efx.c 86.3 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29
#include "sriov.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
81 82 83 84
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
85
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
86 87
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88
	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
89 90
};

91 92 93 94 95 96
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

97 98 99 100 101 102
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

103 104 105 106 107 108 109 110 111
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
112 113
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
114
 *
115
 * This is only used in MSI-X interrupt mode
116
 */
117 118
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
119 120
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
121 122 123 124 125 126 127

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
128 129
 * monitor.
 * On Falcon-based NICs, this will:
130 131
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
132 133
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
134
 */
S
stephen hemminger 已提交
135
static unsigned int efx_monitor_interval = 1 * HZ;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
168
 * The default (0) means to assign an interrupt to each core.
169 170 171 172 173
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

174 175
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
176 177
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

178
static unsigned irq_adapt_low_thresh = 8000;
179 180 181 182
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

183
static unsigned irq_adapt_high_thresh = 16000;
184 185 186 187
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

188 189 190 191 192 193 194
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

195 196 197 198 199
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
200

201
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
202
static void efx_soft_disable_interrupts(struct efx_nic *efx);
203
static void efx_remove_channel(struct efx_channel *channel);
204
static void efx_remove_channels(struct efx_nic *efx);
205
static const struct efx_channel_type efx_default_channel_type;
206
static void efx_remove_port(struct efx_nic *efx);
207
static void efx_init_napi_channel(struct efx_channel *channel);
208
static void efx_fini_napi(struct efx_nic *efx);
209
static void efx_fini_napi_channel(struct efx_channel *channel);
210 211 212
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
213 214 215

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
216
		if ((efx->state == STATE_READY) ||	\
217
		    (efx->state == STATE_RECOVERY) ||	\
218
		    (efx->state == STATE_DISABLED))	\
219 220 221
			ASSERT_RTNL();			\
	} while (0)

222 223
static int efx_check_disabled(struct efx_nic *efx)
{
224
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
225 226 227 228 229 230 231
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
245
static int efx_process_channel(struct efx_channel *channel, int budget)
246
{
247
	int spent;
248

249
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
250
		return 0;
251

252
	spent = efx_nic_process_eventq(channel, budget);
253 254 255 256
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

257
		efx_rx_flush_packet(channel);
258
		efx_fast_push_rx_descriptors(rx_queue, true);
259 260
	}

261
	return spent;
262 263 264 265 266 267 268 269 270 271 272
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
273
	struct efx_nic *efx = channel->efx;
274
	int spent;
275

276 277 278
	if (!efx_channel_lock_napi(channel))
		return budget;

279 280 281
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
282

283
	spent = efx_process_channel(channel, budget);
284

285
	if (spent < budget) {
286
		if (efx_channel_has_rx_queue(channel) &&
287 288 289 290
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
291 292
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
293
					efx->type->push_irq_moderation(channel);
294
				}
295 296
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
297 298 299
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
300
					efx->type->push_irq_moderation(channel);
301
				}
302 303 304 305 306
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

307 308
		efx_filter_rfs_expire(channel);

309
		/* There is no race here; although napi_disable() will
310
		 * only wait for napi_complete(), this isn't a problem
311
		 * since efx_nic_eventq_read_ack() will have no effect if
312 313
		 * interrupts have already been disabled.
		 */
314
		napi_complete(napi);
315
		efx_nic_eventq_read_ack(channel);
316 317
	}

318
	efx_channel_unlock_napi(channel);
319
	return spent;
320 321 322 323 324 325 326 327 328
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
329 330 331
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

332
	netif_dbg(efx, probe, efx->net_dev,
333
		  "chan %d create event queue\n", channel->channel);
334

335 336 337 338 339 340
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

341
	return efx_nic_probe_eventq(channel);
342 343 344
}

/* Prepare channel's event queue */
345
static int efx_init_eventq(struct efx_channel *channel)
346
{
347
	struct efx_nic *efx = channel->efx;
348 349 350 351
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

352
	netif_dbg(efx, drv, efx->net_dev,
353
		  "chan %d init event queue\n", channel->channel);
354

355 356
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
357
		efx->type->push_irq_moderation(channel);
358 359 360 361
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
362 363
}

364
/* Enable event queue processing and NAPI */
365
void efx_start_eventq(struct efx_channel *channel)
366 367 368 369
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

370
	/* Make sure the NAPI handler sees the enabled flag set */
371 372 373
	channel->enabled = true;
	smp_wmb();

374
	efx_channel_enable(channel);
375 376 377 378 379
	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
380
void efx_stop_eventq(struct efx_channel *channel)
381 382 383 384 385
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
386 387
	while (!efx_channel_disable(channel))
		usleep_range(1000, 20000);
388 389 390
	channel->enabled = false;
}

391 392
static void efx_fini_eventq(struct efx_channel *channel)
{
393 394 395
	if (!channel->eventq_init)
		return;

396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
398

399
	efx_nic_fini_eventq(channel);
400
	channel->eventq_init = false;
401 402 403 404
}

static void efx_remove_eventq(struct efx_channel *channel)
{
405 406
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
407

408
	efx_nic_remove_eventq(channel);
409 410 411 412 413 414 415 416
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

417
/* Allocate and initialise a channel structure. */
418 419 420 421 422 423 424 425
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

426 427 428
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
429

430 431 432
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
433

434 435 436 437 438 439
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
440

441 442 443 444
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
445

446 447 448 449 450 451 452 453 454 455 456 457 458
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
459

460 461 462 463 464 465 466 467
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
468

469 470 471
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
472
			tx_queue->channel = channel;
473 474
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
475 476 477
	}

	rx_queue = &channel->rx_queue;
478 479
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
480 481 482 483 484 485
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

486 487 488 489 490 491
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

492 493
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
494

495 496 497 498
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

499 500
	rc = efx_probe_eventq(channel);
	if (rc)
501
		goto fail;
502 503 504 505

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
506
			goto fail;
507 508 509 510 511
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
512
			goto fail;
513 514 515 516
	}

	return 0;

