efx.c 86.1 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
81 82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
119 120
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	int spent;
248

249
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
250
		return 0;
251

252
	spent = efx_nic_process_eventq(channel, budget);
253 254 255 256
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

257
		efx_rx_flush_packet(channel);
258
		efx_fast_push_rx_descriptors(rx_queue, true);
259 260
	}

261
	return spent;
262 263 264 265 266 267 268 269 270 271 272
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
273
	struct efx_nic *efx = channel->efx;
274
	int spent;
275

276 277 278
	if (!efx_channel_lock_napi(channel))
		return budget;

279 280 281
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
282

283
	spent = efx_process_channel(channel, budget);
284

285
	if (spent < budget) {
286
		if (efx_channel_has_rx_queue(channel) &&
287 288 289 290
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
291 292
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
297 298 299
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303 304 305 306
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

307 308
		efx_filter_rfs_expire(channel);

309
		/* There is no race here; although napi_disable() will
310
		 * only wait for napi_complete(), this isn't a problem
311
		 * since efx_nic_eventq_read_ack() will have no effect if
312 313
		 * interrupts have already been disabled.
		 */
314
		napi_complete(napi);
315
		efx_nic_eventq_read_ack(channel);
316 317
	}

318
	efx_channel_unlock_napi(channel);
319
	return spent;
320 321 322 323 324 325 326 327 328
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
329 330 331
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

332
	netif_dbg(efx, probe, efx->net_dev,
333
		  "chan %d create event queue\n", channel->channel);
334

335 336 337 338 339 340
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

341
	return efx_nic_probe_eventq(channel);
342 343 344
}

/* Prepare channel's event queue */
345
static int efx_init_eventq(struct efx_channel *channel)
346
{
347
	struct efx_nic *efx = channel->efx;
348 349 350 351
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

352
	netif_dbg(efx, drv, efx->net_dev,
353
		  "chan %d init event queue\n", channel->channel);
354

355 356
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
357
		efx->type->push_irq_moderation(channel);
358 359 360 361
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
362 363
}

364
/* Enable event queue processing and NAPI */
365
void efx_start_eventq(struct efx_channel *channel)
366 367 368 369
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

370
	/* Make sure the NAPI handler sees the enabled flag set */
371 372 373
	channel->enabled = true;
	smp_wmb();

374
	efx_channel_enable(channel);
375 376 377 378 379
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
380
void efx_stop_eventq(struct efx_channel *channel)
381 382 383 384 385
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
386 387
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
388 389 390
	channel->enabled = false;
}

391 392
static void efx_fini_eventq(struct efx_channel *channel)
{
393 394 395
	if (!channel->eventq_init)
		return;

396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
398

399
	efx_nic_fini_eventq(channel);
400
	channel->eventq_init = false;
401 402 403 404
}

static void efx_remove_eventq(struct efx_channel *channel)
{
405 406
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
407

408
	efx_nic_remove_eventq(channel);
409 410 411 412 413 414 415 416
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

417
/* Allocate and initialise a channel structure. */
418 419 420 421 422 423 424 425
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

426 427 428
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
429

430 431 432
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
433

434 435 436 437 438 439
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
440

441 442 443 444
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
445

446 447 448 449 450 451 452 453 454 455 456 457 458
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
459

460 461 462 463 464 465 466 467
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
468

469 470 471
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
472
			tx_queue->channel = channel;
473 474
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
475 476 477
	}

	rx_queue = &channel->rx_queue;
478 479
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
480 481 482 483 484 485
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

486 487 488 489 490 491
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

492 493
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
494

495 496 497 498
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

499 500
	rc = efx_probe_eventq(channel);
	if (rc)
501
		goto fail;
502 503 504 505

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
506
			goto fail;
507 508 509 510 511
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
512
			goto fail;
513 514 515 516
	}

	return 0;

517 518
fail:
	efx_remove_channel(channel);
519 520 521
	return rc;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
540

541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

545 546
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
547 548
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
549 550
}

551 552 553 554 555 556 557 558
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

559 560 561 562 563 564
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

582 583 584 585
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
586
static void efx_start_datapath(struct efx_nic *efx)
587
{
588
	bool old_rx_scatter = efx->rx_scatter;
589 590 591
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
592
	size_t rx_buf_len;
593

594 595 596 597
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
598
	efx->rx_dma_len = (efx->rx_prefix_size +
599 600
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
601
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
602
		      efx->rx_ip_align + efx->rx_dma_len);
603
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
604
		efx->rx_scatter = efx->type->always_rx_scatter;
605 606
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
607
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
608
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
609 610 611
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
612 613 614 615 616 617 618 619
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

620 621 622 623 624 625 626 627 628 629 630
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
631

