efx.c 70.1 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41
const char *const efx_loopback_mode_names[] = {
42
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
47 48 49
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
50 51 52 53 54 55
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
58 59
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 61
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 64
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65
	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 67
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 70 71
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72
const char *const efx_reset_type_names[] = {
73 74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156
 * The default (0) means to assign an interrupt to each core.
157 158 159 160 161
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

162 163 164 165
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

166 167 168 169 170 171 172 173 174 175
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

176 177 178 179 180 181 182
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

183 184 185 186 187
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
188 189

static void efx_remove_channels(struct efx_nic *efx);
190
static void efx_remove_port(struct efx_nic *efx);
191
static void efx_init_napi(struct efx_nic *efx);
192
static void efx_fini_napi(struct efx_nic *efx);
193
static void efx_fini_napi_channel(struct efx_channel *channel);
194 195 196
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
197 198 199

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
200 201
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
218
static int efx_process_channel(struct efx_channel *channel, int budget)
219
{
B
Ben Hutchings 已提交
220
	struct efx_nic *efx = channel->efx;
221
	int spent;
222

223
	if (unlikely(efx->reset_pending || !channel->enabled))
B
Ben Hutchings 已提交
224
		return 0;
225

226 227
	spent = efx_nic_process_eventq(channel, budget);
	if (spent == 0)
B
Ben Hutchings 已提交
228
		return 0;
229 230 231 232 233 234 235 236 237 238

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

239
	efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
240

241
	return spent;
242 243 244 245 246 247 248 249 250 251
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
252 253 254
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
255
	channel->work_pending = false;
256 257
	smp_wmb();

258
	efx_nic_eventq_read_ack(channel);
259 260 261 262 263 264 265 266 267 268 269
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
270
	struct efx_nic *efx = channel->efx;
271
	int spent;
272

273 274 275
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
276

277
	spent = efx_process_channel(channel, budget);
278

279
	if (spent < budget) {
B
Ben Hutchings 已提交
280
		if (channel->channel < efx->n_rx_channels &&
281 282 283 284
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
285 286
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
287
					efx->type->push_irq_moderation(channel);
288
				}
289 290
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
291 292 293
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
294
					efx->type->push_irq_moderation(channel);
295
				}
296 297 298 299 300
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

301 302
		efx_filter_rfs_expire(channel);

303
		/* There is no race here; although napi_disable() will
304
		 * only wait for napi_complete(), this isn't a problem
305 306 307
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
308
		napi_complete(napi);
309 310 311
		efx_channel_processed(channel);
	}

312
	return spent;
313 314 315 316 317 318 319 320
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
321 322
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
323 324 325 326 327
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

328
	BUG_ON(channel->channel >= efx->n_channels);
329
	BUG_ON(!channel->enabled);
330
	BUG_ON(!efx->loopback_selftest);
331 332

	/* Disable interrupts and wait for ISRs to complete */
333
	efx_nic_disable_interrupts(efx);
334
	if (efx->legacy_irq) {
335
		synchronize_irq(efx->legacy_irq);
336 337
		efx->legacy_irq_enabled = false;
	}
338
	if (channel->irq)
339 340 341 342 343 344
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
345
	efx_process_channel(channel, channel->eventq_mask + 1);
346 347 348 349 350 351

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
352 353
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
354
	efx_nic_enable_interrupts(efx);
355 356 357 358 359 360 361 362 363
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
364 365 366
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

367
	netif_dbg(efx, probe, efx->net_dev,
368
		  "chan %d create event queue\n", channel->channel);
369

370 371 372 373 374 375
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

376
	return efx_nic_probe_eventq(channel);
377 378 379
}

/* Prepare channel's event queue */
380
static void efx_init_eventq(struct efx_channel *channel)
381
{
382 383
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
384 385 386

	channel->eventq_read_ptr = 0;

387
	efx_nic_init_eventq(channel);
388 389 390 391
}

static void efx_fini_eventq(struct efx_channel *channel)
{
392 393
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
394

395
	efx_nic_fini_eventq(channel);
396 397 398 399
}

static void efx_remove_eventq(struct efx_channel *channel)
{
400 401
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
402

