efx.c 71.6 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28

29
#include "mcdi.h"
30
#include "workarounds.h"
31

32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41
const char *const efx_loopback_mode_names[] = {
42
	[LOOPBACK_NONE]		= "NONE",
43
	[LOOPBACK_DATA]		= "DATAPATH",
44 45 46
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
47 48 49
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
50 51 52 53 54 55
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
58 59
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 61
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 64
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65
	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 67
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 70 71
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72
const char *const efx_reset_type_names[] = {
73 74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
83
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
84 85
};

86 87
#define EFX_MAX_MTU (9 * 1024)

88 89 90 91 92 93
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

94 95 96 97 98 99 100 101 102
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
103 104
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
105
 *
106
 * This is only used in MSI-X interrupt mode
107
 */
108
static unsigned int separate_tx_channels;
109
module_param(separate_tx_channels, uint, 0444);
110 111
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
112 113 114 115 116 117 118

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
119 120 121
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
122
 */
S
stephen hemminger 已提交
123
static unsigned int efx_monitor_interval = 1 * HZ;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
156
 * The default (0) means to assign an interrupt to each core.
157 158 159 160 161
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

162 163 164 165
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

166 167 168 169 170 171 172 173 174 175
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

176 177 178 179 180 181 182
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

183 184 185 186 187
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
188

189 190 191
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
192
static void efx_remove_channels(struct efx_nic *efx);
193
static const struct efx_channel_type efx_default_channel_type;
194
static void efx_remove_port(struct efx_nic *efx);
195
static void efx_init_napi_channel(struct efx_channel *channel);
196
static void efx_fini_napi(struct efx_nic *efx);
197
static void efx_fini_napi_channel(struct efx_channel *channel);
198 199 200
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
201 202 203

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
204 205
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
222
static int efx_process_channel(struct efx_channel *channel, int budget)
223
{
224
	int spent;
225

226
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
227
		return 0;
228

229
	spent = efx_nic_process_eventq(channel, budget);
230 231 232 233 234 235 236 237 238
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
239 240 241 242
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
243 244
	}

245
	return spent;
246 247 248 249 250 251 252 253 254 255
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
256 257 258
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
259
	channel->work_pending = false;
260 261
	smp_wmb();

262
	efx_nic_eventq_read_ack(channel);
263 264 265 266 267 268 269 270 271 272 273
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
274
	struct efx_nic *efx = channel->efx;
275
	int spent;
276

277 278 279
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
280

281
	spent = efx_process_channel(channel, budget);
282

283
	if (spent < budget) {
284
		if (efx_channel_has_rx_queue(channel) &&
285 286 287 288
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
289 290
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
291
					efx->type->push_irq_moderation(channel);
292
				}
293 294
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
295 296 297
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
298
					efx->type->push_irq_moderation(channel);
299
				}
300 301 302 303 304
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

305 306
		efx_filter_rfs_expire(channel);

307
		/* There is no race here; although napi_disable() will
308
		 * only wait for napi_complete(), this isn't a problem
309 310 311
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
312
		napi_complete(napi);
313 314 315
		efx_channel_processed(channel);
	}

316
	return spent;
317 318 319 320 321 322 323 324
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
325 326
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
327 328 329 330 331
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

332
	BUG_ON(channel->channel >= efx->n_channels);
333
	BUG_ON(!channel->enabled);
334
	BUG_ON(!efx->loopback_selftest);
335 336

	/* Disable interrupts and wait for ISRs to complete */
337
	efx_nic_disable_interrupts(efx);
338
	if (efx->legacy_irq) {
339
		synchronize_irq(efx->legacy_irq);
340 341
		efx->legacy_irq_enabled = false;
	}
342
	if (channel->irq)
343 344 345 346 347 348
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
349
	efx_process_channel(channel, channel->eventq_mask + 1);
350 351 352 353 354 355

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
356 357
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
358
	efx_nic_enable_interrupts(efx);
359 360 361 362 363 364 365 366 367
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
368 369 370
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

371
	netif_dbg(efx, probe, efx->net_dev,
372
		  "chan %d create event queue\n", channel->channel);
373