517 518
fail:
	efx_remove_channel(channel);
519 520 521
	return rc;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
540

541 542 543 544
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

545 546
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
547 548
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
549 550
}

551 552 553 554 555 556 557 558
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

559 560 561 562 563 564
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

582 583 584 585
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
586
static void efx_start_datapath(struct efx_nic *efx)
587
{
588
	bool old_rx_scatter = efx->rx_scatter;
589 590 591
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
592
	size_t rx_buf_len;
593

594 595 596 597
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
598
	efx->rx_dma_len = (efx->rx_prefix_size +
599 600
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
601
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
602
		      efx->rx_ip_align + efx->rx_dma_len);
603
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
604
		efx->rx_scatter = efx->type->always_rx_scatter;
605 606
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
607
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
608
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
609 610 611
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
612 613 614 615 616 617 618 619
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

620 621 622 623 624 625 626 627 628 629 630
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
631

J
Jon Cooper 已提交
632
	/* RX filters may also have scatter-enabled flags */
633
	if (efx->rx_scatter != old_rx_scatter)
634
		efx->type->filter_update_rx_scatter(efx);
635

636 637 638 639 640 641 642 643 644 645
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

646 647
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
648
		efx_for_each_channel_tx_queue(tx_queue, channel) {
649
			efx_init_tx_queue(tx_queue);
650 651
			atomic_inc(&efx->active_queues);
		}
652

653
		efx_for_each_channel_rx_queue(rx_queue, channel) {
654
			efx_init_rx_queue(rx_queue);
655
			atomic_inc(&efx->active_queues);
656 657 658
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
659
		}
660

661
		WARN_ON(channel->rx_pkt_n_frags);
662 663
	}

664 665
	efx_ptp_start_datapath(efx);

666 667
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
668 669
}

670
static void efx_stop_datapath(struct efx_nic *efx)
671 672 673 674
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
675
	int rc;
676 677 678 679

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

680 681
	efx_ptp_stop_datapath(efx);

682 683 684 685 686 687
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

688
	efx_for_each_channel(channel, efx) {
689 690 691 692 693 694 695 696 697 698
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
699
	}
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
719 720
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
721
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
722 723 724 725 726 727 728 729 730
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

731 732
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
733 734 735

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
736
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 738
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
739
	channel->type->post_remove(channel);
740 741
}

742 743 744 745 746 747 748 749 750 751 752 753 754
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
755
	unsigned i, next_buffer_table = 0;
756
	int rc, rc2;
757 758 759 760

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
783

784
	efx_device_detach_sync(efx);
785
	efx_stop_all(efx);
B
Ben Hutchings 已提交
786
	efx_soft_disable_interrupts(efx);
787

788
	/* Clone channels (where possible) */
789 790
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
791 792 793
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

812 813
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
814 815

	for (i = 0; i < efx->n_channels; i++) {
816 817 818 819 820 821 822
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
823
	}
824

825
out:
826 827 828 829 830 831 832 833 834
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
835

836 837 838 839 840 841 842 843 844 845
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

860
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
861
{
862
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
863 864
}

865 866
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
867
	.post_remove		= efx_channel_dummy_op_void,
868 869 870 871 872 873 874 875 876 877
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

878 879 880 881
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

882 883 884 885 886 887 888 889 890 891
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
892
void efx_link_status_changed(struct efx_nic *efx)
893
{
894 895
	struct efx_link_state *link_state = &efx->link_state;

896 897 898 899 900 901 902
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

903
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
904 905
		efx->n_link_state_changes++;

906
		if (link_state->up)
907 908 909 910 911 912
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
913
	if (link_state->up)
914
		netif_info(efx, link, efx->net_dev,
915
			   "link up at %uMbps %s-duplex (MTU %d)\n",
916
			   link_state->speed, link_state->fd ? "full" : "half",
917
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
918
	else
919
		netif_info(efx, link, efx->net_dev, "link down\n");
920 921
}

B
Ben Hutchings 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

935
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

950 951
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
952 953 954 955 956 957 958 959
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
960
{
B
Ben Hutchings 已提交
961 962
	enum efx_phy_mode phy_mode;
	int rc;
963

B
Ben Hutchings 已提交
964
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
965

B
Ben Hutchings 已提交
966 967
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
968 969 970 971 972
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
973
	rc = efx->type->reconfigure_port(efx);
974

B
Ben Hutchings 已提交
975 976
	if (rc)
		efx->phy_mode = phy_mode;
977

B
Ben Hutchings 已提交
978
	return rc;
979 980 981 982
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
983
int efx_reconfigure_port(struct efx_nic *efx)
984
{
B
Ben Hutchings 已提交
985 986
	int rc;

987 988 989
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
990
	rc = __efx_reconfigure_port(efx);
991
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
992 993

	return rc;
994 995
}

996 997 998
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
999 1000 1001 1002 1003
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
1004
	if (efx->port_enabled)
1005
		efx->type->reconfigure_mac(efx);
1006 1007 1008
	mutex_unlock(&efx->mac_lock);
}

1009 1010 1011 1012
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1013
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1014

1015 1016 1017
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1018 1019
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1020
	if (rc)
1021
		return rc;
1022

1023
	/* Initialise MAC address to permanent address */
1024
	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1025 1026 1027 1028 1029 1030 1031 1032

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1033
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1034

1035 1036
	mutex_lock(&efx->mac_lock);

1037
	rc = efx->phy_op->init(efx);
1038
	if (rc)
1039
		goto fail1;
1040

1041
	efx->port_initialized = true;
1042

B
Ben Hutchings 已提交
1043 1044
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1045
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1046 1047 1048

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
1049
	if (rc && rc != -EPERM)
B
Ben Hutchings 已提交
1050 1051
		goto fail2;

1052
	mutex_unlock(&efx->mac_lock);
1053
	return 0;
1054

1055
fail2:
1056
	efx->phy_op->fini(efx);
1057 1058
fail1:
	mutex_unlock(&efx->mac_lock);
1059
	return rc;
1060 1061 1062 1063
}

static void efx_start_port(struct efx_nic *efx)
{
1064
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1065 1066 1067
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1068
	efx->port_enabled = true;
1069