403
	efx_nic_remove_eventq(channel);
404 405 406 407 408 409 410 411
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/* Allocate and initialise a channel structure, optionally copying
 * parameters (but not resources) from an old channel structure. */
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

	if (old_channel) {
		channel = kmalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		*channel = *old_channel;

429
		channel->napi_dev = NULL;
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		memset(&channel->eventq, 0, sizeof(channel->eventq));

		rx_queue = &channel->rx_queue;
		rx_queue->buffer = NULL;
		memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			if (tx_queue->channel)
				tx_queue->channel = channel;
			tx_queue->buffer = NULL;
			memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
		}
	} else {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (!channel)
			return NULL;

		channel->efx = efx;
		channel->channel = i;

		for (j = 0; j < EFX_TXQ_TYPES; j++) {
			tx_queue = &channel->tx_queue[j];
			tx_queue->efx = efx;
			tx_queue->queue = i * EFX_TXQ_TYPES + j;
			tx_queue->channel = channel;
		}
	}

	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

467 468 469 470 471 472
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

473 474
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


507 508 509 510 511 512 513 514
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
B
Ben Hutchings 已提交
515 516
		if (efx->n_channels > efx->n_rx_channels) {
			if (channel->channel < efx->n_rx_channels) {
517 518 519
				type = "-rx";
			} else {
				type = "-tx";
B
Ben Hutchings 已提交
520
				number -= efx->n_rx_channels;
521 522
			}
		}
523 524
		snprintf(efx->channel_name[channel->channel],
			 sizeof(efx->channel_name[0]),
525 526 527 528
			 "%s%s-%d", efx->name, type, number);
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

555 556 557 558
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
559
static void efx_init_channels(struct efx_nic *efx)
560 561 562 563 564
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

565 566 567 568 569 570
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
571
			      efx->type->rx_buffer_hash_size +
572
			      efx->type->rx_buffer_padding);
573 574
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
575 576 577

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
578 579
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "init chan %d\n", channel->channel);
580

581
		efx_init_eventq(channel);
582

583 584
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
585 586 587 588

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

589 590
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

606 607
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "starting chan %d\n", channel->channel);
608

609 610 611
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
612 613
	channel->work_pending = false;
	channel->enabled = true;
614
	smp_wmb();
615

616
	/* Fill the queues before enabling NAPI */
617 618
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
619 620

	napi_enable(&channel->napi_str);
621 622 623 624 625 626 627 628 629 630 631
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

632 633
	netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
		  "stop chan %d\n", channel->channel);
634

635
	channel->enabled = false;
636 637 638 639 640 641 642 643
	napi_disable(&channel->napi_str);
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
644
	int rc;
645 646 647 648

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

649
	rc = efx_nic_flush_queues(efx);
650 651 652 653 654
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
655 656
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
657 658
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
659
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
660
	} else {
661 662
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
663
	}
664

665
	efx_for_each_channel(channel, efx) {
666 667
		netif_dbg(channel->efx, drv, channel->efx->net_dev,
			  "shut down chan %d\n", channel->channel);
668 669 670

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
671
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
672 673 674 675 676 677 678 679 680 681
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

682 683
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
684 685 686

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
687
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
688 689 690 691
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
	unsigned i;
	int rc;

	efx_stop_all(efx);
	efx_fini_channels(efx);

	/* Clone channels */
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx_alloc_channel(efx, i, efx->channel[i]);
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

	rc = efx_probe_channels(efx);
	if (rc)
		goto rollback;

737 738
	efx_init_napi(efx);

739
	/* Destroy old channels */
740 741
	for (i = 0; i < efx->n_channels; i++) {
		efx_fini_napi_channel(other_channel[i]);
742
		efx_remove_channel(other_channel[i]);
743
	}
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
out:
	/* Free unused channel structures */
	for (i = 0; i < efx->n_channels; i++)
		kfree(other_channel[i]);

	efx_init_channels(efx);
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

765
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
766
{
767
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
768 769 770 771 772 773 774 775 776 777 778 779
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
780
void efx_link_status_changed(struct efx_nic *efx)
781
{
782 783
	struct efx_link_state *link_state = &efx->link_state;

