efx.c 83.6 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
80 81 82 83
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
84
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
85 86
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
87
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
88 89
};

90 91 92 93 94 95
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

96 97 98 99 100 101
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

102 103 104 105 106 107 108 109 110
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
111 112
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
113
 *
114
 * This is only used in MSI-X interrupt mode
115
 */
116 117
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
118 119
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
120 121 122 123 124 125 126

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
127 128
 * monitor.
 * On Falcon-based NICs, this will:
129 130
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
131 132
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
133
 */
S
stephen hemminger 已提交
134
static unsigned int efx_monitor_interval = 1 * HZ;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
167
 * The default (0) means to assign an interrupt to each core.
168 169 170 171 172
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

173 174
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
175 176
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

177
static unsigned irq_adapt_low_thresh = 8000;
178 179 180 181
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

182
static unsigned irq_adapt_high_thresh = 16000;
183 184 185 186
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

187 188 189 190 191 192 193
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

194 195 196 197 198
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
199

200
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
201
static void efx_soft_disable_interrupts(struct efx_nic *efx);
202
static void efx_remove_channel(struct efx_channel *channel);
203
static void efx_remove_channels(struct efx_nic *efx);
204
static const struct efx_channel_type efx_default_channel_type;
205
static void efx_remove_port(struct efx_nic *efx);
206
static void efx_init_napi_channel(struct efx_channel *channel);
207
static void efx_fini_napi(struct efx_nic *efx);
208
static void efx_fini_napi_channel(struct efx_channel *channel);
209 210 211
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
212 213 214

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
215
		if ((efx->state == STATE_READY) ||	\
216
		    (efx->state == STATE_RECOVERY) ||	\
217
		    (efx->state == STATE_DISABLED))	\
218 219 220
			ASSERT_RTNL();			\
	} while (0)

221 222
static int efx_check_disabled(struct efx_nic *efx)
{
223
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
224 225 226 227 228 229 230
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

231 232 233 234 235 236 237 238 239 240 241 242 243
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
244
static int efx_process_channel(struct efx_channel *channel, int budget)
245
{
246
	int spent;
247

248
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
249
		return 0;
250

251
	spent = efx_nic_process_eventq(channel, budget);
252 253 254 255
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

256
		efx_rx_flush_packet(channel);
257
		efx_fast_push_rx_descriptors(rx_queue, true);
258 259
	}

260
	return spent;
261 262 263 264 265 266 267 268 269 270 271
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
272
	struct efx_nic *efx = channel->efx;
273
	int spent;
274

275 276 277
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
278

279
	spent = efx_process_channel(channel, budget);
280

281
	if (spent < budget) {
282
		if (efx_channel_has_rx_queue(channel) &&
283 284 285 286
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
287 288
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
289
					efx->type->push_irq_moderation(channel);
290
				}
291 292
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
293 294 295
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
296
					efx->type->push_irq_moderation(channel);
297
				}
298 299 300 301 302
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

303 304
		efx_filter_rfs_expire(channel);

305
		/* There is no race here; although napi_disable() will
306
		 * only wait for napi_complete(), this isn't a problem
307
		 * since efx_nic_eventq_read_ack() will have no effect if
308 309
		 * interrupts have already been disabled.
		 */
310
		napi_complete(napi);
311
		efx_nic_eventq_read_ack(channel);
312 313
	}

314
	return spent;
315 316 317 318 319 320 321 322 323
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
324 325 326
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

327
	netif_dbg(efx, probe, efx->net_dev,
328
		  "chan %d create event queue\n", channel->channel);
329

330 331 332 333 334 335
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

336
	return efx_nic_probe_eventq(channel);
337 338 339
}

/* Prepare channel's event queue */
340
static int efx_init_eventq(struct efx_channel *channel)
341
{
342
	struct efx_nic *efx = channel->efx;
343 344 345 346
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

347
	netif_dbg(efx, drv, efx->net_dev,
348
		  "chan %d init event queue\n", channel->channel);
349

350 351
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
352
		efx->type->push_irq_moderation(channel);
353 354 355 356
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
357 358
}

359 360 361 362 363 364
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

365
	/* Make sure the NAPI handler sees the enabled flag set */
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

383 384
static void efx_fini_eventq(struct efx_channel *channel)
{
385 386 387
	if (!channel->eventq_init)
		return;

388 389
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
390

391
	efx_nic_fini_eventq(channel);
392
	channel->eventq_init = false;
393 394 395 396
}

static void efx_remove_eventq(struct efx_channel *channel)
{
397 398
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
399

400
	efx_nic_remove_eventq(channel);
401 402 403 404 405 406 407 408
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

409
/* Allocate and initialise a channel structure. */
410 411 412 413 414 415 416 417
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

418 419 420
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
421

422 423 424
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
425

426 427 428 429 430 431
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
432

