efx.c 80.5 KB
Newer Older
1
/****************************************************************************
B
Ben Hutchings 已提交
2
 * Driver for Solarflare network controllers and boards
3
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2013 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/ethtool.h>
21
#include <linux/topology.h>
22
#include <linux/gfp.h>
23
#include <linux/aer.h>
24
#include <linux/interrupt.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83
	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 85
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
86
	[RESET_TYPE_MC_BIST]		= "MC_BIST",
87 88
};

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100
/* How often and how many times to poll for a reset while waiting for a
 * BIST that another function started to complete.
 */
#define BIST_WAIT_DELAY_MS	100
#define BIST_WAIT_DELAY_COUNT	100

101 102 103 104 105 106 107 108 109
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
110 111
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
112
 *
113
 * This is only used in MSI-X interrupt mode
114
 */
115 116
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
117 118
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
119 120 121 122 123 124 125

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
126 127
 * monitor.
 * On Falcon-based NICs, this will:
128 129
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
130 131
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
132
 */
S
stephen hemminger 已提交
133
static unsigned int efx_monitor_interval = 1 * HZ;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166
 * The default (0) means to assign an interrupt to each core.
167 168 169 170 171
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

172 173
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
174 175
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

176
static unsigned irq_adapt_low_thresh = 8000;
177 178 179 180
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

181
static unsigned irq_adapt_high_thresh = 16000;
182 183 184 185
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

186 187 188 189 190 191 192
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

193 194 195 196 197
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
198

199
static int efx_soft_enable_interrupts(struct efx_nic *efx);
B
Ben Hutchings 已提交
200
static void efx_soft_disable_interrupts(struct efx_nic *efx);
201
static void efx_remove_channel(struct efx_channel *channel);
202
static void efx_remove_channels(struct efx_nic *efx);
203
static const struct efx_channel_type efx_default_channel_type;
204
static void efx_remove_port(struct efx_nic *efx);
205
static void efx_init_napi_channel(struct efx_channel *channel);
206
static void efx_fini_napi(struct efx_nic *efx);
207
static void efx_fini_napi_channel(struct efx_channel *channel);
208 209 210
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
211 212 213

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
214
		if ((efx->state == STATE_READY) ||	\
215
		    (efx->state == STATE_RECOVERY) ||	\
216
		    (efx->state == STATE_DISABLED))	\
217 218 219
			ASSERT_RTNL();			\
	} while (0)

220 221
static int efx_check_disabled(struct efx_nic *efx)
{
222
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 224 225 226 227 228 229
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

230 231 232 233 234 235 236 237 238 239 240 241 242
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
243
static int efx_process_channel(struct efx_channel *channel, int budget)
244
{
245
	int spent;
246

247
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
248
		return 0;
249

250
	spent = efx_nic_process_eventq(channel, budget);
251 252 253 254
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

255
		efx_rx_flush_packet(channel);
256
		efx_fast_push_rx_descriptors(rx_queue, true);
257 258
	}

259
	return spent;
260 261 262 263 264 265 266 267 268 269 270
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
271
	struct efx_nic *efx = channel->efx;
272
	int spent;
273

274 275 276
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
277

278
	spent = efx_process_channel(channel, budget);
279

280
	if (spent < budget) {
281
		if (efx_channel_has_rx_queue(channel) &&
282 283 284 285
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
286 287
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
288
					efx->type->push_irq_moderation(channel);
289
				}
290 291
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
292 293 294
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
295
					efx->type->push_irq_moderation(channel);
296
				}
297 298 299 300 301
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

302 303
		efx_filter_rfs_expire(channel);

304
		/* There is no race here; although napi_disable() will
305
		 * only wait for napi_complete(), this isn't a problem
306
		 * since efx_nic_eventq_read_ack() will have no effect if
307 308
		 * interrupts have already been disabled.
		 */
309
		napi_complete(napi);
310
		efx_nic_eventq_read_ack(channel);
311 312
	}

313
	return spent;
314 315 316 317 318 319 320 321 322
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
323 324 325
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

326
	netif_dbg(efx, probe, efx->net_dev,
327
		  "chan %d create event queue\n", channel->channel);
328

329 330 331 332 333 334
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

335
	return efx_nic_probe_eventq(channel);
336 337 338
}

/* Prepare channel's event queue */
339
static int efx_init_eventq(struct efx_channel *channel)
340
{
341
	struct efx_nic *efx = channel->efx;
342 343 344 345
	int rc;

	EFX_WARN_ON_PARANOID(channel->eventq_init);

346
	netif_dbg(efx, drv, efx->net_dev,
347
		  "chan %d init event queue\n", channel->channel);
348