784 785 786 787 788 789 790
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

791
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
792 793
		efx->n_link_state_changes++;

794
		if (link_state->up)
795 796 797 798 799 800
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
801
	if (link_state->up) {
802 803 804 805 806
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
807
	} else {
808
		netif_info(efx, link, efx->net_dev, "link down\n");
809 810 811 812
	}

}

B
Ben Hutchings 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

826
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

841 842
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
843 844 845 846 847 848 849 850
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
851
{
B
Ben Hutchings 已提交
852 853
	enum efx_phy_mode phy_mode;
	int rc;
854

B
Ben Hutchings 已提交
855
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
856

857
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
858 859
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
860

B
Ben Hutchings 已提交
861 862
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
863 864 865 866 867
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
868
	rc = efx->type->reconfigure_port(efx);
869

B
Ben Hutchings 已提交
870 871
	if (rc)
		efx->phy_mode = phy_mode;
872

B
Ben Hutchings 已提交
873
	return rc;
874 875 876 877
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
878
int efx_reconfigure_port(struct efx_nic *efx)
879
{
B
Ben Hutchings 已提交
880 881
	int rc;

882 883 884
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
885
	rc = __efx_reconfigure_port(efx);
886
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
887 888

	return rc;
889 890
}

891 892 893
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
894 895 896 897 898
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
899
	if (efx->port_enabled)
900
		efx->type->reconfigure_mac(efx);
901 902 903
	mutex_unlock(&efx->mac_lock);
}

904 905 906 907
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

908
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
909

910 911 912
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

913 914
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
915
	if (rc)
916
		return rc;
917

918 919
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
920 921 922 923 924 925 926 927

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

928
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
929

930 931
	mutex_lock(&efx->mac_lock);

932
	rc = efx->phy_op->init(efx);
933
	if (rc)
934
		goto fail1;
935

936
	efx->port_initialized = true;
937

B
Ben Hutchings 已提交
938 939
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
940
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
941 942 943 944 945 946

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

947
	mutex_unlock(&efx->mac_lock);
948
	return 0;
949

950
fail2:
951
	efx->phy_op->fini(efx);
952 953
fail1:
	mutex_unlock(&efx->mac_lock);
954
	return rc;
955 956 957 958
}

static void efx_start_port(struct efx_nic *efx)
{
959
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
960 961 962
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
963
	efx->port_enabled = true;
964 965 966

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
967
	efx->type->reconfigure_mac(efx);
968

969 970 971
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
972
/* Prevent efx_mac_work() and efx_monitor() from working */
973 974
static void efx_stop_port(struct efx_nic *efx)
{
975
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
976 977

	mutex_lock(&efx->mac_lock);
978
	efx->port_enabled = false;
979 980 981
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
982 983
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
984 985 986 987
}

static void efx_fini_port(struct efx_nic *efx)
{
988
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
989 990 991 992

	if (!efx->port_initialized)
		return;

993
	efx->phy_op->fini(efx);
994
	efx->port_initialized = false;
995

996
	efx->link_state.up = false;
997 998 999 1000 1001
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1002
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1003

1004
	efx->type->remove_port(efx);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1020
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1021 1022 1023

	rc = pci_enable_device(pci_dev);
	if (rc) {
1024 1025
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1037 1038 1039 1040 1041
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1042 1043 1044
		dma_mask >>= 1;
	}
	if (rc) {
1045 1046
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1047 1048
		goto fail2;
	}
1049 1050
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1051 1052 1053 1054 1055 1056
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1057 1058
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1059 1060 1061
		goto fail2;
	}

1062 1063
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1064
	if (rc) {
1065 1066
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1067 1068 1069
		rc = -EIO;
		goto fail3;
	}
1070 1071
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1072
	if (!efx->membase) {
1073 1074 1075 1076
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1077 1078 1079
		rc = -ENOMEM;
		goto fail4;
	}
1080 1081 1082 1083
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1084 1085 1086 1087

	return 0;

 fail4:
1088
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1089
 fail3:
1090
	efx->membase_phys = 0;
1091 1092 1093 1094 1095 1096 1097 1098
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1099
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1100 1101 1102 1103 1104 1105 1106