374 375 376 377 378 379
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

380
	return efx_nic_probe_eventq(channel);
381 382 383
}

/* Prepare channel's event queue */
384
static void efx_init_eventq(struct efx_channel *channel)
385
{
386 387
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
388 389 390

	channel->eventq_read_ptr = 0;

391
	efx_nic_init_eventq(channel);
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

422 423
static void efx_fini_eventq(struct efx_channel *channel)
{
424 425
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
426

427
	efx_nic_fini_eventq(channel);
428 429 430 431
}

static void efx_remove_eventq(struct efx_channel *channel)
{
432 433
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
434

435
	efx_nic_remove_eventq(channel);
436 437 438 439 440 441 442 443
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

444
/* Allocate and initialise a channel structure. */
445 446 447 448 449 450 451 452
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

453 454 455
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
456

457 458 459
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
460

461 462 463 464 465 466
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
467

468 469 470 471
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
472

473 474 475 476 477 478 479 480 481 482 483 484 485
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
486

487 488 489 490 491 492 493 494
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
495

496 497 498
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
499
			tx_queue->channel = channel;
500 501
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
502 503 504
	}

	rx_queue = &channel->rx_queue;
505 506
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
507 508 509 510 511 512
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

513 514 515 516 517 518
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

519 520
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
521

522 523 524 525
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

526 527
	rc = efx_probe_eventq(channel);
	if (rc)
528
		goto fail;
529 530 531 532

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
533
			goto fail;
534 535 536 537 538
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
539
			goto fail;
540 541 542 543 544 545
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

546 547
fail:
	efx_remove_channel(channel);
548 549 550
	return rc;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
569

570 571 572 573
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

574 575 576 577
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
578 579
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

606 607 608 609
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
610
static void efx_start_datapath(struct efx_nic *efx)
611 612 613 614 615
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

616 617 618 619 620 621
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
622
			      efx->type->rx_buffer_hash_size +
623
			      efx->type->rx_buffer_padding);
624 625
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
626 627 628

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
629 630
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
631 632 633 634

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

635
		efx_for_each_channel_rx_queue(rx_queue, channel) {
636
			efx_init_rx_queue(rx_queue);
637 638
			efx_nic_generate_fill_event(rx_queue);
		}
639 640 641 642 643

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

644 645
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
646 647
}

648
static void efx_stop_datapath(struct efx_nic *efx)
649 650 651 652
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
653
	int rc;
654 655 656 657

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

658
	rc = efx_nic_flush_queues(efx);
659 660 661 662 663
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
664 665
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
666 667
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
668
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
669
	} else {
670 671
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
672
	}
673

674
	efx_for_each_channel(channel, efx) {
675 676 677 678 679 680 681 682 683 684
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
685 686 687

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
688
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
689 690 691 692 693 694 695 696 697
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

698 699
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
700 701 702

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
703
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
704 705 706 707
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

708 709 710 711 712 713 714 715 716 717 718 719 720
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	unsigned i, next_buffer_table = 0;
	int rc = 0;

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
745 746

	efx_stop_all(efx);
747
	efx_stop_interrupts(efx, true);
748

749
	/* Clone channels (where possible) */
750 751
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
752 753 754
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

773 774
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
775 776

	for (i = 0; i < efx->n_channels; i++) {
777 778 779 780 781 782 783
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
784
	}
785

786
out:
787 788 789 790 791 792 793 794 795
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
796

797
	efx_start_interrupts(efx, true);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

813
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
814
{
815
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
816 817
}

818 819 820 821 822 823 824 825 826 827 828 829
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

830 831 832 833 834 835 836 837 838 839
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
840
void efx_link_status_changed(struct efx_nic *efx)
841
{
842 843
	struct efx_link_state *link_state = &efx->link_state;

844 845 846 847 848 849 850
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

851
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
852 853
		efx->n_link_state_changes++;

854
		if (link_state->up)
855 856 857 858 859 860
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
861
	if (link_state->up)
862 863 864 865 866
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
867
	else
868
		netif_info(efx, link, efx->net_dev, "link down\n");
869 870
}

B
Ben Hutchings 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

884
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

899 900
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
901 902 903 904 905 906 907 908
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
909
{
B
Ben Hutchings 已提交
910 911
	enum efx_phy_mode phy_mode;
	int rc;
912