349 350
	rc = efx_nic_init_eventq(channel);
	if (rc == 0) {
351
		efx->type->push_irq_moderation(channel);
352 353 354 355
		channel->eventq_read_ptr = 0;
		channel->eventq_init = true;
	}
	return rc;
356 357
}

358 359 360 361 362 363
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

364
	/* Make sure the NAPI handler sees the enabled flag set */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

382 383
static void efx_fini_eventq(struct efx_channel *channel)
{
384 385 386
	if (!channel->eventq_init)
		return;

387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
389

390
	efx_nic_fini_eventq(channel);
391
	channel->eventq_init = false;
392 393 394 395
}

static void efx_remove_eventq(struct efx_channel *channel)
{
396 397
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
398

399
	efx_nic_remove_eventq(channel);
400 401 402 403 404 405 406 407
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

408
/* Allocate and initialise a channel structure. */
409 410 411 412 413 414 415 416
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

417 418 419
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
420

421 422 423
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
424

425 426 427 428 429 430
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
431

432 433 434 435
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
436

437 438 439 440 441 442 443 444 445 446 447 448 449
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
450

451 452 453 454 455 456 457 458
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
459

460 461 462
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
463
			tx_queue->channel = channel;
464 465
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 467 468
	}

	rx_queue = &channel->rx_queue;
469 470
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 472 473 474 475 476
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

477 478 479 480 481 482
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

483 484
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
485

486 487 488 489
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

490 491
	rc = efx_probe_eventq(channel);
	if (rc)
492
		goto fail;
493 494 495 496

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
497
			goto fail;
498 499 500 501 502
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
503
			goto fail;
504 505 506 507 508 509
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

510 511
fail:
	efx_remove_channel(channel);
512 513 514
	return rc;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
533

534 535 536 537
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

538 539
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
540 541
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
542 543
}

544 545 546 547 548 549 550 551
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

552 553 554 555 556 557
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

575 576 577 578
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
579
static void efx_start_datapath(struct efx_nic *efx)
580
{
581
	bool old_rx_scatter = efx->rx_scatter;
582 583 584
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
585
	size_t rx_buf_len;
586

587 588 589 590
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
591
	efx->rx_dma_len = (efx->rx_prefix_size +
592 593
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
594
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
595
		      efx->rx_ip_align + efx->rx_dma_len);
596
	if (rx_buf_len <= PAGE_SIZE) {
J
Jon Cooper 已提交
597
		efx->rx_scatter = efx->type->always_rx_scatter;
598 599
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
600
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
601
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
602 603 604
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
605 606 607 608 609 610 611 612
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

613 614 615 616 617 618 619 620 621 622 623
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
624

J
Jon Cooper 已提交
625
	/* RX filters may also have scatter-enabled flags */
626
	if (efx->rx_scatter != old_rx_scatter)
627
		efx->type->filter_update_rx_scatter(efx);
628

629 630 631 632 633 634 635 636 637 638
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

639 640
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
641
		efx_for_each_channel_tx_queue(tx_queue, channel) {
642
			efx_init_tx_queue(tx_queue);
643 644
			atomic_inc(&efx->active_queues);
		}
645

646
		efx_for_each_channel_rx_queue(rx_queue, channel) {
647
			efx_init_rx_queue(rx_queue);
648
			atomic_inc(&efx->active_queues);
649 650 651
			efx_stop_eventq(channel);
			efx_fast_push_rx_descriptors(rx_queue, false);
			efx_start_eventq(channel);
652
		}
653

654
		WARN_ON(channel->rx_pkt_n_frags);
655 656
	}

657 658
	efx_ptp_start_datapath(efx);

659 660
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
661 662
}

663
static void efx_stop_datapath(struct efx_nic *efx)
664 665 666 667
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
668
	int rc;
669 670 671 672

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

673 674
	efx_ptp_stop_datapath(efx);

675 676 677 678 679 680
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

681
	efx_for_each_channel(channel, efx) {
682 683 684 685 686 687 688 689 690 691
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
692
	}
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	rc = efx->type->fini_dmaq(efx);
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset.
		 */
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
	} else {
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
	}

	efx_for_each_channel(channel, efx) {
712 713
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
714
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
715 716 717 718 719 720 721 722 723
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

724 725
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
726 727 728

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
729
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
730 731
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
732
	channel->type->post_remove(channel);
733 734
}

735 736 737 738 739 740 741 742 743 744 745 746 747
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
748
	unsigned i, next_buffer_table = 0;
749
	int rc, rc2;
750 751 752 753