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1107
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1108
		efx->membase_phys = 0;
1109 1110 1111 1112 1113
	}

	pci_disable_device(efx->pci_dev);
}

1114
static int efx_wanted_parallelism(void)
1115
{
1116
	cpumask_var_t thread_mask;
1117 1118
	int count;
	int cpu;
1119 1120 1121

	if (rss_cpus)
		return rss_cpus;
1122

1123
	if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
1124
		printk(KERN_WARNING
1125
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1126 1127 1128
		return 1;
	}

1129 1130
	count = 0;
	for_each_online_cpu(cpu) {
1131
		if (!cpumask_test_cpu(cpu, thread_mask)) {
1132
			++count;
1133 1134
			cpumask_or(thread_mask, thread_mask,
				   topology_thread_cpumask(cpu));
1135 1136 1137
		}
	}

1138
	free_cpumask_var(thread_mask);
1139 1140 1141
	return count;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
	int i, rc;

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1164 1165 1166
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1167
static int efx_probe_interrupts(struct efx_nic *efx)
1168
{
1169 1170
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1171 1172 1173
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1174
		struct msix_entry xentries[EFX_MAX_CHANNELS];
B
Ben Hutchings 已提交
1175
		int n_channels;
1176

1177
		n_channels = efx_wanted_parallelism();
B
Ben Hutchings 已提交
1178 1179 1180
		if (separate_tx_channels)
			n_channels *= 2;
		n_channels = min(n_channels, max_channels);
1181

B
Ben Hutchings 已提交
1182
		for (i = 0; i < n_channels; i++)
1183
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1184
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1185
		if (rc > 0) {
1186 1187 1188 1189 1190
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
				  " available (%d < %d).\n", rc, n_channels);
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1191 1192
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1193
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1194
					     n_channels);
1195 1196 1197
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
			efx->n_channels = n_channels;
			if (separate_tx_channels) {
				efx->n_tx_channels =
					max(efx->n_channels / 2, 1U);
				efx->n_rx_channels =
					max(efx->n_channels -
					    efx->n_tx_channels, 1U);
			} else {
				efx->n_tx_channels = efx->n_channels;
				efx->n_rx_channels = efx->n_channels;
			}
1209 1210 1211 1212 1213
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
B
Ben Hutchings 已提交
1214
			for (i = 0; i < n_channels; i++)
1215 1216
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1217 1218 1219
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1220 1221
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1222 1223 1224 1225 1226
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1227
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1228 1229
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1230 1231
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1232
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1233
		} else {
1234 1235
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1236 1237 1238 1239 1240 1241
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1242
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1243 1244
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1245 1246
		efx->legacy_irq = efx->pci_dev->irq;
	}
1247 1248

	return 0;
1249 1250 1251 1252 1253 1254 1255
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1256
	efx_for_each_channel(channel, efx)
1257 1258 1259 1260 1261 1262 1263 1264
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1265
static void efx_set_channels(struct efx_nic *efx)
1266
{
1267 1268 1269
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1270
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1271
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1272 1273 1274 1275 1276 1277 1278 1279 1280

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1281 1282 1283 1284
}

static int efx_probe_nic(struct efx_nic *efx)
{
1285
	size_t i;
1286 1287
	int rc;

1288
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1289 1290

	/* Carry out hardware-type specific initialisation */
1291
	rc = efx->type->probe(efx);
1292 1293 1294
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1295
	/* Determine the number of channels and queues by trying to hook
1296
	 * in MSI-X interrupts. */
1297 1298 1299
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1300

1301 1302
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1303
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1304 1305
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1306

1307
	efx_set_channels(efx);
1308 1309
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1310 1311

	/* Initialise the interrupt moderation settings */
1312 1313
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1314 1315

	return 0;
1316 1317 1318 1319

fail:
	efx->type->remove(efx);
	return rc;
1320 1321 1322 1323
}

static void efx_remove_nic(struct efx_nic *efx)
{
1324
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1325 1326

	efx_remove_interrupts(efx);
1327
	efx->type->remove(efx);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1342
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1343 1344 1345 1346 1347
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1348
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1349 1350 1351
		goto fail2;
	}