433 434 435 436
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
437

438 439 440 441 442 443 444 445 446 447 448 449 450
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
451

452 453 454 455 456 457 458 459
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
460

461 462 463
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
464
			tx_queue->channel = channel;
465 466
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
467 468 469
	}

	rx_queue = &channel->rx_queue;
470 471
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
472 473 474 475 476 477
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

478 479 480 481 482 483
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

484 485
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
486

487 488 489 490
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

491 492
	rc = efx_probe_eventq(channel);
	if (rc)
493
		goto fail;
494 495 496 497

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
498
			goto fail;
499 500 501 502 503
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
504
			goto fail;
505 506 507 508
	}

	return 0;

509 510
fail:
	efx_remove_channel(channel);
511 512 513
	return rc;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
532

533 534 535 536
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

537 538
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
539 540
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
541 542
}

543 544 545 546 547 548 549 550
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

551 552 553 554 555 556
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

574 575 576 577
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
578
static void efx_start_datapath(struct efx_nic *efx)
579
{
580
	bool old_rx_scatter = efx->rx_scatter;
581 582 583
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
584
	size_t rx_buf_len;
585

586 587 588 589
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
590
	efx->rx_dma_len = (efx->rx_prefix_size +
591 592
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
593
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
594
		      efx->rx_ip_align + efx->rx_dma_len);
595
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
596
		efx->rx_scatter = efx->type->always_rx_scatter;
597 598
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
599
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
600
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
601 602 603
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
604 605 606 607 608 609 610 611
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

612 613 614 615 616 617 618 619 620 621 622
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
623

J
Jon Cooper 已提交
624
	/* RX filters may also have scatter-enabled flags */
625
	if (efx->rx_scatter != old_rx_scatter)
626
		efx->type->filter_update_rx_scatter(efx);
627

628 629 630 631 632 633 634 635 636 637
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

638 639
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
640
		efx_for_each_channel_tx_queue(tx_queue, channel) {
641
			efx_init_tx_queue(tx_queue);
642 643
			atomic_inc(&efx->active_queues);
		}
644

645
		efx_for_each_channel_rx_queue(rx_queue, channel) {
646
			efx_init_rx_queue(rx_queue);
647
			atomic_inc(&efx->active_queues);
648 649 650
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
651
		}
652

653
		WARN_ON(channel->rx_pkt_n_frags);
654 655
	}

656 657
	efx_ptp_start_datapath(efx);

658 659
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
660 661
}

662
static void efx_stop_datapath(struct efx_nic *efx)
663 664 665 666
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
667
	int rc;
668 669 670 671

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

672 673
	efx_ptp_stop_datapath(efx);

674 675 676 677 678 679
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

680
	efx_for_each_channel(channel, efx) {
681 682 683 684 685 686 687 688 689 690
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
691
	}
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
711 712
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
713
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
714 715 716 717 718 719 720 721 722
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

723 724
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
725 726 727

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
728
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
729 730
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
731
	channel->type->post_remove(channel);
732 733
}

734 735 736 737 738 739 740 741 742 743 744 745 746
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
747
	unsigned i, next_buffer_table = 0;
748
	int rc, rc2;
749 750 751 752

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
775

776
	efx_device_detach_sync(efx);
777
	efx_stop_all(efx);
B
Ben Hutchings 已提交
778
	efx_soft_disable_interrupts(efx);
779

780
	/* Clone channels (where possible) */
781 782
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
783 784 785
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

804 805
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
806 807

	for (i = 0; i < efx->n_channels; i++) {
808 809 810 811 812 813 814
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
815
	}
816

817
out:
818 819 820 821 822 823 824 825 826
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
827

828 829 830 831 832 833 834 835 836 837
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
838 839 840 841 842 843 844 845 846 847 848 849 850 851
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

852
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
853
{
854
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
855 856
}

857 858
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
859
	.post_remove		= efx_channel_dummy_op_void,
860 861 862 863 864 865 866 867 868 869
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

870 871 872 873
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

874 875 876 877 878 879 880 881 882 883
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
884
void efx_link_status_changed(struct efx_nic *efx)
885
{
886 887
	struct efx_link_state *link_state = &efx->link_state;

888 889 890 891 892 893 894
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

895
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
896 897
		efx->n_link_state_changes++;

898
		if (link_state->up)
899 900 901 902 903 904
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
905
	if (link_state->up)
906
		netif_info(efx, link, efx->net_dev,
907
			   "link up at %uMbps %s-duplex (MTU %d)\n",
908
			   link_state->speed, link_state->fd ? "full" : "half",
909
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
910
	else
911
		netif_info(efx, link, efx->net_dev, "link down\n");
912 913
}

B
Ben Hutchings 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

927
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

942 943
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
944 945 946 947 948 949 950 951
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
952
{
B
Ben Hutchings 已提交
953 954
	enum efx_phy_mode phy_mode;
	int rc;
955