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
776

777
	efx_device_detach_sync(efx);
778
	efx_stop_all(efx);
B
Ben Hutchings 已提交
779
	efx_soft_disable_interrupts(efx);
780

781
	/* Clone channels (where possible) */
782 783
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
784 785 786
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

805 806
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
807 808

	for (i = 0; i < efx->n_channels; i++) {
809 810 811 812 813 814 815
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
816
	}
817

818
out:
819 820 821 822 823 824 825 826 827
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
828

829 830 831 832 833 834 835 836 837 838
	rc2 = efx_soft_enable_interrupts(efx);
	if (rc2) {
		rc = rc ? rc : rc2;
		netif_err(efx, drv, efx->net_dev,
			  "unable to restart interrupts on channel reallocation\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	} else {
		efx_start_all(efx);
		netif_device_attach(efx->net_dev);
	}
839 840 841 842 843 844 845 846 847 848 849 850 851 852
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

853
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
854
{
855
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
856 857
}

858 859
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
860
	.post_remove		= efx_channel_dummy_op_void,
861 862 863 864 865 866 867 868 869 870
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

871 872 873 874
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

875 876 877 878 879 880 881 882 883 884
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
885
void efx_link_status_changed(struct efx_nic *efx)
886
{
887 888
	struct efx_link_state *link_state = &efx->link_state;

889 890 891 892 893 894 895
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

896
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
897 898
		efx->n_link_state_changes++;

899
		if (link_state->up)
900 901 902 903 904 905
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
906
	if (link_state->up)
907
		netif_info(efx, link, efx->net_dev,
908
			   "link up at %uMbps %s-duplex (MTU %d)\n",
909
			   link_state->speed, link_state->fd ? "full" : "half",
910
			   efx->net_dev->mtu);
B
Ben Hutchings 已提交
911
	else
912
		netif_info(efx, link, efx->net_dev, "link down\n");
913 914
}

B
Ben Hutchings 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

928
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

943 944
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
945 946 947 948 949 950 951 952
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
953
{
B
Ben Hutchings 已提交
954 955
	enum efx_phy_mode phy_mode;
	int rc;
956

B
Ben Hutchings 已提交
957
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
958

B
Ben Hutchings 已提交
959 960
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
961 962 963 964 965
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
966
	rc = efx->type->reconfigure_port(efx);
967

B
Ben Hutchings 已提交
968 969
	if (rc)
		efx->phy_mode = phy_mode;
970

B
Ben Hutchings 已提交
971
	return rc;
972 973 974 975
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
976
int efx_reconfigure_port(struct efx_nic *efx)
977
{
B
Ben Hutchings 已提交
978 979
	int rc;

980 981 982
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
983
	rc = __efx_reconfigure_port(efx);
984
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
985 986

	return rc;
987 988
}

989 990 991
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
992 993 994 995 996
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
997
	if (efx->port_enabled)
998
		efx->type->reconfigure_mac(efx);
999 1000 1001
	mutex_unlock(&efx->mac_lock);
}

1002 1003 1004 1005
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

1006
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1007

1008 1009 1010
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

1011 1012
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
1013
	if (rc)
1014
		return rc;
1015

1016 1017
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1018 1019 1020 1021 1022 1023 1024 1025

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

1026
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1027

1028 1029
	mutex_lock(&efx->mac_lock);

1030
	rc = efx->phy_op->init(efx);
1031
	if (rc)
1032
		goto fail1;
1033

1034
	efx->port_initialized = true;
1035

B
Ben Hutchings 已提交
1036 1037
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1038
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1039 1040 1041 1042 1043 1044

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1045
	mutex_unlock(&efx->mac_lock);
1046
	return 0;
1047

1048
fail2:
1049
	efx->phy_op->fini(efx);
1050 1051
fail1:
	mutex_unlock(&efx->mac_lock);
1052
	return rc;
1053 1054 1055 1056
}

static void efx_start_port(struct efx_nic *efx)
{
1057
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1058 1059 1060
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1061
	efx->port_enabled = true;
1062 1063 1064

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1065
	efx->type->reconfigure_mac(efx);
1066

1067 1068 1069
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1070
/* Prevent efx_mac_work() and efx_monitor() from working */
1071 1072
static void efx_stop_port(struct efx_nic *efx)
{
1073
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1074 1075

	mutex_lock(&efx->mac_lock);
1076
	efx->port_enabled = false;
1077 1078 1079
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1080 1081
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1082 1083 1084 1085
}

static void efx_fini_port(struct efx_nic *efx)
{
1086
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1087 1088 1089 1090

	if (!efx->port_initialized)
		return;