B
Ben Hutchings 已提交
913
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
914

915
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
916 917
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
918

B
Ben Hutchings 已提交
919 920
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
921 922 923 924 925
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
926
	rc = efx->type->reconfigure_port(efx);
927

B
Ben Hutchings 已提交
928 929
	if (rc)
		efx->phy_mode = phy_mode;
930

B
Ben Hutchings 已提交
931
	return rc;
932 933 934 935
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
936
int efx_reconfigure_port(struct efx_nic *efx)
937
{
B
Ben Hutchings 已提交
938 939
	int rc;

940 941 942
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
943
	rc = __efx_reconfigure_port(efx);
944
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
945 946

	return rc;
947 948
}

949 950 951
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
952 953 954 955 956
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
957
	if (efx->port_enabled)
958
		efx->type->reconfigure_mac(efx);
959 960 961
	mutex_unlock(&efx->mac_lock);
}

962 963 964 965
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

966
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
967

968 969 970
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

971 972
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
973
	if (rc)
974
		return rc;
975

976 977
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
978 979 980 981 982 983 984 985

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

986
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
987

988 989
	mutex_lock(&efx->mac_lock);

990
	rc = efx->phy_op->init(efx);
991
	if (rc)
992
		goto fail1;
993

994
	efx->port_initialized = true;
995

B
Ben Hutchings 已提交
996 997
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
998
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
999 1000 1001 1002 1003 1004

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1005
	mutex_unlock(&efx->mac_lock);
1006
	return 0;
1007

1008
fail2:
1009
	efx->phy_op->fini(efx);
1010 1011
fail1:
	mutex_unlock(&efx->mac_lock);
1012
	return rc;
1013 1014 1015 1016
}

static void efx_start_port(struct efx_nic *efx)
{
1017
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1018 1019 1020
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1021
	efx->port_enabled = true;
1022 1023 1024

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1025
	efx->type->reconfigure_mac(efx);
1026

1027 1028 1029
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1030
/* Prevent efx_mac_work() and efx_monitor() from working */
1031 1032
static void efx_stop_port(struct efx_nic *efx)
{
1033
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1034 1035

	mutex_lock(&efx->mac_lock);
1036
	efx->port_enabled = false;
1037 1038 1039
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1040 1041
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1042 1043 1044 1045
}

static void efx_fini_port(struct efx_nic *efx)
{
1046
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1047 1048 1049 1050

	if (!efx->port_initialized)
		return;

1051
	efx->phy_op->fini(efx);
1052
	efx->port_initialized = false;
1053

1054
	efx->link_state.up = false;
1055 1056 1057 1058 1059
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1060
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1061

1062
	efx->type->remove_port(efx);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1078
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1079 1080 1081

	rc = pci_enable_device(pci_dev);
	if (rc) {
1082 1083
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1095 1096 1097 1098 1099
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1100 1101 1102
		dma_mask >>= 1;
	}
	if (rc) {
1103 1104
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1105 1106
		goto fail2;
	}
1107 1108
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1109 1110 1111 1112 1113 1114
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1115 1116
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1117 1118 1119
		goto fail2;
	}

1120 1121
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1122
	if (rc) {
1123 1124
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1125 1126 1127
		rc = -EIO;
		goto fail3;
	}
1128 1129
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1130
	if (!efx->membase) {
1131 1132 1133 1134
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1135 1136 1137
		rc = -ENOMEM;
		goto fail4;
	}
1138 1139 1140 1141
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1142 1143 1144 1145

	return 0;

 fail4:
1146
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1147
 fail3:
1148
	efx->membase_phys = 0;
1149 1150 1151 1152 1153 1154 1155 1156
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1157
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1158 1159 1160 1161 1162 1163 1164

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1165
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1166
		efx->membase_phys = 0;
1167 1168 1169 1170 1171
	}

	pci_disable_device(efx->pci_dev);
}

1172
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1173
{
1174
	cpumask_var_t thread_mask;
1175
	unsigned int count;
1176
	int cpu;
1177 1178 1179

	if (rss_cpus)
		return rss_cpus;
1180

1181
	if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1182 1183
		netif_warn(efx, probe, efx->net_dev,
			   "RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
1184 1185 1186
		return 1;
	}