B
Ben Hutchings 已提交
956
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
957

B
Ben Hutchings 已提交
958 959
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
960 961 962 963 964
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
965
	rc = efx->type->reconfigure_port(efx);
966

B
Ben Hutchings 已提交
967 968
	if (rc)
		efx->phy_mode = phy_mode;
969

B
Ben Hutchings 已提交
970
	return rc;
971 972 973 974
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
975
int efx_reconfigure_port(struct efx_nic *efx)
976
{
B
Ben Hutchings 已提交
977 978
	int rc;

979 980 981
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
982
	rc = __efx_reconfigure_port(efx);
983
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
984 985

	return rc;
986 987
}

988 989 990
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
991 992 993 994 995
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
996
	if (efx->port_enabled)
997
		efx->type->reconfigure_mac(efx);
998 999 1000
	mutex_unlock(&efx->mac_lock);
}

1001 1002 1003 1004
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1005
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1006

1007 1008 1009
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1010 1011
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1012
	if (rc)
1013
		return rc;
1014

1015
	/* Initialise MAC address to permanent address */
1016
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1017 1018 1019 1020 1021 1022 1023 1024

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1025
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1026

1027 1028
	mutex_lock(&efx->mac_lock);

1029
	rc = efx->phy_op->init(efx);
1030
	if (rc)
1031
		goto fail1;
1032

1033
	efx->port_initialized = true;
1034

B
Ben Hutchings 已提交
1035 1036
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1037
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1038 1039 1040 1041 1042 1043

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1044
	mutex_unlock(&efx->mac_lock);
1045
	return 0;
1046

1047
fail2:
1048
	efx->phy_op->fini(efx);
1049 1050
fail1:
	mutex_unlock(&efx->mac_lock);
1051
	return rc;
1052 1053 1054 1055
}

static void efx_start_port(struct efx_nic *efx)
{
1056
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1057 1058 1059
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1060
	efx->port_enabled = true;
1061

1062
	/* Ensure MAC ingress/egress is enabled */
1063
	efx->type->reconfigure_mac(efx);
1064

1065 1066 1067
	mutex_unlock(&efx->mac_lock);
}

1068 1069 1070 1071 1072
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1073 1074
static void efx_stop_port(struct efx_nic *efx)
{
1075
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1076

1077 1078
	EFX_ASSERT_RESET_SERIALISED(efx);

1079
	mutex_lock(&efx->mac_lock);
1080
	efx->port_enabled = false;
1081 1082 1083
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1084 1085
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1086 1087 1088 1089

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1090 1091 1092 1093
}

static void efx_fini_port(struct efx_nic *efx)
{
1094
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1095 1096 1097 1098

	if (!efx->port_initialized)
		return;

1099
	efx->phy_op->fini(efx);
1100
	efx->port_initialized = false;
1101

1102
	efx->link_state.up = false;
1103 1104 1105 1106 1107
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1108
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1109

1110
	efx->type->remove_port(efx);
1111 1112 1113 1114 1115 1116 1117 1118
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1190 1191 1192 1193 1194
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1195
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1196 1197
	int rc;

1198
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1199 1200 1201

	rc = pci_enable_device(pci_dev);
	if (rc) {
1202 1203
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1215
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1216
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1217 1218 1219
			if (rc == 0)
				break;
		}
1220 1221 1222
		dma_mask >>= 1;
	}
	if (rc) {
1223 1224
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1225 1226
		goto fail2;
	}
1227 1228
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1229

1230 1231
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1232
	if (rc) {
1233 1234
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1235 1236 1237
		rc = -EIO;
		goto fail3;
	}
1238
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1239
	if (!efx->membase) {
1240 1241
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1242
			  (unsigned long long)efx->membase_phys, mem_map_size);
1243 1244 1245
		rc = -ENOMEM;
		goto fail4;
	}
1246 1247
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1248 1249
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1250 1251 1252 1253

	return 0;

 fail4:
1254
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1255
 fail3:
1256
	efx->membase_phys = 0;
1257 1258 1259 1260 1261 1262 1263 1264
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1265
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1266 1267 1268 1269 1270 1271 1272

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1273
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1274
		efx->membase_phys = 0;
1275 1276 1277 1278 1279
	}

	pci_disable_device(efx->pci_dev);
}

1280
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1281
{
1282
	cpumask_var_t thread_mask;
1283
	unsigned int count;
1284
	int cpu;
1285

1286 1287 1288 1289 1290 1291 1292 1293
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1305 1306
	}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1318 1319 1320 1321 1322 1323 1324 1325
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1326
static int efx_probe_interrupts(struct efx_nic *efx)
1327
{
1328 1329
	unsigned int extra_channels = 0;
	unsigned int i, j;
1330
	int rc;
1331