1091
	efx->phy_op->fini(efx);
1092
	efx->port_initialized = false;
1093

1094
	efx->link_state.up = false;
1095 1096 1097 1098 1099
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1100
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1101

1102
	efx->type->remove_port(efx);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
1116
	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1117 1118
	int rc;

1119
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1120 1121 1122

	rc = pci_enable_device(pci_dev);
	if (rc) {
1123 1124
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1136
		if (dma_supported(&pci_dev->dev, dma_mask)) {
1137
			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1138 1139 1140
			if (rc == 0)
				break;
		}
1141 1142 1143
		dma_mask >>= 1;
	}
	if (rc) {
1144 1145
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1146 1147
		goto fail2;
	}
1148 1149
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1150

1151 1152
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1153
	if (rc) {
1154 1155
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1156 1157 1158
		rc = -EIO;
		goto fail3;
	}
1159
	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1160
	if (!efx->membase) {
1161 1162
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
1163
			  (unsigned long long)efx->membase_phys, mem_map_size);
1164 1165 1166
		rc = -ENOMEM;
		goto fail4;
	}
1167 1168
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
1169 1170
		  (unsigned long long)efx->membase_phys, mem_map_size,
		  efx->membase);
1171 1172 1173 1174

	return 0;

 fail4:
1175
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1176
 fail3:
1177
	efx->membase_phys = 0;
1178 1179 1180 1181 1182 1183 1184 1185
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1186
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1187 1188 1189 1190 1191 1192 1193

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1194
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1195
		efx->membase_phys = 0;
1196 1197 1198 1199 1200
	}

	pci_disable_device(efx->pci_dev);
}

1201
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1202
{
1203
	cpumask_var_t thread_mask;
1204
	unsigned int count;
1205
	int cpu;
1206

1207 1208 1209 1210 1211 1212 1213 1214
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1226 1227
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1239 1240 1241 1242 1243 1244 1245 1246
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1247
static int efx_probe_interrupts(struct efx_nic *efx)
1248
{
1249 1250
	unsigned int extra_channels = 0;
	unsigned int i, j;
1251
	int rc;
1252

1253 1254 1255 1256
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1257
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1258
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1259
		unsigned int n_channels;
1260

1261
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1262 1263
		if (separate_tx_channels)
			n_channels *= 2;
1264
		n_channels += extra_channels;
1265
		n_channels = min(n_channels, efx->max_channels);
1266

B
Ben Hutchings 已提交
1267
		for (i = 0; i < n_channels; i++)
1268
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1269
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1270
		if (rc > 0) {
1271 1272
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1273
				  " available (%d < %u).\n", rc, n_channels);
1274 1275
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1276 1277
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1278
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1279
					     n_channels);
1280 1281 1282
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1283
			efx->n_channels = n_channels;
1284 1285
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1286
			if (separate_tx_channels) {
1287 1288 1289 1290
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1291
			} else {
1292 1293
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1294
			}
1295
			for (i = 0; i < efx->n_channels; i++)
1296 1297
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1298 1299 1300
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1301 1302
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1303 1304 1305 1306 1307
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1308
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1309 1310
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1311 1312
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1313
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1314
		} else {
1315 1316
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1317 1318 1319 1320 1321 1322
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1323
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1324 1325
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1326 1327
		efx->legacy_irq = efx->pci_dev->irq;
	}
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1344
	/* RSS might be usable on VFs even if it is disabled on the PF */
1345
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1346 1347
			   efx->n_rx_channels : efx_vf_size(efx));

1348
	return 0;
1349 1350
}

1351
static int efx_soft_enable_interrupts(struct efx_nic *efx)
1352
{
1353 1354
	struct efx_channel *channel, *end_channel;
	int rc;
1355

1356 1357
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1358 1359
	efx->irq_soft_enabled = true;
	smp_wmb();
1360 1361

	efx_for_each_channel(channel, efx) {
1362 1363 1364 1365 1366
		if (!channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
1367 1368 1369 1370
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

	return 0;
fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
		efx_stop_eventq(channel);
		if (!channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	return rc;
1384 1385
}

B
Ben Hutchings 已提交
1386
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1387 1388 1389
{
	struct efx_channel *channel;

1390 1391 1392
	if (efx->state == STATE_DISABLED)
		return;

1393 1394
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1395 1396 1397 1398
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1399 1400 1401 1402 1403 1404 1405
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1406
		if (!channel->type->keep_eventq)
1407
			efx_fini_eventq(channel);
1408
	}
1409 1410 1411

	/* Flush the asynchronous MCDI request queue */
	efx_mcdi_flush_async(efx);
1412 1413
}