1187 1188
	count = 0;
	for_each_online_cpu(cpu) {
1189
		if (!cpumask_test_cpu(cpu, thread_mask)) {
1190
			++count;
1191 1192
			cpumask_or(thread_mask, thread_mask,
				   topology_thread_cpumask(cpu));
1193 1194 1195
		}
	}

1196
	free_cpumask_var(thread_mask);
1197 1198 1199
	return count;
}

1200 1201 1202 1203
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1204 1205
	unsigned int i;
	int rc;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1223 1224 1225
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1226
static int efx_probe_interrupts(struct efx_nic *efx)
1227
{
1228 1229
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1230 1231
	unsigned int extra_channels = 0;
	unsigned int i, j;
1232
	int rc;
1233

1234 1235 1236 1237
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1238
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1239
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1240
		unsigned int n_channels;
1241

1242
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1243 1244
		if (separate_tx_channels)
			n_channels *= 2;
1245
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1246
		n_channels = min(n_channels, max_channels);
1247

B
Ben Hutchings 已提交
1248
		for (i = 0; i < n_channels; i++)
1249
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1250
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1251
		if (rc > 0) {
1252 1253
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1254
				  " available (%d < %u).\n", rc, n_channels);
1255 1256
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1257 1258
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1259
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1260
					     n_channels);
1261 1262 1263
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1264
			efx->n_channels = n_channels;
1265 1266
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1267
			if (separate_tx_channels) {
1268 1269 1270 1271
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1272
			} else {
1273 1274
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1275
			}
1276 1277 1278 1279 1280
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1281
			for (i = 0; i < efx->n_channels; i++)
1282 1283
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1284 1285 1286
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1287 1288
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1289 1290 1291 1292 1293
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1294
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1295 1296
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1297 1298
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1299
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1300
		} else {
1301 1302
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1303 1304 1305 1306 1307 1308
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1309
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1310 1311
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1312 1313
		efx->legacy_irq = efx->pci_dev->irq;
	}
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1330
	return 0;
1331 1332
}

1333
/* Enable interrupts, then probe and start the event queues */
1334
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1335 1336 1337 1338 1339 1340 1341 1342
{
	struct efx_channel *channel;

	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1343 1344
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1345 1346 1347 1348 1349 1350
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1351
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
{
	struct efx_channel *channel;

	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1368 1369
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1370 1371 1372
	}
}

1373 1374 1375 1376 1377
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1378
	efx_for_each_channel(channel, efx)
1379 1380 1381 1382 1383 1384 1385 1386
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1387
static void efx_set_channels(struct efx_nic *efx)
1388
{
1389 1390 1391
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1392
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1393
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1394 1395 1396 1397 1398 1399 1400 1401 1402

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1403 1404 1405 1406
}

static int efx_probe_nic(struct efx_nic *efx)
{
1407
	size_t i;
1408 1409
	int rc;

1410
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1411 1412

	/* Carry out hardware-type specific initialisation */
1413
	rc = efx->type->probe(efx);
1414 1415 1416
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1417
	/* Determine the number of channels and queues by trying to hook
1418
	 * in MSI-X interrupts. */
1419 1420 1421
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1422

1423 1424
	efx->type->dimension_resources(efx);

1425 1426
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1427
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1428 1429
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1430

1431
	efx_set_channels(efx);
1432 1433
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1434 1435

	/* Initialise the interrupt moderation settings */
1436 1437
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1438 1439

	return 0;
1440 1441 1442 1443

fail:
	efx->type->remove(efx);
	return rc;
1444 1445 1446 1447
}

static void efx_remove_nic(struct efx_nic *efx)
{
1448
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1449 1450

	efx_remove_interrupts(efx);
1451
	efx->type->remove(efx);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1466
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1467 1468 1469 1470 1471
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1472
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1473 1474 1475
		goto fail2;
	}

1476
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1477

B
Ben Hutchings 已提交
1478 1479 1480 1481
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1482
		goto fail3;
B
Ben Hutchings 已提交
1483 1484
	}

1485 1486 1487 1488
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1489 1490
	return 0;