1352
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1353 1354 1355
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail3;
1356

B
Ben Hutchings 已提交
1357 1358 1359 1360 1361 1362 1363
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
		goto fail4;
	}

1364 1365
	return 0;

B
Ben Hutchings 已提交
1366 1367
 fail4:
	efx_remove_channels(efx);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1393
	if (!netif_running(efx->net_dev))
1394 1395 1396 1397 1398 1399
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);

1400
	if (netif_device_present(efx->net_dev))
1401 1402 1403
		netif_tx_wake_all_queues(efx->net_dev);

	efx_for_each_channel(channel, efx)
1404 1405
		efx_start_channel(channel);

1406 1407
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
1408
	efx_nic_enable_interrupts(efx);
1409

1410 1411 1412 1413 1414 1415
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
1416
	if (efx->reset_pending)
1417 1418
		efx_mcdi_mode_poll(efx);

1419 1420 1421 1422
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1423 1424
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1425 1426 1427 1428 1429 1430
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1431

1432
	efx->type->start_stats(efx);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1443
	cancel_work_sync(&efx->mac_work);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1461
	efx->type->stop_stats(efx);
1462

1463 1464 1465
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1466
	/* Disable interrupts and wait for ISR to complete */
1467
	efx_nic_disable_interrupts(efx);
1468
	if (efx->legacy_irq) {
1469
		synchronize_irq(efx->legacy_irq);
1470 1471
		efx->legacy_irq_enabled = false;
	}
1472
	efx_for_each_channel(channel, efx) {
1473 1474
		if (channel->irq)
			synchronize_irq(channel->irq);
1475
	}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1486
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1487 1488 1489 1490
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1491 1492 1493
	netif_tx_stop_all_queues(efx->net_dev);
	netif_tx_lock_bh(efx->net_dev);
	netif_tx_unlock_bh(efx->net_dev);
1494 1495 1496 1497
}

static void efx_remove_all(struct efx_nic *efx)
{
B
Ben Hutchings 已提交
1498
	efx_remove_filters(efx);
1499
	efx_remove_channels(efx);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1510
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1511
{
1512 1513
	if (usecs == 0)
		return 0;
1514
	if (usecs * 1000 < quantum_ns)
1515
		return 1; /* never round down to 0 */
1516
	return usecs * 1000 / quantum_ns;
1517 1518
}

1519
/* Set interrupt moderation parameters */
1520 1521 1522
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1523
{
1524
	struct efx_channel *channel;
1525 1526 1527 1528 1529
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1530 1531 1532

	EFX_ASSERT_RESET_SERIALISED(efx);

1533
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1534 1535
		return -EINVAL;

1536 1537 1538
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1539 1540 1541 1542 1543 1544 1545
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1546
	efx->irq_rx_adaptive = rx_adaptive;
1547
	efx->irq_rx_moderation = rx_ticks;
1548
	efx_for_each_channel(channel, efx) {
1549
		if (efx_channel_has_rx_queue(channel))
1550
			channel->irq_moderation = rx_ticks;
1551
		else if (efx_channel_has_tx_queues(channel))
1552 1553
			channel->irq_moderation = tx_ticks;
	}
1554 1555

	return 0;
1556 1557
}

1558 1559 1560
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1561 1562 1563 1564
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1565
	*rx_adaptive = efx->irq_rx_adaptive;
1566 1567 1568
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1569 1570 1571 1572 1573 1574 1575 1576

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1577
		*tx_usecs = DIV_ROUND_UP(
1578
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1579 1580
			efx->timer_quantum_ns,
			1000);
1581 1582
}

1583 1584 1585 1586 1587 1588
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1589
/* Run periodically off the general workqueue */
1590 1591 1592 1593 1594
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1595 1596 1597
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1598
	BUG_ON(efx->type->monitor == NULL);
1599 1600 1601

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1602 1603 1604 1605 1606 1607
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1624
	struct efx_nic *efx = netdev_priv(net_dev);
1625
	struct mii_ioctl_data *data = if_mii(ifr);
1626 1627 1628

