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3004 3005 3006
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3007 3008 3009

	rc = efx_register_netdev(efx);
	if (rc)
3010
		goto fail4;
3011

3012 3013 3014 3015 3016 3017
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3018

3019
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3020

3021
	/* Try to create MTDs, but allow this to fail */
3022
	rtnl_lock();
3023
	rc = efx_mtd_probe(efx);
3024
	rtnl_unlock();
3025 3026 3027 3028
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3029 3030 3031 3032 3033
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3034 3035 3036
	return 0;

 fail4:
3037
	efx_pci_remove_main(efx);
3038 3039 3040 3041 3042
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3043
	WARN_ON(rc > 0);
3044
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3045 3046 3047 3048
	free_netdev(net_dev);
	return rc;
}

3049 3050 3051 3052
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3053 3054
	rtnl_lock();

3055 3056
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3057

3058
		efx_device_detach_sync(efx);
3059

3060
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3061
		efx_disable_interrupts(efx);
3062
	}
3063

3064 3065
	rtnl_unlock();

3066 3067 3068 3069 3070
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3071
	int rc;
3072 3073
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3074 3075
	rtnl_lock();

3076
	if (efx->state != STATE_DISABLED) {
3077 3078 3079
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3080

3081 3082 3083
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3084

3085
		efx_start_all(efx);
3086

3087
		netif_device_attach(efx->net_dev);
3088

3089
		efx->state = STATE_READY;
3090

3091 3092
		efx->type->resume_wol(efx);
	}
3093

3094 3095
	rtnl_unlock();

3096 3097 3098
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3099
	return 0;
3100 3101 3102 3103 3104

fail:
	rtnl_unlock();

	return rc;
3105 3106 3107 3108 3109 3110 3111 3112 3113
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3114
	efx->reset_pending = 0;
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3141 3142
	rc = efx_pm_thaw(dev);
	return rc;
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3156
static const struct dev_pm_ops efx_pm_ops = {
3157 3158 3159 3160 3161 3162 3163 3164
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3165 3166 3167 3168
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3169 3170
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3187
		efx_disable_interrupts(efx);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3204
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3205
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3264
static struct pci_driver efx_pci_driver = {
3265
	.name		= KBUILD_MODNAME,
3266 3267 3268
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3269
	.driver.pm	= &efx_pm_ops,
3270
	.err_handler	= &efx_err_handlers,
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3293
#ifdef CONFIG_SFC_SRIOV
3294 3295 3296
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3297
#endif
3298

3299 3300 3301 3302 3303
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3304 3305 3306 3307 3308 3309 3310 3311

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3312 3313
	destroy_workqueue(reset_workqueue);
 err_reset:
3314
#ifdef CONFIG_SFC_SRIOV
3315 3316
	efx_fini_sriov();
 err_sriov:
3317
#endif
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3328
	destroy_workqueue(reset_workqueue);
3329
#ifdef CONFIG_SFC_SRIOV
3330
	efx_fini_sriov();
3331
#endif
3332 3333 3334 3335 3336 3337 3338
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3339 3340
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3341
MODULE_DESCRIPTION("Solarflare network driver");
3342 3343
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);