B
Ben Hutchings 已提交
1491
 fail4:
1492
	efx_remove_filters(efx);
1493 1494 1495 1496 1497 1498 1499 1500
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1501 1502 1503 1504 1505
/* Called after previous invocation(s) of efx_stop_all, restarts the port,
 * kernel transmit queues and NAPI processing, and ensures that the port is
 * scheduled to be reconfigured. This function is safe to call multiple
 * times when the NIC is in any state.
 */
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1516
	if (!netif_running(efx->net_dev))
1517 1518 1519
		return;

	efx_start_port(efx);
1520
	efx_start_datapath(efx);
1521

1522 1523 1524 1525
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1526 1527
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1528 1529 1530 1531 1532 1533
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1534

1535
	efx->type->start_stats(efx);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);
	/* Stop scheduled port reconfigurations */
1546
	cancel_work_sync(&efx->mac_work);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1562
	efx->type->stop_stats(efx);
1563 1564
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1565
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1566 1567 1568 1569
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1570 1571 1572
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1573 1574 1575 1576
}

static void efx_remove_all(struct efx_nic *efx)
{
1577
	efx_remove_channels(efx);
1578
	efx_remove_filters(efx);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1589
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1590
{
1591 1592
	if (usecs == 0)
		return 0;
1593
	if (usecs * 1000 < quantum_ns)
1594
		return 1; /* never round down to 0 */
1595
	return usecs * 1000 / quantum_ns;
1596 1597
}

1598
/* Set interrupt moderation parameters */
1599 1600 1601
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1602
{
1603
	struct efx_channel *channel;
1604 1605 1606 1607 1608
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1609 1610 1611

	EFX_ASSERT_RESET_SERIALISED(efx);

1612
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1613 1614
		return -EINVAL;

1615 1616 1617
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1618 1619 1620 1621 1622 1623 1624
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1625
	efx->irq_rx_adaptive = rx_adaptive;
1626
	efx->irq_rx_moderation = rx_ticks;
1627
	efx_for_each_channel(channel, efx) {
1628
		if (efx_channel_has_rx_queue(channel))
1629
			channel->irq_moderation = rx_ticks;
1630
		else if (efx_channel_has_tx_queues(channel))
1631 1632
			channel->irq_moderation = tx_ticks;
	}
1633 1634

	return 0;
1635 1636
}

1637 1638 1639
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1640 1641 1642 1643
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1644
	*rx_adaptive = efx->irq_rx_adaptive;
1645 1646 1647
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1648 1649 1650 1651 1652 1653 1654 1655

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1656
		*tx_usecs = DIV_ROUND_UP(
1657
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1658 1659
			efx->timer_quantum_ns,
			1000);
1660 1661
}

1662 1663 1664 1665 1666 1667
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1668
/* Run periodically off the general workqueue */
1669 1670 1671 1672 1673
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1674 1675 1676
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1677
	BUG_ON(efx->type->monitor == NULL);
1678 1679 1680

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1681 1682 1683 1684 1685 1686
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1703
	struct efx_nic *efx = netdev_priv(net_dev);
1704
	struct mii_ioctl_data *data = if_mii(ifr);
1705 1706 1707

	EFX_ASSERT_RESET_SERIALISED(efx);

1708 1709 1710 1711 1712 1713
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1714 1715 1716 1717 1718 1719 1720 1721
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1722 1723 1724 1725 1726 1727 1728 1729 1730
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1731
static void efx_init_napi(struct efx_nic *efx)
1732 1733 1734
{
	struct efx_channel *channel;

1735 1736
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1737 1738 1739 1740 1741 1742 1743
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1744 1745 1746 1747 1748 1749
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1750 1751
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1768
	struct efx_nic *efx = netdev_priv(net_dev);
1769 1770
	struct efx_channel *channel;

1771
	efx_for_each_channel(channel, efx)
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1786
	struct efx_nic *efx = netdev_priv(net_dev);
1787 1788
	EFX_ASSERT_RESET_SERIALISED(efx);

1789 1790
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1791

1792 1793
	if (efx->state == STATE_DISABLED)
		return -EIO;
1794 1795
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1796 1797
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1798