J
Jon Cooper 已提交
632
	/* RX filters may also have scatter-enabled flags */
633
	if (efx->rx_scatter != old_rx_scatter)
634
		efx->type->filter_update_rx_scatter(efx);
635

636 637 638 639 640 641 642 643 644 645
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

646 647
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
648
		efx_for_each_channel_tx_queue(tx_queue, channel) {
649
			efx_init_tx_queue(tx_queue);
650 651
			atomic_inc(&efx->active_queues);
		}
652

653
		efx_for_each_channel_rx_queue(rx_queue, channel) {
654
			efx_init_rx_queue(rx_queue);
655
			atomic_inc(&efx->active_queues);
656 657 658
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
659
		}
660

661
		WARN_ON(channel->rx_pkt_n_frags);
662 663
	}

664 665
	efx_ptp_start_datapath(efx);

666 667
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
668 669
}

670
static void efx_stop_datapath(struct efx_nic *efx)
671 672 673 674
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
675
	int rc;
676 677 678 679

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

680 681
	efx_ptp_stop_datapath(efx);

682 683 684 685 686 687
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

688
	efx_for_each_channel(channel, efx) {
689 690 691 692 693 694 695 696 697 698
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
699
	}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
719 720
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
721
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
722 723 724 725 726 727 728 729 730
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

731 732
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
733 734 735

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
736
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
739
	channel->type->post_remove(channel);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
755
	unsigned i, next_buffer_table = 0;
756
	int rc, rc2;
757 758 759 760

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
783

784
	efx_device_detach_sync(efx);
785
	efx_stop_all(efx);
B
Ben Hutchings 已提交
786
	efx_soft_disable_interrupts(efx);
787

788
	/* Clone channels (where possible) */
789 790
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
791 792 793
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

812 813
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
814 815

	for (i = 0; i < efx->n_channels; i++) {
816 817 818 819 820 821 822
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
823
	}
824

825
out:
826 827 828 829 830 831 832 833 834
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
835

836 837 838 839 840 841 842 843 844 845
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

860
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
861
{
862
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
863 864
}

865 866
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
867
	.post_remove		= efx_channel_dummy_op_void,
868 869 870 871 872 873 874 875 876 877
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

878 879 880 881
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

882 883 884 885 886 887 888 889 890 891
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
892
void efx_link_status_changed(struct efx_nic *efx)
893
{
894 895
	struct efx_link_state *link_state = &efx->link_state;

896 897 898 899 900 901 902
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

903
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
904 905
		efx->n_link_state_changes++;

906
		if (link_state->up)
907 908 909 910 911 912
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
913
	if (link_state->up)
914
		netif_info(efx, link, efx->net_dev,
915
			   "link up at %uMbps %s-duplex (MTU %d)\n",
916
			   link_state->speed, link_state->fd ? "full" : "half",
917
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
918
	else
919
		netif_info(efx, link, efx->net_dev, "link down\n");
920 921
}

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

935
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

950 951
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
952 953 954 955 956 957 958 959
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
960
{
B
Ben Hutchings 已提交
961 962
	enum efx_phy_mode phy_mode;
	int rc;
963

B
Ben Hutchings 已提交
964
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
965

B
Ben Hutchings 已提交
966 967
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
968 969 970 971 972
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
973
	rc = efx->type->reconfigure_port(efx);
974

B
Ben Hutchings 已提交
975 976
	if (rc)
		efx->phy_mode = phy_mode;
977

B
Ben Hutchings 已提交
978
	return rc;
979 980 981 982
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
983
int efx_reconfigure_port(struct efx_nic *efx)
984
{
B
Ben Hutchings 已提交
985 986
	int rc;

987 988 989
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
990
	rc = __efx_reconfigure_port(efx);
991
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
992 993

	return rc;
994 995
}

996 997 998
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
999 1000 1001 1002 1003
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1004
	if (efx->port_enabled)
1005
		efx->type->reconfigure_mac(efx);
1006 1007 1008
	mutex_unlock(&efx->mac_lock);
}

1009 1010 1011 1012
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1013
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1014

1015 1016 1017
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1018 1019
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1020
	if (rc)
1021
		return rc;
1022

1023
	/* Initialise MAC address to permanent address */
1024
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1025 1026 1027 1028 1029 1030 1031 1032

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1033
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1034

1035 1036
	mutex_lock(&efx->mac_lock);

1037
	rc = efx->phy_op->init(efx);
1038
	if (rc)
1039
		goto fail1;
1040

1041
	efx->port_initialized = true;
1042

B
Ben Hutchings 已提交
1043 1044
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1045
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1046 1047 1048

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1049
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1050 1051
		goto fail2;