1332 1333 1334 1335
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1336
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1337
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1338
		unsigned int n_channels;
1339

1340
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1341 1342
		if (separate_tx_channels)
			n_channels *= 2;
1343
		n_channels += extra_channels;
1344
		n_channels = min(n_channels, efx->max_channels);
1345

B
Ben Hutchings 已提交
1346
		for (i = 0; i < n_channels; i++)
1347
			xentries[i].entry = i;
1348 1349 1350 1351 1352 1353 1354 1355
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1356 1357
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1358
				  " available (%d < %u).\n", rc, n_channels);
1359 1360
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1361
			n_channels = rc;
1362 1363
		}

1364
		if (rc > 0) {
B
Ben Hutchings 已提交
1365
			efx->n_channels = n_channels;
1366 1367
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1368
			if (separate_tx_channels) {
1369 1370 1371 1372
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1373
			} else {
1374 1375
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1376
			}
1377
			for (i = 0; i < efx->n_channels; i++)
1378 1379
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1380 1381 1382 1383 1384
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1385
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1386 1387
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1388 1389
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1390
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1391
		} else {
1392 1393
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1394 1395 1396 1397 1398 1399
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1400
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1401 1402
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1403 1404
		efx->legacy_irq = efx->pci_dev->irq;
	}
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1421
	/* RSS might be usable on VFs even if it is disabled on the PF */
1422
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1423 1424
			   efx->n_rx_channels : efx_vf_size(efx));

1425
	return 0;
1426 1427
}

1428
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1429
{
1430 1431
	struct efx_channel *channel, *end_channel;
	int rc;
1432

1433 1434
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1435 1436
	efx->irq_soft_enabled = true;
	smp_wmb();
1437 1438

	efx_for_each_channel(channel, efx) {
1439 1440 1441 1442 1443
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1444 1445 1446 1447
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1461 1462
}

B
Ben Hutchings 已提交
1463
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1464 1465 1466
{
	struct efx_channel *channel;

1467 1468 1469
	if (efx->state == STATE_DISABLED)
		return;

1470 1471
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1472 1473 1474 1475
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1476 1477 1478 1479 1480 1481 1482
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1483
		if (!channel->type->keep_eventq)
1484
			efx_fini_eventq(channel);
1485
	}
1486 1487 1488

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1489 1490
}

1491
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1492
{
1493 1494
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1495 1496 1497 1498 1499 1500 1501 1502

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1503
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1504 1505

	efx_for_each_channel(channel, efx) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1524
		if (channel->type->keep_eventq)
1525
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1526 1527
	}

1528 1529 1530
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1544
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1545 1546
}

1547 1548 1549 1550 1551
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1552
	efx_for_each_channel(channel, efx)
1553 1554 1555 1556 1557 1558 1559 1560
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1561
static void efx_set_channels(struct efx_nic *efx)
1562
{
1563 1564 1565
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1566
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1567
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1568

1569 1570
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1571 1572 1573
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1574 1575 1576 1577 1578
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1579 1580 1581 1582
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1583 1584 1585 1586
}

static int efx_probe_nic(struct efx_nic *efx)
{
1587
	size_t i;
1588 1589
	int rc;

1590
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1591 1592

	/* Carry out hardware-type specific initialisation */
1593
	rc = efx->type->probe(efx);
1594 1595 1596
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1597
	/* Determine the number of channels and queues by trying to hook
1598
	 * in MSI-X interrupts. */
1599 1600
	rc = efx_probe_interrupts(efx);
	if (rc)
1601
		goto fail1;
1602

1603 1604
	efx_set_channels(efx);

1605 1606 1607
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1608

1609 1610
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1611
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1612
		efx->rx_indir_table[i] =
1613
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1614

1615 1616
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1617 1618

	/* Initialise the interrupt moderation settings */
1619 1620
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1621 1622

	return 0;
1623

1624 1625 1626
fail2:
	efx_remove_interrupts(efx);
fail1:
1627 1628
	efx->type->remove(efx);
	return rc;
1629 1630 1631 1632
}

static void efx_remove_nic(struct efx_nic *efx)
{
1633
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1634 1635

	efx_remove_interrupts(efx);
1636
	efx->type->remove(efx);
1637 1638
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1689
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1690 1691 1692 1693 1694
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1695
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1696 1697 1698
		goto fail2;
	}

1699 1700 1701 1702 1703
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1704
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1705

B
Ben Hutchings 已提交
1706 1707 1708 1709
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1710
		goto fail3;
B
Ben Hutchings 已提交
1711 1712
	}

1713 1714 1715 1716
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1717 1718
	return 0;

B
Ben Hutchings 已提交
1719
 fail4:
1720
	efx_remove_filters(efx);
1721 1722 1723 1724 1725 1726 1727 1728
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1729 1730 1731 1732 1733 1734
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1735
 */
1736 1737 1738
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1739
	BUG_ON(efx->state == STATE_DISABLED);
1740 1741 1742