1070
	/* Ensure MAC ingress/egress is enabled */
1071
	efx->type->reconfigure_mac(efx);
1072

1073 1074 1075
	mutex_unlock(&efx->mac_lock);
}

1076 1077 1078 1079 1080
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 * and the async self-test, wait for them to finish and prevent them
 * being scheduled again.  This doesn't cover online resets, which
 * should only be cancelled when removing the device.
 */
1081 1082
static void efx_stop_port(struct efx_nic *efx)
{
1083
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1084

1085 1086
	EFX_ASSERT_RESET_SERIALISED(efx);

1087
	mutex_lock(&efx->mac_lock);
1088
	efx->port_enabled = false;
1089 1090 1091
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1092 1093
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1094 1095 1096 1097

	cancel_delayed_work_sync(&efx->monitor_work);
	efx_selftest_async_cancel(efx);
	cancel_work_sync(&efx->mac_work);
1098 1099 1100 1101
}

static void efx_fini_port(struct efx_nic *efx)
{
1102
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1103 1104 1105 1106

	if (!efx->port_initialized)
		return;

1107
	efx->phy_op->fini(efx);
1108
	efx->port_initialized = false;
1109

1110
	efx->link_state.up = false;
1111 1112 1113 1114 1115
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1116
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1117

1118
	efx->type->remove_port(efx);
1119 1120 1121 1122 1123 1124 1125 1126
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static LIST_HEAD(efx_primary_list);
static LIST_HEAD(efx_unassociated_list);

static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
{
	return left->type == right->type &&
		left->vpd_sn && right->vpd_sn &&
		!strcmp(left->vpd_sn, right->vpd_sn);
}

static void efx_associate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	if (efx->primary == efx) {
		/* Adding primary function; look for secondaries */

		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
		list_add_tail(&efx->node, &efx_primary_list);

		list_for_each_entry_safe(other, next, &efx_unassociated_list,
					 node) {
			if (efx_same_controller(efx, other)) {
				list_del(&other->node);
				netif_dbg(other, probe, other->net_dev,
					  "moving to secondary list of %s %s\n",
					  pci_name(efx->pci_dev),
					  efx->net_dev->name);
				list_add_tail(&other->node,
					      &efx->secondary_list);
				other->primary = efx;
			}
		}
	} else {
		/* Adding secondary function; look for primary */

		list_for_each_entry(other, &efx_primary_list, node) {
			if (efx_same_controller(efx, other)) {
				netif_dbg(efx, probe, efx->net_dev,
					  "adding to secondary list of %s %s\n",
					  pci_name(other->pci_dev),
					  other->net_dev->name);
				list_add_tail(&efx->node,
					      &other->secondary_list);
				efx->primary = other;
				return;
			}
		}

		netif_dbg(efx, probe, efx->net_dev,
			  "adding to unassociated list\n");
		list_add_tail(&efx->node, &efx_unassociated_list);
	}
}

static void efx_dissociate(struct efx_nic *efx)
{
	struct efx_nic *other, *next;

	list_del(&efx->node);
	efx->primary = NULL;

	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
		list_del(&other->node);
		netif_dbg(other, probe, other->net_dev,
			  "moving to unassociated list\n");
		list_add_tail(&other->node, &efx_unassociated_list);
		other->primary = NULL;
	}
}

1198 1199 1200 1201 1202
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1203
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1204
	int rc, bar;
1205

1206
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1207

1208 1209
	bar = efx->type->mem_bar;

1210 1211
	rc = pci_enable_device(pci_dev);
	if (rc) {
1212 1213
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1225
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1226
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1227 1228 1229
			if (rc == 0)
				break;
		}
1230 1231 1232
		dma_mask >>= 1;
	}
	if (rc) {
1233 1234
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1235 1236
		goto fail2;
	}
1237 1238
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1239

1240 1241
	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
	rc = pci_request_region(pci_dev, bar, "sfc");
1242
	if (rc) {
1243 1244
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1245 1246 1247
		rc = -EIO;
		goto fail3;
	}
1248
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1249
	if (!efx->membase) {
1250 1251
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1252
			  (unsigned long long)efx->membase_phys, mem_map_size);
1253 1254 1255
		rc = -ENOMEM;
		goto fail4;
	}
1256 1257
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1258 1259
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1260 1261 1262 1263

	return 0;

 fail4:
1264
	pci_release_region(efx->pci_dev, bar);
1265
 fail3:
1266
	efx->membase_phys = 0;
1267 1268 1269 1270 1271 1272 1273 1274
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1275 1276
	int bar;

1277
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1278 1279 1280 1281 1282 1283 1284

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1285 1286
		bar = efx->type->mem_bar;
		pci_release_region(efx->pci_dev, bar);
1287
		efx->membase_phys = 0;
1288 1289 1290 1291 1292
	}

	pci_disable_device(efx->pci_dev);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301
void efx_set_default_rx_indir_table(struct efx_nic *efx)
{
	size_t i;

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
		efx->rx_indir_table[i] =
			ethtool_rxfh_indir_default(i, efx->rss_spread);
}

1302
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1303
{
1304
	cpumask_var_t thread_mask;
1305
	unsigned int count;
1306
	int cpu;
1307

1308 1309 1310 1311 1312 1313 1314 1315
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1327 1328
	}

1329 1330 1331
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
		    count > efx_vf_size(efx)) {
			netif_warn(efx, probe, efx->net_dev,
				   "Reducing number of RSS channels from %u to %u for "
				   "VF support. Increase vf-msix-limit to use more "
				   "channels on the PF.\n",
				   count, efx_vf_size(efx));
			count = efx_vf_size(efx);
		}
1343
	}
1344
#endif
1345 1346 1347 1348 1349 1350 1351

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1352
static int efx_probe_interrupts(struct efx_nic *efx)
1353
{
1354 1355
	unsigned int extra_channels = 0;
	unsigned int i, j;
1356
	int rc;
1357