1052
	mutex_unlock(&efx->mac_lock);
1053
	return 0;
1054

1055
fail2:
1056
	efx->phy_op->fini(efx);
1057 1058
fail1:
	mutex_unlock(&efx->mac_lock);
1059
	return rc;
1060 1061 1062 1063
}

static void efx_start_port(struct efx_nic *efx)
{
1064
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1065 1066 1067
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1068
	efx->port_enabled = true;
1069

1070
	/* Ensure MAC ingress/egress is enabled */
1071
	efx->type->reconfigure_mac(efx);
1072

1073 1074 1075
	mutex_unlock(&efx->mac_lock);
}

1076 1077 1078 1079 1080
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1081 1082
static void efx_stop_port(struct efx_nic *efx)
{
1083
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1084

1085 1086
	EFX_ASSERT_RESET_SERIALISED(efx);

1087
	mutex_lock(&efx->mac_lock);
1088
	efx->port_enabled = false;
1089 1090 1091
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1092 1093
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1094 1095 1096 1097

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1098 1099 1100 1101
}

static void efx_fini_port(struct efx_nic *efx)
{
1102
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1103 1104 1105 1106

	if (!efx->port_initialized)
		return;

1107
	efx->phy_op->fini(efx);
1108
	efx->port_initialized = false;
1109

1110
	efx->link_state.up = false;
1111 1112 1113 1114 1115
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1116
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1117

1118
	efx->type->remove_port(efx);
1119 1120 1121 1122 1123 1124 1125 1126
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1198 1199 1200 1201 1202
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1203
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1204
	int rc, bar;
1205

1206
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1207

1208 1209
	bar = efx->type->mem_bar;

1210 1211
	rc = pci_enable_device(pci_dev);
	if (rc) {
1212 1213
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1225
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1226
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1227 1228 1229
			if (rc == 0)
				break;
		}
1230 1231 1232
		dma_mask >>= 1;
	}
	if (rc) {
1233 1234
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1235 1236
		goto fail2;
	}
1237 1238
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1239

1240 1241
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1242
	if (rc) {
1243 1244
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1245 1246 1247
		rc = -EIO;
		goto fail3;
	}
1248
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1249
	if (!efx->membase) {
1250 1251
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1252
			  (unsigned long long)efx->membase_phys, mem_map_size);
1253 1254 1255
		rc = -ENOMEM;
		goto fail4;
	}
1256 1257
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1258 1259
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1260 1261 1262 1263

	return 0;

 fail4:
1264
	pci_release_region(efx->pci_dev, bar);
1265
 fail3:
1266
	efx->membase_phys = 0;
1267 1268 1269 1270 1271 1272 1273 1274
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1275 1276
	int bar;

1277
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1278 1279 1280 1281 1282 1283 1284

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1285 1286
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1287
		efx->membase_phys = 0;
1288 1289 1290 1291 1292
	}

	pci_disable_device(efx->pci_dev);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
}

1302
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1303
{
1304
	cpumask_var_t thread_mask;
1305
	unsigned int count;
1306
	int cpu;
1307

1308 1309 1310 1311 1312 1313 1314 1315
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1327 1328
	}

1329 1330 1331
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1343
	}
1344
#endif
1345 1346 1347 1348 1349 1350 1351

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1352
static int efx_probe_interrupts(struct efx_nic *efx)
1353
{
1354 1355
	unsigned int extra_channels = 0;
	unsigned int i, j;
1356
	int rc;
1357

1358 1359 1360 1361
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1362
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1363
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1364
		unsigned int n_channels;
1365

1366
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1367 1368
		if (separate_tx_channels)
			n_channels *= 2;
1369
		n_channels += extra_channels;
1370
		n_channels = min(n_channels, efx->max_channels);
1371

B
Ben Hutchings 已提交
1372
		for (i = 0; i < n_channels; i++)
1373
			xentries[i].entry = i;
1374 1375 1376 1377 1378 1379 1380 1381
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1382 1383
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1384
				  " available (%d < %u).\n", rc, n_channels);
1385 1386
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1387
			n_channels = rc;
1388 1389
		}

1390
		if (rc > 0) {
B
Ben Hutchings 已提交
1391
			efx->n_channels = n_channels;
1392 1393
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1394
			if (separate_tx_channels) {
1395 1396 1397 1398
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1399
			} else {
1400 1401
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1402
			}
1403
			for (i = 0; i < efx->n_channels; i++)
1404 1405
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1406 1407 1408 1409 1410
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1411
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1412 1413
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1414 1415
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1416
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1417
		} else {
1418 1419
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1420 1421 1422 1423 1424 1425
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1426
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1427 1428
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1429 1430
		efx->legacy_irq = efx->pci_dev->irq;
	}
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1447
	/* RSS might be usable on VFs even if it is disabled on the PF */
1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1457
	return 0;
1458 1459
}