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1743 1744
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1745 1746 1747
		return;

	efx_start_port(efx);
1748
	efx_start_datapath(efx);
1749

1750 1751
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1752 1753
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1754 1755 1756 1757 1758

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1759 1760 1761 1762 1763
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1764

1765
	efx->type->start_stats(efx);
1766 1767 1768 1769
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1770 1771
}

1772 1773 1774 1775 1776
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1777 1778 1779 1780 1781 1782 1783 1784
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1785 1786 1787 1788 1789 1790 1791
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1792
	efx->type->stop_stats(efx);
1793 1794
	efx_stop_port(efx);

1795 1796 1797 1798 1799 1800
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1801 1802 1803
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1804 1805 1806 1807
}

static void efx_remove_all(struct efx_nic *efx)
{
1808
	efx_remove_channels(efx);
1809
	efx_remove_filters(efx);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1820
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1821
{
1822 1823
	if (usecs == 0)
		return 0;
1824
	if (usecs * 1000 < quantum_ns)
1825
		return 1; /* never round down to 0 */
1826
	return usecs * 1000 / quantum_ns;
1827 1828
}

1829
/* Set interrupt moderation parameters */
1830 1831 1832
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1833
{
1834
	struct efx_channel *channel;
1835 1836 1837 1838 1839
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1840 1841 1842

	EFX_ASSERT_RESET_SERIALISED(efx);

1843
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1844 1845
		return -EINVAL;

1846 1847 1848
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1849 1850 1851 1852 1853 1854 1855
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1856
	efx->irq_rx_adaptive = rx_adaptive;
1857
	efx->irq_rx_moderation = rx_ticks;
1858
	efx_for_each_channel(channel, efx) {
1859
		if (efx_channel_has_rx_queue(channel))
1860
			channel->irq_moderation = rx_ticks;
1861
		else if (efx_channel_has_tx_queues(channel))
1862 1863
			channel->irq_moderation = tx_ticks;
	}
1864 1865

	return 0;
1866 1867
}

1868 1869 1870
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1871 1872 1873 1874
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1875
	*rx_adaptive = efx->irq_rx_adaptive;
1876 1877 1878
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1879 1880 1881 1882 1883 1884 1885 1886

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1887
		*tx_usecs = DIV_ROUND_UP(
1888
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1889 1890
			efx->timer_quantum_ns,
			1000);
1891 1892
}

1893 1894 1895 1896 1897 1898
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1899
/* Run periodically off the general workqueue */
1900 1901 1902 1903 1904
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1905 1906 1907
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1908
	BUG_ON(efx->type->monitor == NULL);
1909 1910 1911

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1912 1913 1914 1915 1916 1917
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1934
	struct efx_nic *efx = netdev_priv(net_dev);
1935
	struct mii_ioctl_data *data = if_mii(ifr);
1936

1937
	if (cmd == SIOCSHWTSTAMP)
1938 1939 1940
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1941

1942 1943 1944 1945 1946 1947
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1948 1949 1950 1951 1952 1953 1954 1955
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1956 1957 1958 1959 1960 1961 1962 1963 1964
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1965
static void efx_init_napi(struct efx_nic *efx)
1966 1967 1968
{
	struct efx_channel *channel;

1969 1970
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1971 1972 1973 1974 1975 1976 1977
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1978 1979 1980 1981 1982 1983
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1984 1985
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2002
	struct efx_nic *efx = netdev_priv(net_dev);
2003 2004
	struct efx_channel *channel;

2005
	efx_for_each_channel(channel, efx)
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2020
	struct efx_nic *efx = netdev_priv(net_dev);
2021 2022
	int rc;

2023 2024
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2025

2026 2027 2028
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2029 2030
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2031 2032
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2033

2034 2035 2036 2037
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2038
	efx_start_all(efx);
2039
	efx_selftest_async_start(efx);
2040 2041 2042 2043 2044 2045 2046 2047 2048
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2049
	struct efx_nic *efx = netdev_priv(net_dev);
2050

2051 2052
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2053

2054 2055
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2056 2057 2058 2059

	return 0;
}

2060
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2061 2062
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2063
{
2064
	struct efx_nic *efx = netdev_priv(net_dev);
2065

2066
	spin_lock_bh(&efx->stats_lock);
2067
	efx->type->update_stats(efx, NULL, stats);
2068 2069
	spin_unlock_bh(&efx->stats_lock);

2070 2071 2072 2073 2074 2075
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2076
	struct efx_nic *efx = netdev_priv(net_dev);
2077

2078 2079 2080
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2081

2082
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2083 2084 2085 2086 2087 2088
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2089
	struct efx_nic *efx = netdev_priv(net_dev);
2090
	int rc;
2091