1358 1359 1360 1361
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1362
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1363
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1364
		unsigned int n_channels;
1365

1366
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1367 1368
		if (separate_tx_channels)
			n_channels *= 2;
1369
		n_channels += extra_channels;
1370
		n_channels = min(n_channels, efx->max_channels);
1371

B
Ben Hutchings 已提交
1372
		for (i = 0; i < n_channels; i++)
1373
			xentries[i].entry = i;
1374 1375 1376 1377 1378 1379 1380 1381
		rc = pci_enable_msix_range(efx->pci_dev,
					   xentries, 1, n_channels);
		if (rc < 0) {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
		} else if (rc < n_channels) {
1382 1383
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1384
				  " available (%d < %u).\n", rc, n_channels);
1385 1386
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1387
			n_channels = rc;
1388 1389
		}

1390
		if (rc > 0) {
B
Ben Hutchings 已提交
1391
			efx->n_channels = n_channels;
1392 1393
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1394
			if (separate_tx_channels) {
1395 1396 1397 1398
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1399
			} else {
1400 1401
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1402
			}
1403
			for (i = 0; i < efx->n_channels; i++)
1404 1405
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1406 1407 1408 1409 1410
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1411
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1412 1413
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1414 1415
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1416
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1417
		} else {
1418 1419
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1420 1421 1422 1423 1424 1425
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1426
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1427 1428
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1429 1430
		efx->legacy_irq = efx->pci_dev->irq;
	}
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1447
	/* RSS might be usable on VFs even if it is disabled on the PF */
1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_SFC_SRIOV
	if (efx->type->sriov_wanted) {
		efx->rss_spread = ((efx->n_rx_channels > 1 ||
				    !efx->type->sriov_wanted(efx)) ?
				   efx->n_rx_channels : efx_vf_size(efx));
		return 0;
	}
#endif
	efx->rss_spread = efx->n_rx_channels;
1457

1458
	return 0;
1459 1460
}

1461
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1462
{
1463 1464
	struct efx_channel *channel, *end_channel;
	int rc;
1465

1466 1467
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1468 1469
	efx->irq_soft_enabled = true;
	smp_wmb();
1470 1471

	efx_for_each_channel(channel, efx) {
1472 1473 1474 1475 1476
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1477 1478 1479 1480
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1494 1495
}

B
Ben Hutchings 已提交
1496
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1497 1498 1499
{
	struct efx_channel *channel;

1500 1501 1502
	if (efx->state == STATE_DISABLED)
		return;

1503 1504
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1505 1506 1507 1508
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1509 1510 1511 1512 1513 1514 1515
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1516
		if (!channel->type->keep_eventq)
1517
			efx_fini_eventq(channel);
1518
	}
1519 1520 1521

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1522 1523
}

1524
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1525
{
1526 1527
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1528 1529 1530 1531 1532 1533 1534 1535

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1536
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1537 1538

	efx_for_each_channel(channel, efx) {
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1557
		if (channel->type->keep_eventq)
1558
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1559 1560
	}

1561 1562 1563
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1577
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1578 1579
}

1580 1581 1582 1583 1584
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1585
	efx_for_each_channel(channel, efx)
1586 1587 1588 1589 1590 1591 1592 1593
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1594
static void efx_set_channels(struct efx_nic *efx)
1595
{
1596 1597 1598
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1599
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1600
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1601

1602 1603
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1604 1605 1606
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1607 1608 1609 1610 1611
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1612 1613 1614 1615
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1616 1617 1618 1619 1620 1621
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

1622
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1623 1624

	/* Carry out hardware-type specific initialisation */
1625
	rc = efx->type->probe(efx);
1626 1627 1628
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1629
	/* Determine the number of channels and queues by trying to hook
1630
	 * in MSI-X interrupts. */
1631 1632
	rc = efx_probe_interrupts(efx);
	if (rc)
1633
		goto fail1;
1634

1635 1636
	efx_set_channels(efx);

1637 1638 1639
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1640

1641
	if (efx->n_channels > 1)
1642 1643 1644
		netdev_rss_key_fill(&efx->rx_hash_key,
				    sizeof(efx->rx_hash_key));
	efx_set_default_rx_indir_table(efx);
1645

1646 1647
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1648 1649

	/* Initialise the interrupt moderation settings */
1650 1651
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1652 1653

	return 0;
1654

1655 1656 1657
fail2:
	efx_remove_interrupts(efx);
fail1:
1658 1659
	efx->type->remove(efx);
	return rc;
1660 1661 1662 1663
}

static void efx_remove_nic(struct efx_nic *efx)
{
1664
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1665 1666

	efx_remove_interrupts(efx);
1667
	efx->type->remove(efx);
1668 1669
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1720
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1721 1722 1723 1724 1725
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1726
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1727 1728 1729
		goto fail2;
	}

1730 1731 1732 1733 1734
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1735
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1736

1737 1738 1739 1740 1741 1742 1743 1744
#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_probe(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to setup vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
1745 1746 1747 1748
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1749
		goto fail4;
B
Ben Hutchings 已提交
1750 1751
	}

1752 1753
	rc = efx_probe_channels(efx);
	if (rc)
1754
		goto fail5;
1755

1756 1757
	return 0;

1758
 fail5:
1759
	efx_remove_filters(efx);
1760 1761 1762 1763
 fail4:
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1764 1765 1766 1767 1768 1769 1770 1771
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1772 1773 1774 1775 1776 1777
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1778
 */
1779 1780 1781
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1782
	BUG_ON(efx->state == STATE_DISABLED);
1783 1784 1785

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1786 1787
	if (efx->port_enabled || !netif_running(efx->net_dev) ||
	    efx->reset_pending)
1788 1789 1790
		return;

	efx_start_port(efx);
1791
	efx_start_datapath(efx);
1792

1793 1794
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1795 1796
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1797 1798 1799 1800 1801

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1802 1803 1804 1805 1806
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1807

1808
	efx->type->start_stats(efx);
1809 1810 1811 1812
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1813 1814
}