1414
static int efx_enable_interrupts(struct efx_nic *efx)
B
Ben Hutchings 已提交
1415
{
1416 1417
	struct efx_channel *channel, *end_channel;
	int rc;
B
Ben Hutchings 已提交
1418 1419 1420 1421 1422 1423 1424 1425

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

1426
	efx->type->irq_enable_master(efx);
B
Ben Hutchings 已提交
1427 1428

	efx_for_each_channel(channel, efx) {
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		if (channel->type->keep_eventq) {
			rc = efx_init_eventq(channel);
			if (rc)
				goto fail;
		}
	}

	rc = efx_soft_enable_interrupts(efx);
	if (rc)
		goto fail;

	return 0;

fail:
	end_channel = channel;
	efx_for_each_channel(channel, efx) {
		if (channel == end_channel)
			break;
B
Ben Hutchings 已提交
1447
		if (channel->type->keep_eventq)
1448
			efx_fini_eventq(channel);
B
Ben Hutchings 已提交
1449 1450
	}

1451 1452 1453
	efx->type->irq_disable_non_ev(efx);

	return rc;
B
Ben Hutchings 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

1467
	efx->type->irq_disable_non_ev(efx);
B
Ben Hutchings 已提交
1468 1469
}

1470 1471 1472 1473 1474
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1475
	efx_for_each_channel(channel, efx)
1476 1477 1478 1479 1480 1481 1482 1483
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1484
static void efx_set_channels(struct efx_nic *efx)
1485
{
1486 1487 1488
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1489
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1490
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1491

1492 1493
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1494 1495 1496
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1497 1498 1499 1500 1501
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1502 1503 1504 1505
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1506 1507 1508 1509
}

static int efx_probe_nic(struct efx_nic *efx)
{
1510
	size_t i;
1511 1512
	int rc;

1513
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1514 1515

	/* Carry out hardware-type specific initialisation */
1516
	rc = efx->type->probe(efx);
1517 1518 1519
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1520
	/* Determine the number of channels and queues by trying to hook
1521
	 * in MSI-X interrupts. */
1522 1523
	rc = efx_probe_interrupts(efx);
	if (rc)
1524
		goto fail1;
1525

1526 1527 1528
	rc = efx->type->dimension_resources(efx);
	if (rc)
		goto fail2;
1529

1530 1531
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1532
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1533
		efx->rx_indir_table[i] =
1534
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1535

1536
	efx_set_channels(efx);
1537 1538
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1539 1540

	/* Initialise the interrupt moderation settings */
1541 1542
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1543 1544

	return 0;
1545

1546 1547 1548
fail2:
	efx_remove_interrupts(efx);
fail1:
1549 1550
	efx->type->remove(efx);
	return rc;
1551 1552 1553 1554
}

static void efx_remove_nic(struct efx_nic *efx)
{
1555
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1556 1557

	efx_remove_interrupts(efx);
1558
	efx->type->remove(efx);
1559 1560
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
static int efx_probe_filters(struct efx_nic *efx)
{
	int rc;

	spin_lock_init(&efx->filter_lock);

	rc = efx->type->filter_table_probe(efx);
	if (rc)
		return rc;

#ifdef CONFIG_RFS_ACCEL
	if (efx->type->offload_features & NETIF_F_NTUPLE) {
		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
					   sizeof(*efx->rps_flow_id),
					   GFP_KERNEL);
		if (!efx->rps_flow_id) {
			efx->type->filter_table_remove(efx);
			return -ENOMEM;
		}
	}
#endif

	return 0;
}

static void efx_remove_filters(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
	kfree(efx->rps_flow_id);
#endif
	efx->type->filter_table_remove(efx);
}

static void efx_restore_filters(struct efx_nic *efx)
{
	efx->type->filter_table_restore(efx);
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1611
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1612 1613 1614 1615 1616
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1617
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1618 1619 1620
		goto fail2;
	}

1621 1622 1623 1624 1625
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1626
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1627

B
Ben Hutchings 已提交
1628 1629 1630 1631
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1632
		goto fail3;
B
Ben Hutchings 已提交
1633 1634
	}

1635 1636 1637 1638
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1639 1640
	return 0;

B
Ben Hutchings 已提交
1641
 fail4:
1642
	efx_remove_filters(efx);
1643 1644 1645 1646 1647 1648 1649 1650
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1651 1652 1653 1654 1655 1656
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1657
 */
1658 1659 1660
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1661
	BUG_ON(efx->state == STATE_DISABLED);
1662 1663 1664