2092 2093 2094
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2095 2096 2097
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2098
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2099

2100 2101 2102
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2103
	mutex_lock(&efx->mac_lock);
2104
	net_dev->mtu = new_mtu;
2105
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2106 2107
	mutex_unlock(&efx->mac_lock);

2108
	efx_start_all(efx);
2109
	netif_device_attach(efx->net_dev);
2110
	return 0;
2111 2112 2113 2114
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2115
	struct efx_nic *efx = netdev_priv(net_dev);
2116
	struct sockaddr *addr = data;
2117
	u8 *new_addr = addr->sa_data;
2118 2119

	if (!is_valid_ether_addr(new_addr)) {
2120 2121 2122
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2123
		return -EADDRNOTAVAIL;
2124 2125
	}

2126
	ether_addr_copy(net_dev->dev_addr, new_addr);
2127
	efx_sriov_mac_address_changed(efx);
2128 2129

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2130
	mutex_lock(&efx->mac_lock);
2131
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2132
	mutex_unlock(&efx->mac_lock);
2133 2134 2135 2136

	return 0;
}

2137
/* Context: netif_addr_lock held, BHs disabled. */
2138
static void efx_set_rx_mode(struct net_device *net_dev)
2139
{
2140
	struct efx_nic *efx = netdev_priv(net_dev);
2141

2142 2143 2144
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2145 2146
}

2147
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2148 2149 2150 2151 2152
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2153
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2154 2155 2156 2157

	return 0;
}

2158
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2159 2160
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2161
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2162 2163 2164 2165 2166 2167
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2168
	.ndo_set_rx_mode	= efx_set_rx_mode,
2169
	.ndo_set_features	= efx_set_features,
2170 2171 2172 2173 2174 2175
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2176 2177 2178
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2179
	.ndo_setup_tc		= efx_setup_tc,
2180 2181 2182
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2183 2184
};

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2205 2206 2207 2208 2209 2210 2211
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2212 2213 2214
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2215
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2216

2217 2218
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2219 2220
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2221 2222 2223 2224 2225 2226 2227 2228

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2229 2230 2231 2232 2233 2234
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2235
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2236

2237 2238 2239
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2240
	struct efx_channel *channel;
2241 2242 2243 2244
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2245 2246 2247 2248 2249 2250
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2251
	net_dev->ethtool_ops = &efx_ethtool_ops;
2252
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2253

2254
	rtnl_lock();
2255

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2269 2270 2271
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2272
	efx_update_name(efx);
2273

2274 2275 2276
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2277 2278 2279 2280
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2281 2282
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2283 2284
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2285 2286
	}

2287 2288
	efx_associate(efx);

2289
	rtnl_unlock();
2290

B
Ben Hutchings 已提交
2291 2292
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2293 2294
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2295 2296 2297
		goto fail_registered;
	}

2298
	return 0;
B
Ben Hutchings 已提交
2299

2300 2301
fail_registered:
	rtnl_lock();
2302
	efx_dissociate(efx);
2303
	unregister_netdevice(net_dev);
2304
fail_locked:
2305
	efx->state = STATE_UNINIT;
2306
	rtnl_unlock();
2307
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2308
	return rc;
2309 2310 2311 2312 2313 2314 2315
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2316
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2317

2318 2319
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2320 2321 2322 2323 2324

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2325 2326 2327 2328 2329 2330 2331 2332
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2333 2334
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2335
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2336 2337 2338
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2339 2340 2341
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2342
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2343
	efx_disable_interrupts(efx);
2344 2345

	mutex_lock(&efx->mac_lock);
2346 2347
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2348
	efx->type->fini(efx);
2349 2350
}

B
Ben Hutchings 已提交
2351 2352 2353 2354 2355
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2356
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2357 2358 2359
{
	int rc;

B
Ben Hutchings 已提交
2360
	EFX_ASSERT_RESET_SERIALISED(efx);
2361

2362 2363 2364 2365
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2366
	rc = efx->type->init(efx);
2367
	if (rc) {
2368
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2369
		goto fail;
2370 2371
	}

2372 2373 2374
	if (!ok)
		goto fail;

2375
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2376 2377 2378 2379
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2380 2381
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2382 2383
	}

2384 2385 2386
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2387
	efx_restore_filters(efx);
2388
	efx_sriov_reset(efx);
2389 2390 2391 2392 2393 2394 2395 2396 2397

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2398 2399 2400

	mutex_unlock(&efx->mac_lock);

2401 2402 2403
	return rc;
}

2404 2405
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2406
 *
2407
 * Caller must hold the rtnl_lock.
2408
 */
2409
int efx_reset(struct efx_nic *efx, enum reset_type method)
2410
{
2411 2412
	int rc, rc2;
	bool disabled;
2413

2414 2415
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2416

2417
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2418
	efx_reset_down(efx, method);
2419