1799 1800 1801 1802
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1813
	struct efx_nic *efx = netdev_priv(net_dev);
1814

1815 1816
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1817

1818 1819 1820 1821
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
	}
1822 1823 1824 1825

	return 0;
}

1826
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1827 1828
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1829
{
1830
	struct efx_nic *efx = netdev_priv(net_dev);
1831 1832
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1833
	spin_lock_bh(&efx->stats_lock);
1834

1835
	efx->type->update_stats(efx);
1836 1837 1838 1839 1840

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1841
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1859 1860
	spin_unlock_bh(&efx->stats_lock);

1861 1862 1863 1864 1865 1866
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1867
	struct efx_nic *efx = netdev_priv(net_dev);
1868

1869 1870 1871
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1872

1873
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1874 1875 1876 1877 1878 1879
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1880
	struct efx_nic *efx = netdev_priv(net_dev);
1881 1882 1883 1884 1885 1886 1887 1888

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1889
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1890

B
Ben Hutchings 已提交
1891 1892 1893
	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1894
	net_dev->mtu = new_mtu;
1895
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1896 1897
	mutex_unlock(&efx->mac_lock);

1898
	efx_start_all(efx);
1899
	return 0;
1900 1901 1902 1903
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1904
	struct efx_nic *efx = netdev_priv(net_dev);
1905 1906 1907 1908 1909 1910
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1911 1912 1913
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1914 1915 1916 1917 1918 1919
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1920
	mutex_lock(&efx->mac_lock);
1921
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1922
	mutex_unlock(&efx->mac_lock);
1923 1924 1925 1926

	return 0;
}

1927
/* Context: netif_addr_lock held, BHs disabled. */
1928
static void efx_set_rx_mode(struct net_device *net_dev)
1929
{
1930
	struct efx_nic *efx = netdev_priv(net_dev);
1931
	struct netdev_hw_addr *ha;
1932 1933 1934 1935
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1936
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1937 1938

	/* Build multicast hash table */
1939
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1940 1941 1942
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1943 1944
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1945 1946 1947 1948
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1949 1950 1951 1952 1953 1954
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1955

1956 1957 1958
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1959 1960
}

1961
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
1972 1973 1974
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
1975
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
1976 1977 1978 1979 1980 1981
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
1982
	.ndo_set_rx_mode	= efx_set_rx_mode,
1983
	.ndo_set_features	= efx_set_features,
S
Stephen Hemminger 已提交
1984 1985 1986
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
1987
	.ndo_setup_tc		= efx_setup_tc,
1988 1989 1990
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
1991 1992
};

1993 1994 1995 1996 1997 1998 1999
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2000 2001 2002
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2003
	struct net_device *net_dev = ptr;
2004

2005 2006 2007
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2008 2009 2010 2011 2012 2013 2014 2015

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2016 2017 2018 2019 2020 2021 2022 2023
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2024 2025 2026
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2027
	struct efx_channel *channel;
2028 2029 2030 2031
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2032
	net_dev->netdev_ops = &efx_netdev_ops;
2033 2034
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

2035
	rtnl_lock();
2036 2037 2038 2039

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2040
	efx_update_name(efx);
2041 2042 2043 2044 2045

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2046 2047
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2048 2049
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2050 2051
	}

2052
	/* Always start with carrier off; PHY events will detect the link */
2053
	netif_carrier_off(net_dev);
2054

2055
	rtnl_unlock();
2056

B
Ben Hutchings 已提交
2057 2058
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2059 2060
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2061 2062 2063
		goto fail_registered;
	}

2064
	return 0;
B
Ben Hutchings 已提交
2065

2066 2067
fail_locked:
	rtnl_unlock();
2068
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2069 2070
	return rc;

B
Ben Hutchings 已提交
2071 2072 2073
fail_registered:
	unregister_netdev(net_dev);
	return rc;
2074 2075 2076 2077
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2078
	struct efx_channel *channel;
2079 2080 2081 2082 2083
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2084
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2085 2086 2087 2088

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2089 2090 2091 2092
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2093