1460
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1461
{
1462 1463
	struct efx_channel *channel, *end_channel;
	int rc;
1464

1465 1466
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1467 1468
	efx->irq_soft_enabled = true;
	smp_wmb();
1469 1470

	efx_for_each_channel(channel, efx) {
1471 1472 1473 1474 1475
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1476 1477 1478 1479
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1493 1494
}

B
Ben Hutchings 已提交
1495
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1496 1497 1498
{
	struct efx_channel *channel;

1499 1500 1501
	if (efx->state == STATE_DISABLED)
		return;

1502 1503
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1504 1505 1506 1507
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1508 1509 1510 1511 1512 1513 1514
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1515
		if (!channel->type->keep_eventq)
1516
			efx_fini_eventq(channel);
1517
	}
1518 1519 1520

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1521 1522
}

1523
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1524
{
1525 1526
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1527 1528 1529 1530 1531 1532 1533 1534

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1535
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1536 1537

	efx_for_each_channel(channel, efx) {
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1556
		if (channel->type->keep_eventq)
1557
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1558 1559
	}

1560 1561 1562
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1576
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1577 1578
}

1579 1580 1581 1582 1583
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1584
	efx_for_each_channel(channel, efx)
1585 1586 1587 1588 1589 1590 1591 1592
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1593
static void efx_set_channels(struct efx_nic *efx)
1594
{
1595 1596 1597
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1598
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1599
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1600

1601 1602
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1603 1604 1605
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1606 1607 1608 1609 1610
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1611 1612 1613 1614
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1615 1616 1617 1618 1619 1620
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1621
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1622 1623

	/* Carry out hardware-type specific initialisation */
1624
	rc = efx->type->probe(efx);
1625 1626 1627
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1628
	/* Determine the number of channels and queues by trying to hook
1629
	 * in MSI-X interrupts. */
1630 1631
	rc = efx_probe_interrupts(efx);
	if (rc)
1632
		goto fail1;
1633

1634 1635
	efx_set_channels(efx);

1636 1637 1638
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1639

1640
	if (efx->n_channels > 1)
1641 1642 1643
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1644

1645 1646
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1647 1648

	/* Initialise the interrupt moderation settings */
1649 1650
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1651 1652

	return 0;
1653

1654 1655 1656
fail2:
	efx_remove_interrupts(efx);
fail1:
1657 1658
	efx->type->remove(efx);
	return rc;
1659 1660 1661 1662
}

static void efx_remove_nic(struct efx_nic *efx)
{
1663
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1664 1665

	efx_remove_interrupts(efx);
1666
	efx->type->remove(efx);
1667 1668
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1719
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1720 1721 1722 1723 1724
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1725
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1726 1727 1728
		goto fail2;
	}

1729 1730 1731 1732 1733
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1734
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1735

1736 1737 1738 1739 1740 1741 1742 1743
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1744 1745 1746 1747
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1748
		goto fail4;
B
Ben Hutchings 已提交
1749 1750
	}

1751 1752
	rc = efx_probe_channels(efx);
	if (rc)
1753
		goto fail5;
1754

1755 1756
	return 0;

1757
 fail5:
1758
	efx_remove_filters(efx);
1759 1760 1761 1762
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1763 1764 1765 1766 1767 1768 1769 1770
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1771 1772 1773 1774 1775 1776
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1777
 */
1778 1779 1780
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1781
	BUG_ON(efx->state == STATE_DISABLED);
1782 1783 1784

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1785 1786
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1787 1788 1789
		return;

	efx_start_port(efx);
1790
	efx_start_datapath(efx);
1791

1792 1793
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1794 1795
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1796 1797 1798 1799 1800

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1801 1802 1803 1804 1805
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1806

1807
	efx->type->start_stats(efx);
1808 1809 1810 1811
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1812 1813
}

1814 1815 1816 1817 1818
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1819 1820 1821 1822 1823 1824 1825 1826
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1827 1828 1829 1830 1831 1832 1833
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1834
	efx->type->stop_stats(efx);
1835 1836
	efx_stop_port(efx);

1837 1838 1839 1840 1841 1842
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1843 1844 1845
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1846 1847 1848 1849
}

static void efx_remove_all(struct efx_nic *efx)
{
1850
	efx_remove_channels(efx);
1851
	efx_remove_filters(efx);
1852 1853 1854
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1865
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1866
{
1867 1868
	if (usecs == 0)
		return 0;
1869
	if (usecs * 1000 < quantum_ns)
1870
		return 1; /* never round down to 0 */
1871
	return usecs * 1000 / quantum_ns;
1872 1873
}

1874
/* Set interrupt moderation parameters */
1875 1876 1877
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1878
{
1879
	struct efx_channel *channel;
1880 1881 1882 1883 1884
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1885 1886 1887