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1665
	if (efx->port_enabled || !netif_running(efx->net_dev))
1666 1667 1668
		return;

	efx_start_port(efx);
1669
	efx_start_datapath(efx);
1670

1671 1672
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1673 1674
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1675 1676 1677 1678 1679

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1680 1681 1682 1683 1684
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1685

1686
	efx->type->start_stats(efx);
1687 1688 1689 1690 1691 1692 1693
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1694
	/* Make sure the hardware monitor and event self-test are stopped */
1695
	cancel_delayed_work_sync(&efx->monitor_work);
1696
	efx_selftest_async_cancel(efx);
1697
	/* Stop scheduled port reconfigurations */
1698
	cancel_work_sync(&efx->mac_work);
1699 1700
}

1701 1702 1703 1704 1705
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1706 1707 1708 1709 1710 1711 1712 1713
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1714
	efx->type->stop_stats(efx);
1715 1716
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1717
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1718 1719
	efx_flush_all(efx);

1720 1721 1722 1723 1724 1725
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1726 1727 1728
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1729 1730 1731 1732
}

static void efx_remove_all(struct efx_nic *efx)
{
1733
	efx_remove_channels(efx);
1734
	efx_remove_filters(efx);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1745
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1746
{
1747 1748
	if (usecs == 0)
		return 0;
1749
	if (usecs * 1000 < quantum_ns)
1750
		return 1; /* never round down to 0 */
1751
	return usecs * 1000 / quantum_ns;
1752 1753
}

1754
/* Set interrupt moderation parameters */
1755 1756 1757
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1758
{
1759
	struct efx_channel *channel;
1760 1761 1762 1763 1764
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1765 1766 1767

	EFX_ASSERT_RESET_SERIALISED(efx);

1768
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1769 1770
		return -EINVAL;

1771 1772 1773
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1774 1775 1776 1777 1778 1779 1780
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1781
	efx->irq_rx_adaptive = rx_adaptive;
1782
	efx->irq_rx_moderation = rx_ticks;
1783
	efx_for_each_channel(channel, efx) {
1784
		if (efx_channel_has_rx_queue(channel))
1785
			channel->irq_moderation = rx_ticks;
1786
		else if (efx_channel_has_tx_queues(channel))
1787 1788
			channel->irq_moderation = tx_ticks;
	}
1789 1790

	return 0;
1791 1792
}

1793 1794 1795
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1796 1797 1798 1799
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1800
	*rx_adaptive = efx->irq_rx_adaptive;
1801 1802 1803
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1804 1805 1806 1807 1808 1809 1810 1811

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1812
		*tx_usecs = DIV_ROUND_UP(
1813
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1814 1815
			efx->timer_quantum_ns,
			1000);
1816 1817
}

1818 1819 1820 1821 1822 1823
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1824
/* Run periodically off the general workqueue */
1825 1826 1827 1828 1829
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1830 1831 1832
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1833
	BUG_ON(efx->type->monitor == NULL);
1834 1835 1836

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1837 1838 1839 1840 1841 1842
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1859
	struct efx_nic *efx = netdev_priv(net_dev);
1860
	struct mii_ioctl_data *data = if_mii(ifr);
1861

1862
	if (cmd == SIOCSHWTSTAMP)
1863 1864 1865
		return efx_ptp_set_ts_config(efx, ifr);
	if (cmd == SIOCGHWTSTAMP)
		return efx_ptp_get_ts_config(efx, ifr);
1866

1867 1868 1869 1870 1871 1872
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1873 1874 1875 1876 1877 1878 1879 1880
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1881 1882 1883 1884 1885 1886 1887 1888 1889
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1890
static void efx_init_napi(struct efx_nic *efx)
1891 1892 1893
{
	struct efx_channel *channel;

1894 1895
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1896 1897 1898 1899 1900 1901 1902
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1903 1904 1905 1906 1907 1908
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1909 1910
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1927
	struct efx_nic *efx = netdev_priv(net_dev);
1928 1929
	struct efx_channel *channel;

1930
	efx_for_each_channel(channel, efx)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1945
	struct efx_nic *efx = netdev_priv(net_dev);
1946 1947
	int rc;

1948 1949
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1950

1951 1952 1953
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1954 1955
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1956 1957
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1958

1959 1960 1961 1962
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1963
	efx_start_all(efx);
1964
	efx_selftest_async_start(efx);
1965 1966 1967 1968 1969 1970 1971 1972 1973
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1974
	struct efx_nic *efx = netdev_priv(net_dev);
1975

1976 1977
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1978

1979 1980
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1981 1982 1983 1984

	return 0;
}

1985
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1986 1987
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1988
{
1989
	struct efx_nic *efx = netdev_priv(net_dev);
1990