2094 2095 2096
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
2097 2098 2099 2100 2101 2102 2103 2104
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2105 2106
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2107
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2108 2109 2110
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2111 2112 2113
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2114
	efx_stop_interrupts(efx, false);
2115 2116
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2117
	efx->type->fini(efx);
2118 2119
}

B
Ben Hutchings 已提交
2120 2121 2122 2123 2124
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2125
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2126 2127 2128
{
	int rc;

B
Ben Hutchings 已提交
2129
	EFX_ASSERT_RESET_SERIALISED(efx);
2130

2131
	rc = efx->type->init(efx);
2132
	if (rc) {
2133
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2134
		goto fail;
2135 2136
	}

2137 2138 2139
	if (!ok)
		goto fail;

2140
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2141 2142 2143 2144
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2145 2146
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2147 2148
	}

2149
	efx->type->reconfigure_mac(efx);
2150

2151
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2152
	efx_restore_filters(efx);
2153 2154 2155 2156 2157 2158 2159 2160 2161

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2162 2163 2164

	mutex_unlock(&efx->mac_lock);

2165 2166 2167
	return rc;
}

2168 2169
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2170
 *
2171
 * Caller must hold the rtnl_lock.
2172
 */
2173
int efx_reset(struct efx_nic *efx, enum reset_type method)
2174
{
2175 2176
	int rc, rc2;
	bool disabled;
2177

2178 2179
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2180

2181
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2182
	efx_reset_down(efx, method);
2183

2184
	rc = efx->type->reset(efx, method);
2185
	if (rc) {
2186
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2187
		goto out;
2188 2189
	}

2190 2191 2192 2193
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2194 2195 2196 2197 2198 2199 2200

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2201
out:
2202
	/* Leave device stopped if necessary */
2203 2204 2205 2206 2207 2208
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2209 2210
	}

2211
	if (disabled) {
2212
		dev_close(efx->net_dev);
2213
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2214 2215
		efx->state = STATE_DISABLED;
	} else {
2216
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2217
		netif_device_attach(efx->net_dev);
2218
	}
2219 2220 2221 2222 2223 2224 2225 2226
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2227
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2228
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2229

2230
	if (!pending)
2231 2232
		return;

2233
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2234
	 * flags set so that efx_pci_probe_main will be retried */
2235
	if (efx->state != STATE_RUNNING) {
2236 2237
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2238 2239 2240 2241
		return;
	}

	rtnl_lock();
2242
	(void)efx_reset(efx, fls(pending) - 1);
2243
	rtnl_unlock();
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2256 2257
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2258 2259
		break;
	default:
2260
		method = efx->type->map_reset_reason(type);
2261 2262 2263
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2264 2265
		break;
	}
2266

2267
	set_bit(method, &efx->reset_pending);
2268

2269 2270 2271 2272
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2273
	queue_work(reset_workqueue, &efx->reset_work);
2274 2275 2276 2277 2278 2279 2280 2281 2282
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2283
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2284 2285
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2286
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2287 2288
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2289
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2290
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2291
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2292
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2293
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2294 2295 2296 2297 2298
	{0}			/* end of list */
};

/**************************************************************************
 *
2299
 * Dummy PHY/MAC operations
2300
 *
2301
 * Can be used for some unimplemented operations
2302 2303 2304 2305 2306 2307 2308 2309 2310
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2311 2312

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2313 2314 2315
{
	return false;
}
2316

2317
static const struct efx_phy_operations efx_dummy_phy_operations = {
2318
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2319
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2320
	.poll		 = efx_port_dummy_op_poll,
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2333
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2334 2335
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2336
	int i;
2337 2338 2339 2340

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2341 2342 2343
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2344 2345 2346
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
2347
	efx->msg_enable = debug;
2348 2349 2350 2351 2352 2353 2354
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2355
	efx->mdio.dev = net_dev;
2356
	INIT_WORK(&efx->mac_work, efx_mac_work);
2357
	init_waitqueue_head(&efx->flush_wq);
2358 2359

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2360 2361 2362
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2373 2374 2375 2376
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2377
	if (!efx->workqueue)
2378
		goto fail;
2379