1815 1816 1817 1818 1819
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1820 1821 1822 1823 1824 1825 1826 1827
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1828 1829 1830 1831 1832 1833 1834
	/* update stats before we go down so we can accurately count
	 * rx_nodesc_drops
	 */
	efx->type->pull_stats(efx);
	spin_lock_bh(&efx->stats_lock);
	efx->type->update_stats(efx, NULL, NULL);
	spin_unlock_bh(&efx->stats_lock);
1835
	efx->type->stop_stats(efx);
1836 1837
	efx_stop_port(efx);

1838 1839 1840 1841 1842 1843
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1844 1845 1846
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1847 1848 1849 1850
}

static void efx_remove_all(struct efx_nic *efx)
{
1851
	efx_remove_channels(efx);
1852
	efx_remove_filters(efx);
1853 1854 1855
#ifdef CONFIG_SFC_SRIOV
	efx->type->vswitching_remove(efx);
#endif
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1866
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1867
{
1868 1869
	if (usecs == 0)
		return 0;
1870
	if (usecs * 1000 < quantum_ns)
1871
		return 1; /* never round down to 0 */
1872
	return usecs * 1000 / quantum_ns;
1873 1874
}

1875
/* Set interrupt moderation parameters */
1876 1877 1878
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1879
{
1880
	struct efx_channel *channel;
1881 1882 1883 1884 1885
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1886 1887 1888

	EFX_ASSERT_RESET_SERIALISED(efx);

1889
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1890 1891
		return -EINVAL;

1892 1893 1894
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1895 1896 1897 1898 1899 1900 1901
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1902
	efx->irq_rx_adaptive = rx_adaptive;
1903
	efx->irq_rx_moderation = rx_ticks;
1904
	efx_for_each_channel(channel, efx) {
1905
		if (efx_channel_has_rx_queue(channel))
1906
			channel->irq_moderation = rx_ticks;
1907
		else if (efx_channel_has_tx_queues(channel))
1908 1909
			channel->irq_moderation = tx_ticks;
	}
1910 1911

	return 0;
1912 1913
}

1914 1915 1916
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1917 1918 1919 1920
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1921
	*rx_adaptive = efx->irq_rx_adaptive;
1922 1923 1924
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1925 1926 1927 1928 1929 1930 1931 1932

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1933
		*tx_usecs = DIV_ROUND_UP(
1934
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1935 1936
			efx->timer_quantum_ns,
			1000);
1937 1938
}

1939 1940 1941 1942 1943 1944
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1945
/* Run periodically off the general workqueue */
1946 1947 1948 1949 1950
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1951 1952 1953
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1954
	BUG_ON(efx->type->monitor == NULL);
1955 1956 1957

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1958 1959 1960 1961 1962 1963
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1980
	struct efx_nic *efx = netdev_priv(net_dev);
1981
	struct mii_ioctl_data *data = if_mii(ifr);
1982

1983
	if (cmd == SIOCSHWTSTAMP)
1984 1985 1986
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1987

1988 1989 1990 1991 1992 1993
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1994 1995 1996 1997 1998 1999 2000 2001
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

2002 2003 2004 2005 2006 2007 2008
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
2009 2010
	napi_hash_add(&channel->napi_str);
	efx_channel_init_lock(channel);
2011 2012
}

2013
static void efx_init_napi(struct efx_nic *efx)
2014 2015 2016
{
	struct efx_channel *channel;

2017 2018
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
2019 2020 2021 2022
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
2023
	if (channel->napi_dev) {
2024
		netif_napi_del(&channel->napi_str);
2025 2026
		napi_hash_del(&channel->napi_str);
	}
2027
	channel->napi_dev = NULL;
2028 2029 2030 2031 2032 2033
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

2034 2035
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
2052
	struct efx_nic *efx = netdev_priv(net_dev);
2053 2054
	struct efx_channel *channel;

2055
	efx_for_each_channel(channel, efx)
2056 2057 2058 2059 2060
		efx_schedule_channel(channel);
}

#endif

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
#ifdef CONFIG_NET_RX_BUSY_POLL
static int efx_busy_poll(struct napi_struct *napi)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct efx_nic *efx = channel->efx;
	int budget = 4;
	int old_rx_packets, rx_packets;

	if (!netif_running(efx->net_dev))
		return LL_FLUSH_FAILED;

	if (!efx_channel_lock_poll(channel))
		return LL_FLUSH_BUSY;

	old_rx_packets = channel->rx_queue.rx_packets;
	efx_process_channel(channel, budget);

	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;

	/* There is no race condition with NAPI here.
	 * NAPI will automatically be rescheduled if it yielded during busy
	 * polling, because it was not able to take the lock and thus returned
	 * the full budget.
	 */
	efx_channel_unlock_poll(channel);

	return rx_packets;
}
#endif

2092 2093 2094 2095 2096 2097 2098 2099 2100
/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
2101
	struct efx_nic *efx = netdev_priv(net_dev);
2102 2103
	int rc;

2104 2105
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
2106

2107 2108 2109
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2110 2111
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
2112 2113
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
2114

2115 2116 2117 2118
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

2119
	efx_start_all(efx);
2120
	efx_selftest_async_start(efx);
2121 2122 2123 2124 2125 2126 2127 2128 2129
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
2130
	struct efx_nic *efx = netdev_priv(net_dev);
2131

2132 2133
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
2134

2135 2136
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
2137 2138 2139 2140

	return 0;
}

2141
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
2142 2143
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
2144
{
2145
	struct efx_nic *efx = netdev_priv(net_dev);
2146

2147
	spin_lock_bh(&efx->stats_lock);
2148
	efx->type->update_stats(efx, NULL, stats);
2149 2150
	spin_unlock_bh(&efx->stats_lock);

2151 2152 2153 2154 2155 2156
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2157
	struct efx_nic *efx = netdev_priv(net_dev);
2158

2159 2160 2161
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2162

2163
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2164 2165 2166 2167 2168 2169
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2170
	struct efx_nic *efx = netdev_priv(net_dev);
2171
	int rc;
2172