	EFX_ASSERT_RESET_SERIALISED(efx);

1888
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1889 1890
		return -EINVAL;

1891 1892 1893
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1894 1895 1896 1897 1898 1899 1900
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1901
	efx->irq_rx_adaptive = rx_adaptive;
1902
	efx->irq_rx_moderation = rx_ticks;
1903
	efx_for_each_channel(channel, efx) {
1904
		if (efx_channel_has_rx_queue(channel))
1905
			channel->irq_moderation = rx_ticks;
1906
		else if (efx_channel_has_tx_queues(channel))
1907 1908
			channel->irq_moderation = tx_ticks;
	}
1909 1910

	return 0;
1911 1912
}

1913 1914 1915
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1916 1917 1918 1919
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1920
	*rx_adaptive = efx->irq_rx_adaptive;
1921 1922 1923
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1924 1925 1926 1927 1928 1929 1930 1931

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1932
		*tx_usecs = DIV_ROUND_UP(
1933
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1934 1935
			efx->timer_quantum_ns,
			1000);
1936 1937
}

1938 1939 1940 1941 1942 1943
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1944
/* Run periodically off the general workqueue */
1945 1946 1947 1948 1949
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1950 1951 1952
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1953
	BUG_ON(efx->type->monitor == NULL);
1954 1955 1956

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1957 1958 1959 1960 1961 1962
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1979
	struct efx_nic *efx = netdev_priv(net_dev);
1980
	struct mii_ioctl_data *data = if_mii(ifr);
1981

1982
	if (cmd == SIOCSHWTSTAMP)
1983 1984 1985
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1986

1987 1988 1989 1990 1991 1992
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1993 1994 1995 1996 1997 1998 1999 2000
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2001 2002 2003 2004 2005 2006 2007
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2008 2009
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2010 2011
}

2012
static void efx_init_napi(struct efx_nic *efx)
2013 2014 2015
{
	struct efx_channel *channel;

2016 2017
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2018 2019 2020 2021
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2022
	if (channel->napi_dev) {
2023
		netif_napi_del(&channel->napi_str);
2024 2025
		napi_hash_del(&channel->napi_str);
	}
2026
	channel->napi_dev = NULL;
2027 2028 2029 2030 2031 2032
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2033 2034
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2051
	struct efx_nic *efx = netdev_priv(net_dev);
2052 2053
	struct efx_channel *channel;

2054
	efx_for_each_channel(channel, efx)
2055 2056 2057 2058 2059
		efx_schedule_channel(channel);
}

#endif

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2091 2092 2093 2094 2095 2096 2097 2098 2099
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2100
	struct efx_nic *efx = netdev_priv(net_dev);
2101 2102
	int rc;

2103 2104
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2105

2106 2107 2108
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2109 2110
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2111 2112
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2113

2114 2115 2116 2117
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2118
	efx_start_all(efx);
2119
	efx_selftest_async_start(efx);
2120 2121 2122 2123 2124 2125 2126 2127 2128
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2129
	struct efx_nic *efx = netdev_priv(net_dev);
2130

2131 2132
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2133

2134 2135
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2136 2137 2138 2139

	return 0;
}

2140
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2141 2142
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2143
{
2144
	struct efx_nic *efx = netdev_priv(net_dev);
2145

2146
	spin_lock_bh(&efx->stats_lock);
2147
	efx->type->update_stats(efx, NULL, stats);
2148 2149
	spin_unlock_bh(&efx->stats_lock);

2150 2151 2152 2153 2154 2155
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2156
	struct efx_nic *efx = netdev_priv(net_dev);
2157

2158 2159 2160
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2161

2162
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2163 2164 2165 2166 2167 2168
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2169
	struct efx_nic *efx = netdev_priv(net_dev);
2170
	int rc;
2171

2172 2173 2174
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2175 2176 2177
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2178
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2179

2180 2181 2182
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2183
	mutex_lock(&efx->mac_lock);
2184
	net_dev->mtu = new_mtu;
2185
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2186 2187
	mutex_unlock(&efx->mac_lock);

2188
	efx_start_all(efx);
2189
	netif_device_attach(efx->net_dev);
2190
	return 0;
2191 2192 2193 2194
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2195
	struct efx_nic *efx = netdev_priv(net_dev);
2196
	struct sockaddr *addr = data;
2197
	u8 *new_addr = addr->sa_data;
2198 2199

	if (!is_valid_ether_addr(new_addr)) {
2200 2201 2202
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2203
		return -EADDRNOTAVAIL;
2204 2205
	}

2206
	ether_addr_copy(net_dev->dev_addr, new_addr);
2207 2208
	if (efx->type->sriov_mac_address_changed)
		efx->type->sriov_mac_address_changed(efx);
2209 2210