	EFX_ASSERT_RESET_SERIALISED(efx);

1629 1630 1631 1632 1633 1634
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1635 1636 1637 1638 1639 1640 1641 1642
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1643
static void efx_init_napi(struct efx_nic *efx)
1644 1645 1646 1647 1648
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1649 1650
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1651
	}
1652 1653 1654 1655 1656 1657 1658
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1659 1660 1661 1662 1663 1664
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1665 1666
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1683
	struct efx_nic *efx = netdev_priv(net_dev);
1684 1685
	struct efx_channel *channel;

1686
	efx_for_each_channel(channel, efx)
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1701
	struct efx_nic *efx = netdev_priv(net_dev);
1702 1703
	EFX_ASSERT_RESET_SERIALISED(efx);

1704 1705
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1706

1707 1708
	if (efx->state == STATE_DISABLED)
		return -EIO;
1709 1710
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1711 1712
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1713

1714 1715 1716 1717
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1728
	struct efx_nic *efx = netdev_priv(net_dev);
1729

1730 1731
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1732

1733 1734 1735 1736 1737 1738
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1739 1740 1741 1742

	return 0;
}

1743
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1744
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1745
{
1746
	struct efx_nic *efx = netdev_priv(net_dev);
1747 1748
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1749
	spin_lock_bh(&efx->stats_lock);
1750

1751
	efx->type->update_stats(efx);
1752 1753 1754 1755 1756

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1757
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1775 1776
	spin_unlock_bh(&efx->stats_lock);

1777 1778 1779 1780 1781 1782
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1783
	struct efx_nic *efx = netdev_priv(net_dev);
1784

1785 1786 1787
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1788

1789
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1790 1791 1792 1793 1794 1795
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1796
	struct efx_nic *efx = netdev_priv(net_dev);
1797 1798 1799 1800 1801 1802 1803 1804 1805
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1806
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1807 1808

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1809 1810 1811 1812

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1813
	net_dev->mtu = new_mtu;
1814
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1815 1816
	mutex_unlock(&efx->mac_lock);

1817
	efx_init_channels(efx);
1818 1819 1820 1821 1822 1823 1824

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1825
	struct efx_nic *efx = netdev_priv(net_dev);
1826 1827 1828 1829 1830 1831
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1832 1833 1834
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1835 1836 1837 1838 1839 1840
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1841
	mutex_lock(&efx->mac_lock);
1842
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1843
	mutex_unlock(&efx->mac_lock);
1844 1845 1846 1847

	return 0;
}

1848
/* Context: netif_addr_lock held, BHs disabled. */
1849 1850
static void efx_set_multicast_list(struct net_device *net_dev)
{
1851
	struct efx_nic *efx = netdev_priv(net_dev);
1852
	struct netdev_hw_addr *ha;
1853 1854 1855 1856
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1857
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1858 1859

	/* Build multicast hash table */
1860
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1861 1862 1863
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1864 1865
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1866 1867 1868 1869
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1870 1871 1872 1873 1874 1875
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1876

1877 1878 1879
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1880 1881
}

1882
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1893 1894 1895
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1896
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1897 1898 1899 1900 1901 1902
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
1903
	.ndo_set_rx_mode	= efx_set_multicast_list,
1904
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1905 1906 1907
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1908
	.ndo_setup_tc		= efx_setup_tc,
1909 1910 1911
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1912 1913
};

1914 1915 1916 1917 1918 1919 1920
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1921 1922 1923
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1924
	struct net_device *net_dev = ptr;
1925

1926 1927 1928
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1929 1930 1931 1932 1933 1934 1935 1936

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1937 1938 1939 1940 1941 1942 1943 1944
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1945 1946 1947
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
1948
	struct efx_channel *channel;
1949 1950 1951 1952
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1953
	net_dev->netdev_ops = &efx_netdev_ops;
1954 1955
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

1956
	rtnl_lock();
1957 1958 1959 1960

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1961
	efx_update_name(efx);
1962 1963 1964 1965 1966

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

1967 1968
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
1969 1970
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
1971 1972
	}

1973
	/* Always start with carrier off; PHY events will detect the link */
1974
	netif_carrier_off(net_dev);
1975