2173 2174 2175
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2176 2177 2178
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2179
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2180

2181 2182 2183
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2184
	mutex_lock(&efx->mac_lock);
2185
	net_dev->mtu = new_mtu;
2186
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2187 2188
	mutex_unlock(&efx->mac_lock);

2189
	efx_start_all(efx);
2190
	netif_device_attach(efx->net_dev);
2191
	return 0;
2192 2193 2194 2195
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2196
	struct efx_nic *efx = netdev_priv(net_dev);
2197
	struct sockaddr *addr = data;
2198
	u8 *new_addr = addr->sa_data;
2199 2200

	if (!is_valid_ether_addr(new_addr)) {
2201 2202 2203
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2204
		return -EADDRNOTAVAIL;
2205 2206
	}

2207
	ether_addr_copy(net_dev->dev_addr, new_addr);
2208 2209
	if (efx->type->sriov_mac_address_changed)
		efx->type->sriov_mac_address_changed(efx);
2210 2211

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2212
	mutex_lock(&efx->mac_lock);
2213
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2214
	mutex_unlock(&efx->mac_lock);
2215 2216 2217 2218

	return 0;
}

2219
/* Context: netif_addr_lock held, BHs disabled. */
2220
static void efx_set_rx_mode(struct net_device *net_dev)
2221
{
2222
	struct efx_nic *efx = netdev_priv(net_dev);
2223

2224 2225 2226
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2227 2228
}

2229
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2230 2231 2232 2233 2234
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2235
		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2236 2237 2238 2239

	return 0;
}

2240
static const struct net_device_ops efx_netdev_ops = {
S
Stephen Hemminger 已提交
2241 2242
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2243
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2244 2245 2246 2247 2248 2249
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2250
	.ndo_set_rx_mode	= efx_set_rx_mode,
2251
	.ndo_set_features	= efx_set_features,
2252
#ifdef CONFIG_SFC_SRIOV
2253 2254 2255 2256
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2257
#endif
S
Stephen Hemminger 已提交
2258 2259 2260
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2261
	.ndo_setup_tc		= efx_setup_tc,
2262 2263 2264
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll		= efx_busy_poll,
#endif
2265 2266 2267
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2268 2269
};

2270 2271 2272 2273 2274 2275 2276
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2277 2278 2279
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2280
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2281

2282
	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2283 2284
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2285 2286 2287 2288 2289 2290 2291 2292

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2293 2294 2295 2296 2297 2298
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2299
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2300

2301 2302 2303
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2304
	struct efx_channel *channel;
2305 2306 2307 2308
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2309 2310
	net_dev->netdev_ops = &efx_netdev_ops;
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2311
		net_dev->priv_flags |= IFF_UNICAST_FLT;
2312
	net_dev->ethtool_ops = &efx_ethtool_ops;
2313
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2314

2315
	rtnl_lock();
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2330 2331 2332
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2333
	efx_update_name(efx);
2334

2335 2336 2337
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2338 2339 2340 2341
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2342 2343
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2344 2345
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2346 2347
	}

2348 2349
	efx_associate(efx);

2350
	rtnl_unlock();
2351

B
Ben Hutchings 已提交
2352 2353
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2354 2355
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2356 2357 2358
		goto fail_registered;
	}

2359
	return 0;
B
Ben Hutchings 已提交
2360

2361 2362
fail_registered:
	rtnl_lock();
2363
	efx_dissociate(efx);
2364
	unregister_netdevice(net_dev);
2365
fail_locked:
2366
	efx->state = STATE_UNINIT;
2367
	rtnl_unlock();
2368
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2369
	return rc;
2370 2371 2372 2373 2374 2375 2376
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2377
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2378

2379 2380
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2381 2382 2383 2384 2385

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2386 2387 2388 2389 2390 2391 2392 2393
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2394 2395
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2396
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2397 2398 2399
{
	EFX_ASSERT_RESET_SERIALISED(efx);

2400 2401 2402
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->prepare_flr(efx);

B
Ben Hutchings 已提交
2403
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2404
	efx_disable_interrupts(efx);
2405 2406

	mutex_lock(&efx->mac_lock);
2407 2408
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2409
	efx->type->fini(efx);
2410 2411
}

B
Ben Hutchings 已提交
2412 2413 2414 2415 2416
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2417
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2418 2419 2420
{
	int rc;

B
Ben Hutchings 已提交
2421
	EFX_ASSERT_RESET_SERIALISED(efx);
2422

2423 2424 2425 2426
	if (method == RESET_TYPE_MCDI_TIMEOUT)
		efx->type->finish_flr(efx);

	/* Ensure that SRAM is initialised even if we're disabling the device */
2427
	rc = efx->type->init(efx);
2428
	if (rc) {
2429
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2430
		goto fail;
2431 2432
	}

2433 2434 2435
	if (!ok)
		goto fail;

2436
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2437 2438 2439
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
2440 2441
		rc = efx->phy_op->reconfigure(efx);
		if (rc && rc != -EPERM)
2442 2443
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2444 2445
	}

2446 2447 2448
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
2449 2450 2451 2452 2453 2454 2455 2456 2457

#ifdef CONFIG_SFC_SRIOV
	rc = efx->type->vswitching_restore(efx);
	if (rc) /* not fatal; the PF will still work fine */
		netif_warn(efx, probe, efx->net_dev,
			   "failed to restore vswitching rc=%d;"
			   " VFs may not function\n", rc);
#endif

B
Ben Hutchings 已提交
2458
	efx_restore_filters(efx);
2459 2460
	if (efx->type->sriov_reset)
		efx->type->sriov_reset(efx);
2461 2462 2463 2464 2465 2466 2467 2468 2469

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2470 2471 2472

	mutex_unlock(&efx->mac_lock);

2473 2474 2475
	return rc;
}

2476 2477
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2478
 *
2479
 * Caller must hold the rtnl_lock.
2480
 */
2481
int efx_reset(struct efx_nic *efx, enum reset_type method)
2482
{
2483 2484
	int rc, rc2;
	bool disabled;
2485