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2211
	mutex_lock(&efx->mac_lock);
2212
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2213
	mutex_unlock(&efx->mac_lock);
2214 2215 2216 2217

	return 0;
}

2218
/* Context: netif_addr_lock held, BHs disabled. */
2219
static void efx_set_rx_mode(struct net_device *net_dev)
2220
{
2221
	struct efx_nic *efx = netdev_priv(net_dev);
2222

2223 2224 2225
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2226 2227
}

2228
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2229 2230 2231 2232 2233
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2234
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2235 2236 2237 2238

	return 0;
}

2239
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2240 2241
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2242
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2243 2244 2245 2246 2247 2248
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2249
	.ndo_set_rx_mode	= efx_set_rx_mode,
2250
	.ndo_set_features	= efx_set_features,
2251
#ifdef CONFIG_SFC_SRIOV
2252 2253 2254 2255
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2256
#endif
S
Stephen Hemminger 已提交
2257 2258 2259
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2260
	.ndo_setup_tc		= efx_setup_tc,
2261 2262 2263
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2264 2265 2266
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2267 2268
};

2269 2270 2271 2272 2273 2274 2275
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2276 2277 2278
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2279
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2280

2281
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2282 2283
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2284 2285 2286 2287 2288 2289 2290 2291

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2292 2293 2294 2295 2296 2297
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2298
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2299

2300 2301 2302
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2303
	struct efx_channel *channel;
2304 2305 2306 2307
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2308 2309
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2310
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2311
	net_dev->ethtool_ops = &efx_ethtool_ops;
2312
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2313

2314
	rtnl_lock();
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2329 2330 2331
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2332
	efx_update_name(efx);
2333

2334 2335 2336
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2337 2338 2339 2340
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2341 2342
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2343 2344
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2345 2346
	}

2347 2348
	efx_associate(efx);

2349
	rtnl_unlock();
2350

B
Ben Hutchings 已提交
2351 2352
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2353 2354
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2355 2356 2357
		goto fail_registered;
	}

2358
	return 0;
B
Ben Hutchings 已提交
2359

2360 2361
fail_registered:
	rtnl_lock();
2362
	efx_dissociate(efx);
2363
	unregister_netdevice(net_dev);
2364
fail_locked:
2365
	efx->state = STATE_UNINIT;
2366
	rtnl_unlock();
2367
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2368
	return rc;
2369 2370 2371 2372 2373 2374 2375
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2376
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2377

2378 2379
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2380 2381 2382 2383 2384

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2385 2386 2387 2388 2389 2390 2391 2392
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2393 2394
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2395
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2396 2397 2398
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2399 2400 2401
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2402
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2403
	efx_disable_interrupts(efx);
2404 2405

	mutex_lock(&efx->mac_lock);
2406 2407
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2408
	efx->type->fini(efx);
2409 2410
}

B
Ben Hutchings 已提交
2411 2412 2413 2414 2415
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2416
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2417 2418 2419
{
	int rc;

B
Ben Hutchings 已提交
2420
	EFX_ASSERT_RESET_SERIALISED(efx);
2421

2422 2423 2424 2425
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2426
	rc = efx->type->init(efx);
2427
	if (rc) {
2428
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2429
		goto fail;
2430 2431
	}

2432 2433 2434
	if (!ok)
		goto fail;

2435
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2436 2437 2438
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2439 2440
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2441 2442
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2443 2444
	}

2445 2446 2447
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2448 2449 2450 2451 2452 2453 2454 2455 2456

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
2457
	efx_restore_filters(efx);
2458 2459
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2460 2461 2462 2463 2464 2465 2466 2467 2468

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2469 2470 2471

	mutex_unlock(&efx->mac_lock);

2472 2473 2474
	return rc;
}

2475 2476
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2477
 *
2478
 * Caller must hold the rtnl_lock.
2479
 */
2480
int efx_reset(struct efx_nic *efx, enum reset_type method)
2481
{
2482 2483
	int rc, rc2;
	bool disabled;
2484

2485 2486
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2487

2488
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2489
	efx_reset_down(efx, method);
2490

2491
	rc = efx->type->reset(efx, method);
2492
	if (rc) {
2493
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2494
		goto out;
2495 2496
	}

2497 2498 2499
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2500 2501 2502 2503
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2504 2505 2506 2507 2508 2509 2510

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2511
out:
2512
	/* Leave device stopped if necessary */
2513 2514 2515
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2516 2517 2518 2519 2520
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2521 2522
	}

2523
	if (disabled) {
2524
		dev_close(efx->net_dev);
2525
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2526 2527
		efx->state = STATE_DISABLED;
	} else {
2528
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2529
		netif_device_attach(efx->net_dev);
2530
	}
2531 2532 2533
	return rc;
}