1976
	rtnl_unlock();
1977

B
Ben Hutchings 已提交
1978 1979
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
1980 1981
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
1982 1983 1984
		goto fail_registered;
	}

1985
	return 0;
B
Ben Hutchings 已提交
1986

1987 1988
fail_locked:
	rtnl_unlock();
1989
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1990 1991
	return rc;

B
Ben Hutchings 已提交
1992 1993 1994
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1995 1996 1997 1998
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
1999
	struct efx_channel *channel;
2000 2001 2002 2003 2004
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2005
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2006 2007 2008 2009

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2010 2011 2012 2013
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2014

2015 2016 2017
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
2018 2019 2020 2021 2022 2023 2024 2025
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2026 2027
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2028
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2029 2030 2031
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2032 2033 2034
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2035
	efx_fini_channels(efx);
2036 2037
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2038
	efx->type->fini(efx);
2039 2040
}

B
Ben Hutchings 已提交
2041 2042 2043 2044 2045
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2046
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2047 2048 2049
{
	int rc;

B
Ben Hutchings 已提交
2050
	EFX_ASSERT_RESET_SERIALISED(efx);
2051

2052
	rc = efx->type->init(efx);
2053
	if (rc) {
2054
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2055
		goto fail;
2056 2057
	}

2058 2059 2060
	if (!ok)
		goto fail;

2061
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2062 2063 2064 2065
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2066 2067
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2068 2069
	}

2070
	efx->type->reconfigure_mac(efx);
2071

2072
	efx_init_channels(efx);
B
Ben Hutchings 已提交
2073
	efx_restore_filters(efx);
2074 2075 2076 2077 2078 2079 2080 2081 2082

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2083 2084 2085

	mutex_unlock(&efx->mac_lock);

2086 2087 2088
	return rc;
}

2089 2090
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2091
 *
2092
 * Caller must hold the rtnl_lock.
2093
 */
2094
int efx_reset(struct efx_nic *efx, enum reset_type method)
2095
{
2096 2097
	int rc, rc2;
	bool disabled;
2098

2099 2100
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2101

2102
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2103
	efx_reset_down(efx, method);
2104

2105
	rc = efx->type->reset(efx, method);
2106
	if (rc) {
2107
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2108
		goto out;
2109 2110
	}

2111 2112 2113 2114
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2115 2116 2117 2118 2119 2120 2121

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2122
out:
2123
	/* Leave device stopped if necessary */
2124 2125 2126 2127 2128 2129
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2130 2131
	}

2132
	if (disabled) {
2133
		dev_close(efx->net_dev);
2134
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2135 2136
		efx->state = STATE_DISABLED;
	} else {
2137
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2138
		netif_device_attach(efx->net_dev);
2139
	}
2140 2141 2142 2143 2144 2145 2146 2147
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2148
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2149
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2150

2151
	if (!pending)
2152 2153
		return;

2154
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2155
	 * flags set so that efx_pci_probe_main will be retried */
2156
	if (efx->state != STATE_RUNNING) {
2157 2158
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2159 2160 2161 2162
		return;
	}

	rtnl_lock();
2163
	(void)efx_reset(efx, fls(pending) - 1);
2164
	rtnl_unlock();
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2177 2178
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2179 2180
		break;
	default:
2181
		method = efx->type->map_reset_reason(type);
2182 2183 2184
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2185 2186
		break;
	}
2187

2188
	set_bit(method, &efx->reset_pending);
2189

2190 2191 2192 2193
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2194
	queue_work(reset_workqueue, &efx->reset_work);
2195 2196 2197 2198 2199 2200 2201 2202 2203
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2204
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2205 2206
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2207
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2208 2209
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2210
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2211
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2212
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2213
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2214
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2215 2216 2217 2218 2219
	{0}			/* end of list */
};

/**************************************************************************
 *
2220
 * Dummy PHY/MAC operations
2221
 *
2222
 * Can be used for some unimplemented operations
2223 2224 2225 2226 2227 2228 2229 2230 2231
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2232 2233

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2234 2235 2236
{
	return false;
}
2237