2420
	rc = efx->type->reset(efx, method);
2421
	if (rc) {
2422
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2423
		goto out;
2424 2425
	}

2426 2427 2428
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2429 2430 2431 2432
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2433 2434 2435 2436 2437 2438 2439

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2440
out:
2441
	/* Leave device stopped if necessary */
2442 2443 2444
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2445 2446 2447 2448 2449
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2450 2451
	}

2452
	if (disabled) {
2453
		dev_close(efx->net_dev);
2454
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2455 2456
		efx->state = STATE_DISABLED;
	} else {
2457
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2458
		netif_device_attach(efx->net_dev);
2459
	}
2460 2461 2462
	return rc;
}

2463 2464 2465 2466 2467
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2468
int efx_try_recovery(struct efx_nic *efx)
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2507 2508 2509 2510 2511
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2512
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2513 2514 2515 2516 2517 2518
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2519 2520 2521
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2522 2523 2524 2525
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2526

2527
	if (!pending)
2528 2529
		return;

2530
	rtnl_lock();
2531 2532 2533 2534 2535 2536

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2537
		(void)efx_reset(efx, method);
2538

2539
	rtnl_unlock();
2540 2541 2542 2543 2544 2545
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2546 2547 2548 2549 2550 2551 2552
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2553 2554 2555
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2556
	case RESET_TYPE_RECOVER_OR_ALL:
2557 2558
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2559
	case RESET_TYPE_RECOVER_OR_DISABLE:
2560
	case RESET_TYPE_MC_BIST:
2561
	case RESET_TYPE_MCDI_TIMEOUT:
2562
		method = type;
2563 2564
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2565 2566
		break;
	default:
2567
		method = efx->type->map_reset_reason(type);
2568 2569 2570
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2571 2572
		break;
	}
2573

2574
	set_bit(method, &efx->reset_pending);
2575 2576 2577 2578 2579 2580 2581
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2582

2583 2584 2585 2586
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2587
	queue_work(reset_workqueue, &efx->reset_work);
2588 2589 2590 2591 2592 2593 2594 2595 2596
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2597
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2598 2599
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2600
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2601 2602
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2603
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2604
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2605
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2606
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2607
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2608 2609
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2610 2611
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2612 2613 2614 2615 2616
	{0}			/* end of list */
};

/**************************************************************************
 *
2617
 * Dummy PHY/MAC operations
2618
 *
2619
 * Can be used for some unimplemented operations
2620 2621 2622 2623 2624 2625 2626 2627 2628
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2629 2630

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2631 2632 2633
{
	return false;
}
2634

2635
static const struct efx_phy_operations efx_dummy_phy_operations = {
2636
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2637
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2638
	.poll		 = efx_port_dummy_op_poll,
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2651
static int efx_init_struct(struct efx_nic *efx,
2652 2653
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2654
	int i;
2655 2656

	/* Initialise common structures */
2657 2658
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2659
	spin_lock_init(&efx->biu_lock);
2660 2661 2662
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2663 2664
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2665
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2666
	efx->pci_dev = pci_dev;
2667
	efx->msg_enable = debug;
2668
	efx->state = STATE_UNINIT;
2669 2670 2671
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2672
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2673 2674
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2675 2676
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2677 2678
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2679 2680 2681
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2682
	efx->mdio.dev = net_dev;
2683
	INIT_WORK(&efx->mac_work, efx_mac_work);
2684
	init_waitqueue_head(&efx->flush_wq);
2685 2686

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2687 2688 2689
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2690 2691
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2692 2693 2694 2695 2696 2697
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2698 2699 2700 2701
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2702
	if (!efx->workqueue)
2703
		goto fail;
2704

2705
	return 0;
2706 2707 2708 2709

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2710 2711 2712 2713
}

static void efx_fini_struct(struct efx_nic *efx)
{
2714 2715 2716 2717 2718
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2719 2720
	kfree(efx->vpd_sn);

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2738 2739 2740 2741 2742 2743
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2744
	efx_disable_interrupts(efx);
2745
	efx_nic_fini_interrupt(efx);
2746
	efx_fini_port(efx);
2747
	efx->type->fini(efx);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2765
	efx_dissociate(efx);
2766
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2767
	efx_disable_interrupts(efx);
2768 2769
	rtnl_unlock();

2770
	efx_sriov_fini(efx);
2771 2772
	efx_unregister_netdev(efx);

2773 2774
	efx_mtd_remove(efx);

2775 2776 2777
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2778
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2779 2780 2781

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2782 2783

	pci_disable_pcie_error_reporting(pci_dev);
2784 2785
};

2786 2787 2788 2789 2790 2791
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2792
static void efx_probe_vpd_strings(struct efx_nic *efx)
2793 2794 2795 2796
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2797
	int ro_start, ro_size, i, j;
2798 2799 2800 2801 2802 2803 2804 2805 2806