2534 2535 2536 2537 2538
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2539
int efx_try_recovery(struct efx_nic *efx)
2540 2541 2542 2543 2544 2545 2546
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2547
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2576 2577 2578 2579 2580
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2581
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2582 2583 2584 2585 2586 2587
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2588 2589 2590
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2591 2592 2593 2594
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2595

2596
	if (!pending)
2597 2598
		return;

2599
	rtnl_lock();
2600 2601 2602 2603 2604 2605

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2606
		(void)efx_reset(efx, method);
2607

2608
	rtnl_unlock();
2609 2610 2611 2612 2613 2614
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2615 2616 2617 2618 2619 2620 2621
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2622 2623 2624
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2625
	case RESET_TYPE_RECOVER_OR_ALL:
2626 2627
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2628
	case RESET_TYPE_RECOVER_OR_DISABLE:
2629
	case RESET_TYPE_MC_BIST:
2630
	case RESET_TYPE_MCDI_TIMEOUT:
2631
		method = type;
2632 2633
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2634 2635
		break;
	default:
2636
		method = efx->type->map_reset_reason(type);
2637 2638 2639
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2640 2641
		break;
	}
2642

2643
	set_bit(method, &efx->reset_pending);
2644 2645 2646 2647 2648 2649 2650
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2651

2652 2653 2654 2655
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2656
	queue_work(reset_workqueue, &efx->reset_work);
2657 2658 2659 2660 2661 2662 2663 2664 2665
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2666
static const struct pci_device_id efx_pci_table[] = {
2667 2668
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2669
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2670 2671
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2672
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2673
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2674
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2675
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2676
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2677 2678
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2679 2680
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2681 2682 2683 2684 2685
	{0}			/* end of list */
};

/**************************************************************************
 *
2686
 * Dummy PHY/MAC operations
2687
 *
2688
 * Can be used for some unimplemented operations
2689 2690 2691 2692 2693 2694 2695 2696 2697
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2698 2699

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2700 2701 2702
{
	return false;
}
2703

2704
static const struct efx_phy_operations efx_dummy_phy_operations = {
2705
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2706
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2707
	.poll		 = efx_port_dummy_op_poll,
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2720
static int efx_init_struct(struct efx_nic *efx,
2721 2722
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2723
	int i;
2724 2725

	/* Initialise common structures */
2726 2727
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2728
	spin_lock_init(&efx->biu_lock);
2729 2730 2731
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2732 2733
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2734
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2735
	efx->pci_dev = pci_dev;
2736
	efx->msg_enable = debug;
2737
	efx->state = STATE_UNINIT;
2738 2739 2740
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2741
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2742 2743
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2744 2745
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2746 2747
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2748 2749 2750
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2751
	efx->mdio.dev = net_dev;
2752
	INIT_WORK(&efx->mac_work, efx_mac_work);
2753
	init_waitqueue_head(&efx->flush_wq);
2754 2755

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2756 2757 2758
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2759 2760
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2761 2762 2763 2764 2765 2766
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2767 2768 2769 2770
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2771
	if (!efx->workqueue)
2772
		goto fail;
2773

2774
	return 0;
2775 2776 2777 2778

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2779 2780 2781 2782
}

static void efx_fini_struct(struct efx_nic *efx)
{
2783 2784 2785 2786 2787
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2788 2789
	kfree(efx->vpd_sn);

2790 2791 2792 2793 2794 2795
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2818 2819 2820 2821 2822 2823
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2824
	efx_disable_interrupts(efx);
2825
	efx_nic_fini_interrupt(efx);
2826
	efx_fini_port(efx);
2827
	efx->type->fini(efx);
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2845
	efx_dissociate(efx);
2846
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2847
	efx_disable_interrupts(efx);
2848 2849
	rtnl_unlock();

2850 2851 2852
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2853 2854
	efx_unregister_netdev(efx);

2855 2856
	efx_mtd_remove(efx);

2857 2858 2859
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2860
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2861 2862 2863

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2864 2865

	pci_disable_pcie_error_reporting(pci_dev);
2866 2867
};

2868 2869 2870 2871 2872 2873
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2874
static void efx_probe_vpd_strings(struct efx_nic *efx)
2875 2876 2877 2878
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2879
	int ro_start, ro_size, i, j;
2880 2881 2882 2883 2884 2885 2886 2887 2888

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2889 2890
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2891 2892 2893 2894
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2895 2896 2897
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2938 2939 2940
}


2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2953
	efx_init_napi(efx);
2954

2955
	rc = efx->type->init(efx);
2956
	if (rc) {
2957 2958
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2959
		goto fail3;
2960 2961 2962 2963
	}

	rc = efx_init_port(efx);
	if (rc) {
2964 2965
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2966
		goto fail4;
2967 2968
	}