2380
	return 0;
2381 2382 2383 2384

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2385 2386 2387 2388
}

static void efx_fini_struct(struct efx_nic *efx)
{
2389 2390 2391 2392 2393
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2411 2412 2413 2414
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2415
	efx_stop_interrupts(efx, false);
2416
	efx_nic_fini_interrupt(efx);
2417
	efx_fini_port(efx);
2418
	efx->type->fini(efx);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

2442
	efx_stop_interrupts(efx, false);
2443 2444
	efx_unregister_netdev(efx);

2445 2446
	efx_mtd_remove(efx);

2447 2448 2449 2450
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2451
	cancel_work_sync(&efx->reset_work);
2452 2453 2454 2455

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2456
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2475
	efx_init_napi(efx);
2476

2477
	rc = efx->type->init(efx);
2478
	if (rc) {
2479 2480
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2481
		goto fail3;
2482 2483 2484 2485
	}

	rc = efx_init_port(efx);
	if (rc) {
2486 2487
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2488
		goto fail4;
2489 2490
	}

2491
	rc = efx_nic_init_interrupt(efx);
2492
	if (rc)
2493
		goto fail5;
2494
	efx_start_interrupts(efx, false);
2495 2496 2497

	return 0;

2498
 fail5:
2499 2500
	efx_fini_port(efx);
 fail4:
2501
	efx->type->fini(efx);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2512
 * theoretically).  It sets up PCI mappings, resets the NIC,
2513 2514 2515 2516 2517 2518 2519 2520
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2521
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2522 2523
	struct net_device *net_dev;
	struct efx_nic *efx;
2524
	int rc;
2525 2526

	/* Allocate and initialise a struct net_device and struct efx_nic */
2527 2528
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2529 2530
	if (!net_dev)
		return -ENOMEM;
2531
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2532
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2533
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2534 2535
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2536 2537
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2538 2539 2540 2541
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2542
	efx = netdev_priv(net_dev);
2543
	pci_set_drvdata(pci_dev, efx);
2544
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2545 2546 2547 2548
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2549
	netif_info(efx, probe, efx->net_dev,
2550
		   "Solarflare NIC detected\n");
2551 2552 2553 2554 2555 2556

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2557
	rc = efx_pci_probe_main(efx);
2558

2559 2560 2561 2562 2563
	/* Serialise against efx_reset(). No more resets will be
	 * scheduled since efx_stop_all() has been called, and we have
	 * not and never have been registered.
	 */
	cancel_work_sync(&efx->reset_work);
2564

2565 2566
	if (rc)
		goto fail3;
2567

2568 2569 2570 2571 2572
	/* If there was a scheduled reset during probe, the NIC is
	 * probably hosed anyway.
	 */
	if (efx->reset_pending) {
		rc = -EIO;
2573 2574 2575
		goto fail4;
	}

2576 2577
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2578
	efx->state = STATE_RUNNING;
2579

2580 2581
	rc = efx_register_netdev(efx);
	if (rc)
2582
		goto fail4;
2583

2584
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2585

2586
	/* Try to create MTDs, but allow this to fail */
2587
	rtnl_lock();
2588
	rc = efx_mtd_probe(efx);
2589
	rtnl_unlock();
2590 2591 2592 2593
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2594 2595 2596
	return 0;

 fail4:
2597
	efx_pci_remove_main(efx);
2598 2599 2600 2601 2602
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2603
	WARN_ON(rc > 0);
2604
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2605 2606 2607 2608
	free_netdev(net_dev);
	return rc;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
2618
	efx_stop_interrupts(efx, false);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

2629
	efx_start_interrupts(efx, false);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2643 2644 2645
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2656
	efx->reset_pending = 0;
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2698
static const struct dev_pm_ops efx_pm_ops = {
2699 2700 2701 2702 2703 2704 2705 2706
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2707
static struct pci_driver efx_pci_driver = {
2708
	.name		= KBUILD_MODNAME,
2709 2710 2711
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2712
	.driver.pm	= &efx_pm_ops,
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2735 2736 2737 2738 2739
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2740 2741 2742 2743 2744 2745 2746 2747

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2748 2749
	destroy_workqueue(reset_workqueue);
 err_reset:
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2760
	destroy_workqueue(reset_workqueue);
2761 2762 2763 2764 2765 2766 2767
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2768 2769
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2770 2771 2772
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);