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2807 2808
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2809 2810 2811 2812
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2813 2814 2815
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2856 2857 2858
}


2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2871
	efx_init_napi(efx);
2872

2873
	rc = efx->type->init(efx);
2874
	if (rc) {
2875 2876
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2877
		goto fail3;
2878 2879 2880 2881
	}

	rc = efx_init_port(efx);
	if (rc) {
2882 2883
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2884
		goto fail4;
2885 2886
	}

2887
	rc = efx_nic_init_interrupt(efx);
2888
	if (rc)
2889
		goto fail5;
2890 2891 2892
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2893 2894 2895

	return 0;

2896 2897
 fail6:
	efx_nic_fini_interrupt(efx);
2898
 fail5:
2899 2900
	efx_fini_port(efx);
 fail4:
2901
	efx->type->fini(efx);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2912
 * theoretically).  It sets up PCI mappings, resets the NIC,
2913 2914 2915 2916 2917
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2918
static int efx_pci_probe(struct pci_dev *pci_dev,
2919
			 const struct pci_device_id *entry)
2920 2921 2922
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2923
	int rc;
2924 2925

	/* Allocate and initialise a struct net_device and struct efx_nic */
2926 2927
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2928 2929
	if (!net_dev)
		return -ENOMEM;
2930 2931 2932
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2933
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2934
			      NETIF_F_RXCSUM);
2935
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2936
		net_dev->features |= NETIF_F_TSO6;
2937 2938
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2939 2940 2941 2942
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2943
	pci_set_drvdata(pci_dev, efx);
2944
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2945
	rc = efx_init_struct(efx, pci_dev, net_dev);
2946 2947 2948
	if (rc)
		goto fail1;

2949
	netif_info(efx, probe, efx->net_dev,
2950
		   "Solarflare NIC detected\n");
2951

2952
	efx_probe_vpd_strings(efx);
2953

2954 2955 2956 2957 2958
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2959 2960 2961
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2962 2963 2964

	rc = efx_register_netdev(efx);
	if (rc)
2965
		goto fail4;
2966

2967 2968 2969 2970 2971
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2972
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2973

2974
	/* Try to create MTDs, but allow this to fail */
2975
	rtnl_lock();
2976
	rc = efx_mtd_probe(efx);
2977
	rtnl_unlock();
2978 2979 2980 2981
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2982 2983 2984 2985 2986
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2987 2988 2989
	return 0;

 fail4:
2990
	efx_pci_remove_main(efx);
2991 2992 2993 2994 2995
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2996
	WARN_ON(rc > 0);
2997
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2998 2999 3000 3001
	free_netdev(net_dev);
	return rc;
}

3002 3003 3004 3005
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3006 3007
	rtnl_lock();

3008 3009
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3010

3011
		efx_device_detach_sync(efx);
3012

3013
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3014
		efx_disable_interrupts(efx);
3015
	}
3016

3017 3018
	rtnl_unlock();

3019 3020 3021 3022 3023
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3024
	int rc;
3025 3026
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3027 3028
	rtnl_lock();

3029
	if (efx->state != STATE_DISABLED) {
3030 3031 3032
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3033

3034 3035 3036
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3037

3038
		efx_start_all(efx);
3039

3040
		netif_device_attach(efx->net_dev);
3041

3042
		efx->state = STATE_READY;
3043

3044 3045
		efx->type->resume_wol(efx);
	}
3046

3047 3048
	rtnl_unlock();

3049 3050 3051
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3052
	return 0;
3053 3054 3055 3056 3057

fail:
	rtnl_unlock();

	return rc;
3058 3059 3060 3061 3062 3063 3064 3065 3066
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3067
	efx->reset_pending = 0;
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3094 3095
	rc = efx_pm_thaw(dev);
	return rc;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3109
static const struct dev_pm_ops efx_pm_ops = {
3110 3111 3112 3113 3114 3115 3116 3117
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3118 3119 3120 3121
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3122 3123
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3140
		efx_disable_interrupts(efx);
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3158
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3217
static struct pci_driver efx_pci_driver = {
3218
	.name		= KBUILD_MODNAME,
3219 3220 3221
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3222
	.driver.pm	= &efx_pm_ops,
3223
	.err_handler	= &efx_err_handlers,
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3246 3247 3248 3249
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3250 3251 3252 3253 3254
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3255 3256 3257 3258 3259 3260 3261 3262

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3263 3264
	destroy_workqueue(reset_workqueue);
 err_reset:
3265 3266
	efx_fini_sriov();
 err_sriov:
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3277
	destroy_workqueue(reset_workqueue);
3278
	efx_fini_sriov();
3279 3280 3281 3282 3283 3284 3285
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3286 3287
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3288
MODULE_DESCRIPTION("Solarflare network driver");
3289 3290
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);