2486 2487
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2488

2489
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2490
	efx_reset_down(efx, method);
2491

2492
	rc = efx->type->reset(efx, method);
2493
	if (rc) {
2494
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2495
		goto out;
2496 2497
	}

2498 2499 2500
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
2501 2502 2503 2504
	if (method < RESET_TYPE_MAX_METHOD)
		efx->reset_pending &= -(1 << (method + 1));
	else /* it doesn't fit into the well-ordered scope hierarchy */
		__clear_bit(method, &efx->reset_pending);
2505 2506 2507 2508 2509 2510 2511

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2512
out:
2513
	/* Leave device stopped if necessary */
2514 2515 2516
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2517 2518 2519 2520 2521
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2522 2523
	}

2524
	if (disabled) {
2525
		dev_close(efx->net_dev);
2526
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2527 2528
		efx->state = STATE_DISABLED;
	} else {
2529
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2530
		netif_device_attach(efx->net_dev);
2531
	}
2532 2533 2534
	return rc;
}

2535 2536 2537 2538 2539
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2540
int efx_try_recovery(struct efx_nic *efx)
2541 2542 2543 2544 2545 2546 2547
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
2548
	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2577 2578 2579 2580 2581
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2582
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2583 2584 2585 2586 2587 2588
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2589 2590 2591
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2592 2593 2594 2595
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2596

2597
	if (!pending)
2598 2599
		return;

2600
	rtnl_lock();
2601 2602 2603 2604 2605 2606

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2607
		(void)efx_reset(efx, method);
2608

2609
	rtnl_unlock();
2610 2611 2612 2613 2614 2615
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2616 2617 2618 2619 2620 2621 2622
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2623 2624 2625
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2626
	case RESET_TYPE_RECOVER_OR_ALL:
2627 2628
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2629
	case RESET_TYPE_RECOVER_OR_DISABLE:
2630
	case RESET_TYPE_MC_BIST:
2631
	case RESET_TYPE_MCDI_TIMEOUT:
2632
		method = type;
2633 2634
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2635 2636
		break;
	default:
2637
		method = efx->type->map_reset_reason(type);
2638 2639 2640
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2641 2642
		break;
	}
2643

2644
	set_bit(method, &efx->reset_pending);
2645 2646 2647 2648 2649 2650 2651
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2652

2653 2654 2655 2656
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2657
	queue_work(reset_workqueue, &efx->reset_work);
2658 2659 2660 2661 2662 2663 2664 2665 2666
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2667
static const struct pci_device_id efx_pci_table[] = {
2668 2669
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2670
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2671 2672
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2673
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2674
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2675
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2676
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2677
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2678 2679
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2680 2681
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2682 2683
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2684 2685 2686 2687 2688
	{0}			/* end of list */
};

/**************************************************************************
 *
2689
 * Dummy PHY/MAC operations
2690
 *
2691
 * Can be used for some unimplemented operations
2692 2693 2694 2695 2696 2697 2698 2699 2700
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2701 2702

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2703 2704 2705
{
	return false;
}
2706

2707
static const struct efx_phy_operations efx_dummy_phy_operations = {
2708
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2709
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2710
	.poll		 = efx_port_dummy_op_poll,
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2723
static int efx_init_struct(struct efx_nic *efx,
2724 2725
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2726
	int i;
2727 2728

	/* Initialise common structures */
2729 2730
	INIT_LIST_HEAD(&efx->node);
	INIT_LIST_HEAD(&efx->secondary_list);
2731
	spin_lock_init(&efx->biu_lock);
2732 2733 2734
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2735 2736
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2737
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2738
	efx->pci_dev = pci_dev;
2739
	efx->msg_enable = debug;
2740
	efx->state = STATE_UNINIT;
2741 2742 2743
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2744
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2745 2746
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2747 2748
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2749 2750
	efx->rx_packet_ts_offset =
		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2751 2752 2753
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2754
	efx->mdio.dev = net_dev;
2755
	INIT_WORK(&efx->mac_work, efx_mac_work);
2756
	init_waitqueue_head(&efx->flush_wq);
2757 2758

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2759 2760 2761
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2762 2763
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2764 2765 2766 2767 2768 2769
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2770 2771 2772 2773
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2774
	if (!efx->workqueue)
2775
		goto fail;
2776

2777
	return 0;
2778 2779 2780 2781

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2782 2783 2784 2785
}

static void efx_fini_struct(struct efx_nic *efx)
{
2786 2787 2788 2789 2790
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2791 2792
	kfree(efx->vpd_sn);

2793 2794 2795 2796 2797 2798
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
{
	u64 n_rx_nodesc_trunc = 0;
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2821 2822 2823 2824 2825 2826
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2827
	efx_disable_interrupts(efx);
2828
	efx_nic_fini_interrupt(efx);
2829
	efx_fini_port(efx);
2830
	efx->type->fini(efx);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
2848
	efx_dissociate(efx);
2849
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2850
	efx_disable_interrupts(efx);
2851 2852
	rtnl_unlock();

2853 2854 2855
	if (efx->type->sriov_fini)
		efx->type->sriov_fini(efx);

2856 2857
	efx_unregister_netdev(efx);

2858 2859
	efx_mtd_remove(efx);

2860 2861 2862
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2863
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2864 2865 2866

	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
2867 2868

	pci_disable_pcie_error_reporting(pci_dev);
2869 2870
};

2871 2872 2873 2874 2875 2876
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
2877
static void efx_probe_vpd_strings(struct efx_nic *efx)
2878 2879 2880 2881
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
2882
	int ro_start, ro_size, i, j;
2883 2884 2885 2886 2887 2888 2889 2890 2891

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
2892 2893
	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (ro_start < 0) {
2894 2895 2896 2897
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

2898 2899 2900
	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
	j = ro_size;
	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
	j = ro_size;
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
		return;
	}

	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
	if (!efx->vpd_sn)
		return;