2969
	rc = efx_nic_init_interrupt(efx);
2970
	if (rc)
2971
		goto fail5;
2972 2973 2974
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2975 2976 2977

	return 0;

2978 2979
 fail6:
	efx_nic_fini_interrupt(efx);
2980
 fail5:
2981 2982
	efx_fini_port(efx);
 fail4:
2983
	efx->type->fini(efx);
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2994
 * theoretically).  It sets up PCI mappings, resets the NIC,
2995 2996 2997 2998 2999
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3000
static int efx_pci_probe(struct pci_dev *pci_dev,
3001
			 const struct pci_device_id *entry)
3002 3003 3004
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3005
	int rc;
3006 3007

	/* Allocate and initialise a struct net_device and struct efx_nic */
3008 3009
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3010 3011
	if (!net_dev)
		return -ENOMEM;
3012 3013 3014
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3015
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3016
			      NETIF_F_RXCSUM);
3017
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3018
		net_dev->features |= NETIF_F_TSO6;
3019 3020
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3021 3022 3023 3024
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3025
	pci_set_drvdata(pci_dev, efx);
3026
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3027
	rc = efx_init_struct(efx, pci_dev, net_dev);
3028 3029 3030
	if (rc)
		goto fail1;

3031
	netif_info(efx, probe, efx->net_dev,
3032
		   "Solarflare NIC detected\n");
3033

3034
	efx_probe_vpd_strings(efx);
3035

3036 3037 3038 3039 3040
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3041 3042 3043
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3044 3045 3046

	rc = efx_register_netdev(efx);
	if (rc)
3047
		goto fail4;
3048

3049 3050 3051 3052 3053 3054
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3055

3056
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3057

3058
	/* Try to create MTDs, but allow this to fail */
3059
	rtnl_lock();
3060
	rc = efx_mtd_probe(efx);
3061
	rtnl_unlock();
3062 3063 3064 3065
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3066 3067 3068 3069 3070
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3071 3072 3073
	return 0;

 fail4:
3074
	efx_pci_remove_main(efx);
3075 3076 3077 3078 3079
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3080
	WARN_ON(rc > 0);
3081
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3082 3083 3084 3085
	free_netdev(net_dev);
	return rc;
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3106 3107 3108 3109
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3110 3111
	rtnl_lock();

3112 3113
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3114

3115
		efx_device_detach_sync(efx);
3116

3117
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3118
		efx_disable_interrupts(efx);
3119
	}
3120

3121 3122
	rtnl_unlock();

3123 3124 3125 3126 3127
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3128
	int rc;
3129 3130
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3131 3132
	rtnl_lock();

3133
	if (efx->state != STATE_DISABLED) {
3134 3135 3136
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3137

3138 3139 3140
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3141

3142
		efx_start_all(efx);
3143

3144
		netif_device_attach(efx->net_dev);
3145

3146
		efx->state = STATE_READY;
3147

3148 3149
		efx->type->resume_wol(efx);
	}
3150

3151 3152
	rtnl_unlock();

3153 3154 3155
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3156
	return 0;
3157 3158 3159 3160 3161

fail:
	rtnl_unlock();

	return rc;
3162 3163 3164 3165 3166 3167 3168 3169 3170
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3171
	efx->reset_pending = 0;
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3198 3199
	rc = efx_pm_thaw(dev);
	return rc;
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3213
static const struct dev_pm_ops efx_pm_ops = {
3214 3215 3216 3217 3218 3219 3220 3221
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3222 3223 3224 3225
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3226 3227
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3244
		efx_disable_interrupts(efx);
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3261
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3262
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3321
static struct pci_driver efx_pci_driver = {
3322
	.name		= KBUILD_MODNAME,
3323 3324 3325
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3326
	.driver.pm	= &efx_pm_ops,
3327
	.err_handler	= &efx_err_handlers,
3328 3329 3330
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3353
#ifdef CONFIG_SFC_SRIOV
3354 3355 3356
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3357
#endif
3358

3359 3360 3361 3362 3363
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3364 3365 3366 3367 3368 3369 3370 3371

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3372 3373
	destroy_workqueue(reset_workqueue);
 err_reset:
3374
#ifdef CONFIG_SFC_SRIOV
3375 3376
	efx_fini_sriov();
 err_sriov:
3377
#endif
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3388
	destroy_workqueue(reset_workqueue);
3389
#ifdef CONFIG_SFC_SRIOV
3390
	efx_fini_sriov();
3391
#endif
3392 3393 3394 3395 3396 3397 3398
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3399 3400
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3401
MODULE_DESCRIPTION("Solarflare network driver");
3402 3403
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);