1991
	spin_lock_bh(&efx->stats_lock);
1992
	efx->type->update_stats(efx, NULL, stats);
1993 1994
	spin_unlock_bh(&efx->stats_lock);

1995 1996 1997 1998 1999 2000
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
2001
	struct efx_nic *efx = netdev_priv(net_dev);
2002

2003 2004 2005
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
2006

2007
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2008 2009 2010 2011 2012 2013
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
2014
	struct efx_nic *efx = netdev_priv(net_dev);
2015
	int rc;
2016

2017 2018 2019
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
2020 2021 2022
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

2023
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2024

2025 2026 2027
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
2028
	mutex_lock(&efx->mac_lock);
2029
	net_dev->mtu = new_mtu;
2030
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2031 2032
	mutex_unlock(&efx->mac_lock);

2033
	efx_start_all(efx);
2034
	netif_device_attach(efx->net_dev);
2035
	return 0;
2036 2037 2038 2039
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
2040
	struct efx_nic *efx = netdev_priv(net_dev);
2041 2042 2043 2044
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
2045 2046 2047
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
2048
		return -EADDRNOTAVAIL;
2049 2050 2051
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2052
	efx_sriov_mac_address_changed(efx);
2053 2054

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
2055
	mutex_lock(&efx->mac_lock);
2056
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
2057
	mutex_unlock(&efx->mac_lock);
2058 2059 2060 2061

	return 0;
}

2062
/* Context: netif_addr_lock held, BHs disabled. */
2063
static void efx_set_rx_mode(struct net_device *net_dev)
2064
{
2065
	struct efx_nic *efx = netdev_priv(net_dev);
2066

2067 2068 2069
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2070 2071
}

2072
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

2083
static const struct net_device_ops efx_farch_netdev_ops = {
S
Stephen Hemminger 已提交
2084 2085
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2086
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2087 2088 2089 2090 2091 2092
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2093
	.ndo_set_rx_mode	= efx_set_rx_mode,
2094
	.ndo_set_features	= efx_set_features,
2095 2096 2097 2098 2099 2100
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2101 2102 2103
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2104
	.ndo_setup_tc		= efx_setup_tc,
2105 2106 2107
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2108 2109
};

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static const struct net_device_ops efx_ef10_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats64	= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_rx_mode	= efx_set_rx_mode,
	.ndo_set_features	= efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= efx_netpoll,
#endif
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
};

2130 2131 2132 2133 2134 2135 2136
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2137 2138 2139
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2140
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2141

2142 2143
	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2144 2145
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2146 2147 2148 2149 2150 2151 2152 2153

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2154 2155 2156 2157 2158 2159
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2160
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2161

2162 2163 2164
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2165
	struct efx_channel *channel;
2166 2167 2168 2169
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
2170 2171 2172 2173 2174 2175
	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
		net_dev->netdev_ops = &efx_ef10_netdev_ops;
		net_dev->priv_flags |= IFF_UNICAST_FLT;
	} else {
		net_dev->netdev_ops = &efx_farch_netdev_ops;
	}
2176
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2177
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2178

2179
	rtnl_lock();
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2194 2195 2196
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2197
	efx_update_name(efx);
2198

2199 2200 2201
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2202 2203 2204 2205
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2206 2207
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2208 2209
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2210 2211
	}

2212
	rtnl_unlock();
2213

B
Ben Hutchings 已提交
2214 2215
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2216 2217
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2218 2219 2220
		goto fail_registered;
	}

2221
	return 0;
B
Ben Hutchings 已提交
2222

2223 2224 2225
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2226
fail_locked:
2227
	efx->state = STATE_UNINIT;
2228
	rtnl_unlock();
2229
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2230
	return rc;
2231 2232 2233 2234 2235 2236 2237
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2238
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2239

2240 2241
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2242 2243 2244 2245 2246

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2247 2248 2249 2250 2251 2252 2253 2254
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2255 2256
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2257
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2258 2259 2260
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2261
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2262
	efx_disable_interrupts(efx);
2263 2264

	mutex_lock(&efx->mac_lock);
2265 2266
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2267
	efx->type->fini(efx);
2268 2269
}

B
Ben Hutchings 已提交
2270 2271 2272 2273 2274
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2275
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2276 2277 2278
{
	int rc;

B
Ben Hutchings 已提交
2279
	EFX_ASSERT_RESET_SERIALISED(efx);
2280

2281
	rc = efx->type->init(efx);
2282
	if (rc) {
2283
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2284
		goto fail;
2285 2286
	}