	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2941 2942 2943
}


2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2956
	efx_init_napi(efx);
2957

2958
	rc = efx->type->init(efx);
2959
	if (rc) {
2960 2961
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2962
		goto fail3;
2963 2964 2965 2966
	}

	rc = efx_init_port(efx);
	if (rc) {
2967 2968
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2969
		goto fail4;
2970 2971
	}

2972
	rc = efx_nic_init_interrupt(efx);
2973
	if (rc)
2974
		goto fail5;
2975 2976 2977
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2978 2979 2980

	return 0;

2981 2982
 fail6:
	efx_nic_fini_interrupt(efx);
2983
 fail5:
2984 2985
	efx_fini_port(efx);
 fail4:
2986
	efx->type->fini(efx);
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2997
 * theoretically).  It sets up PCI mappings, resets the NIC,
2998 2999 3000 3001 3002
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
3003
static int efx_pci_probe(struct pci_dev *pci_dev,
3004
			 const struct pci_device_id *entry)
3005 3006 3007
{
	struct net_device *net_dev;
	struct efx_nic *efx;
3008
	int rc;
3009 3010

	/* Allocate and initialise a struct net_device and struct efx_nic */
3011 3012
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
3013 3014
	if (!net_dev)
		return -ENOMEM;
3015 3016 3017
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
3018
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3019
			      NETIF_F_RXCSUM);
3020
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
3021
		net_dev->features |= NETIF_F_TSO6;
3022 3023
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3024 3025 3026 3027
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3028
	pci_set_drvdata(pci_dev, efx);
3029
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3030
	rc = efx_init_struct(efx, pci_dev, net_dev);
3031 3032 3033
	if (rc)
		goto fail1;

3034
	netif_info(efx, probe, efx->net_dev,
3035
		   "Solarflare NIC detected\n");
3036

3037 3038
	if (!efx->type->is_vf)
		efx_probe_vpd_strings(efx);
3039

3040 3041 3042 3043 3044
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

3045 3046 3047
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
3048 3049 3050

	rc = efx_register_netdev(efx);
	if (rc)
3051
		goto fail4;
3052

3053 3054 3055 3056 3057 3058
	if (efx->type->sriov_init) {
		rc = efx->type->sriov_init(efx);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "SR-IOV can't be enabled rc %d\n", rc);
	}
3059

3060
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3061

3062
	/* Try to create MTDs, but allow this to fail */
3063
	rtnl_lock();
3064
	rc = efx_mtd_probe(efx);
3065
	rtnl_unlock();
3066 3067 3068 3069
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

3070 3071 3072 3073 3074
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

3075 3076 3077
	return 0;

 fail4:
3078
	efx_pci_remove_main(efx);
3079 3080 3081 3082 3083
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
3084
	WARN_ON(rc > 0);
3085
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3086 3087 3088 3089
	free_netdev(net_dev);
	return rc;
}

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/* efx_pci_sriov_configure returns the actual number of Virtual Functions
 * enabled on success
 */
#ifdef CONFIG_SFC_SRIOV
static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
	int rc;
	struct efx_nic *efx = pci_get_drvdata(dev);

	if (efx->type->sriov_configure) {
		rc = efx->type->sriov_configure(efx, num_vfs);
		if (rc)
			return rc;
		else
			return num_vfs;
	} else
		return -EOPNOTSUPP;
}
#endif

3110 3111 3112 3113
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3114 3115
	rtnl_lock();

3116 3117
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
3118

3119
		efx_device_detach_sync(efx);
3120

3121
		efx_stop_all(efx);
B
Ben Hutchings 已提交
3122
		efx_disable_interrupts(efx);
3123
	}
3124

3125 3126
	rtnl_unlock();

3127 3128 3129 3130 3131
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
3132
	int rc;
3133 3134
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

3135 3136
	rtnl_lock();

3137
	if (efx->state != STATE_DISABLED) {
3138 3139 3140
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
3141

3142 3143 3144
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
3145

3146
		efx_start_all(efx);
3147

3148
		netif_device_attach(efx->net_dev);
3149

3150
		efx->state = STATE_READY;
3151

3152 3153
		efx->type->resume_wol(efx);
	}
3154

3155 3156
	rtnl_unlock();

3157 3158 3159
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

3160
	return 0;
3161 3162 3163 3164 3165

fail:
	rtnl_unlock();

	return rc;
3166 3167 3168 3169 3170 3171 3172 3173 3174
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

3175
	efx->reset_pending = 0;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
3202 3203
	rc = efx_pm_thaw(dev);
	return rc;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

3217
static const struct dev_pm_ops efx_pm_ops = {
3218 3219 3220 3221 3222 3223 3224 3225
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3226 3227 3228 3229
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3230 3231
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3248
		efx_disable_interrupts(efx);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

3265
/* Fake a successful reset, which will be performed later in efx_io_resume. */
3266
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3325
static struct pci_driver efx_pci_driver = {
3326
	.name		= KBUILD_MODNAME,
3327 3328 3329
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3330
	.driver.pm	= &efx_pm_ops,
3331
	.err_handler	= &efx_err_handlers,
3332 3333 3334
#ifdef CONFIG_SFC_SRIOV
	.sriov_configure = efx_pci_sriov_configure,
#endif
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3357
#ifdef CONFIG_SFC_SRIOV
3358 3359 3360
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;
3361
#endif
3362

3363 3364 3365 3366 3367
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3368 3369 3370 3371 3372 3373 3374 3375

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3376 3377
	destroy_workqueue(reset_workqueue);
 err_reset:
3378
#ifdef CONFIG_SFC_SRIOV
3379 3380
	efx_fini_sriov();
 err_sriov:
3381
#endif
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3392
	destroy_workqueue(reset_workqueue);
3393
#ifdef CONFIG_SFC_SRIOV
3394
	efx_fini_sriov();
3395
#endif
3396 3397 3398 3399 3400 3401 3402
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3403 3404
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
B
Ben Hutchings 已提交
3405
MODULE_DESCRIPTION("Solarflare network driver");
3406 3407
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);