2238
static const struct efx_phy_operations efx_dummy_phy_operations = {
2239
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2240
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2241
	.poll		 = efx_port_dummy_op_poll,
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2254
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2255 2256
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2257
	int i;
2258 2259 2260 2261

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2262 2263 2264
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2265 2266 2267
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2268
	efx->msg_enable = debug;
2269 2270 2271 2272 2273 2274 2275
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2276
	efx->mdio.dev = net_dev;
2277
	INIT_WORK(&efx->mac_work, efx_mac_work);
2278 2279

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2280 2281 2282
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2293 2294 2295 2296
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2297
	if (!efx->workqueue)
2298
		goto fail;
2299

2300
	return 0;
2301 2302 2303 2304

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2305 2306 2307 2308
}

static void efx_fini_struct(struct efx_nic *efx)
{
2309 2310 2311 2312 2313
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2331 2332 2333 2334
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2335
	efx_nic_fini_interrupt(efx);
2336 2337
	efx_fini_channels(efx);
	efx_fini_port(efx);
2338
	efx->type->fini(efx);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2364 2365
	efx_mtd_remove(efx);

2366 2367 2368 2369
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2370
	cancel_work_sync(&efx->reset_work);
2371 2372 2373 2374

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2375
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2394
	efx_init_napi(efx);
2395

2396
	rc = efx->type->init(efx);
2397
	if (rc) {
2398 2399
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2400
		goto fail3;
2401 2402 2403 2404
	}

	rc = efx_init_port(efx);
	if (rc) {
2405 2406
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2407
		goto fail4;
2408 2409
	}

2410
	efx_init_channels(efx);
2411

2412
	rc = efx_nic_init_interrupt(efx);
2413
	if (rc)
2414
		goto fail5;
2415 2416 2417

	return 0;

2418
 fail5:
2419
	efx_fini_channels(efx);
2420 2421
	efx_fini_port(efx);
 fail4:
2422
	efx->type->fini(efx);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2433
 * theoretically).  It sets up PCI mappings, resets the NIC,
2434 2435 2436 2437 2438 2439 2440 2441
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2442
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2443 2444 2445 2446 2447
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
2448 2449
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2450 2451
	if (!net_dev)
		return -ENOMEM;
2452
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2453
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2454
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2455 2456
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2457 2458
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2459 2460 2461 2462
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2463
	efx = netdev_priv(net_dev);
2464
	pci_set_drvdata(pci_dev, efx);
2465
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2466 2467 2468 2469
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2470
	netif_info(efx, probe, efx->net_dev,
2471
		   "Solarflare NIC detected\n");
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2487
		cancel_work_sync(&efx->reset_work);
2488

2489
		if (rc == 0) {
2490
			if (efx->reset_pending) {
2491 2492 2493 2494 2495 2496 2497 2498 2499
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2500
		/* Retry if a recoverably reset event has been scheduled */
2501 2502 2503
		if (efx->reset_pending &
		    ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
		    !efx->reset_pending)
2504 2505
			goto fail3;

2506
		efx->reset_pending = 0;
2507 2508 2509
	}

	if (rc) {
2510
		netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2511 2512 2513
		goto fail4;
	}

2514 2515
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2516
	efx->state = STATE_RUNNING;
2517

2518 2519 2520 2521
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

2522
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2523 2524 2525 2526

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2537
	WARN_ON(rc > 0);
2538
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2539 2540 2541 2542
	free_netdev(net_dev);
	return rc;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2577 2578 2579
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2590
	efx->reset_pending = 0;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2632
static const struct dev_pm_ops efx_pm_ops = {
2633 2634 2635 2636 2637 2638 2639 2640
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2641
static struct pci_driver efx_pci_driver = {
2642
	.name		= KBUILD_MODNAME,
2643 2644 2645
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2646
	.driver.pm	= &efx_pm_ops,
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2669 2670 2671 2672 2673
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2674 2675 2676 2677 2678 2679 2680 2681

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2682 2683
	destroy_workqueue(reset_workqueue);
 err_reset:
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2694
	destroy_workqueue(reset_workqueue);
2695 2696 2697 2698 2699 2700 2701
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2702 2703
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2704 2705 2706
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);