2287 2288 2289
	if (!ok)
		goto fail;

2290
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2291 2292 2293 2294
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2295 2296
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2297 2298
	}

2299 2300 2301
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail;
B
Ben Hutchings 已提交
2302
	efx_restore_filters(efx);
2303
	efx_sriov_reset(efx);
2304 2305 2306 2307 2308 2309 2310 2311 2312

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2313 2314 2315

	mutex_unlock(&efx->mac_lock);

2316 2317 2318
	return rc;
}

2319 2320
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2321
 *
2322
 * Caller must hold the rtnl_lock.
2323
 */
2324
int efx_reset(struct efx_nic *efx, enum reset_type method)
2325
{
2326 2327
	int rc, rc2;
	bool disabled;
2328

2329 2330
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2331

2332
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2333
	efx_reset_down(efx, method);
2334

2335
	rc = efx->type->reset(efx, method);
2336
	if (rc) {
2337
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2338
		goto out;
2339 2340
	}

2341 2342 2343 2344
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2345 2346 2347 2348 2349 2350 2351

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2352
out:
2353
	/* Leave device stopped if necessary */
2354 2355 2356
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2357 2358 2359 2360 2361
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2362 2363
	}

2364
	if (disabled) {
2365
		dev_close(efx->net_dev);
2366
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2367 2368
		efx->state = STATE_DISABLED;
	} else {
2369
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2370
		netif_device_attach(efx->net_dev);
2371
	}
2372 2373 2374
	return rc;
}

2375 2376 2377 2378 2379
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2380
int efx_try_recovery(struct efx_nic *efx)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
	int i;

	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
		if (efx_mcdi_poll_reboot(efx))
			goto out;
		msleep(BIST_WAIT_DELAY_MS);
	}

	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
	/* Either way unset the BIST flag. If we found no reboot we probably
	 * won't recover, but we should try.
	 */
	efx->mc_bist_for_other_fn = false;
}

2419 2420 2421 2422 2423
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2424
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2425 2426 2427 2428 2429 2430
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

2431 2432 2433
	if (method == RESET_TYPE_MC_BIST)
		efx_wait_for_bist_end(efx);

2434 2435 2436 2437
	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2438

2439
	if (!pending)
2440 2441
		return;

2442
	rtnl_lock();
2443 2444 2445 2446 2447 2448

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2449
		(void)efx_reset(efx, method);
2450

2451
	rtnl_unlock();
2452 2453 2454 2455 2456 2457
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2458 2459 2460 2461 2462 2463 2464
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2465 2466 2467
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2468
	case RESET_TYPE_RECOVER_OR_ALL:
2469 2470
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2471
	case RESET_TYPE_RECOVER_OR_DISABLE:
2472
	case RESET_TYPE_MC_BIST:
2473
		method = type;
2474 2475
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2476 2477
		break;
	default:
2478
		method = efx->type->map_reset_reason(type);
2479 2480 2481
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2482 2483
		break;
	}
2484

2485
	set_bit(method, &efx->reset_pending);
2486 2487 2488 2489 2490 2491 2492
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2493

2494 2495 2496 2497
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2498
	queue_work(reset_workqueue, &efx->reset_work);
2499 2500 2501 2502 2503 2504 2505 2506 2507
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2508
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2509 2510
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2511
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2512 2513
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2514
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2515
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2516
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2517
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2518
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2519 2520
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2521 2522 2523 2524 2525
	{0}			/* end of list */
};

/**************************************************************************
 *
2526
 * Dummy PHY/MAC operations
2527
 *
2528
 * Can be used for some unimplemented operations
2529 2530 2531 2532 2533 2534 2535 2536 2537
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2538 2539

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2540 2541 2542
{
	return false;
}
2543

2544
static const struct efx_phy_operations efx_dummy_phy_operations = {
2545
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2546
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2547
	.poll		 = efx_port_dummy_op_poll,
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2560
static int efx_init_struct(struct efx_nic *efx,
2561 2562
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2563
	int i;
2564 2565 2566

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2567 2568 2569
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2570 2571
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2572
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2573
	efx->pci_dev = pci_dev;
2574
	efx->msg_enable = debug;
2575
	efx->state = STATE_UNINIT;
2576 2577 2578
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2579
	efx->rx_prefix_size = efx->type->rx_prefix_size;
2580 2581
	efx->rx_ip_align =
		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2582 2583
	efx->rx_packet_hash_offset =
		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2584 2585 2586
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2587
	efx->mdio.dev = net_dev;
2588
	INIT_WORK(&efx->mac_work, efx_mac_work);
2589
	init_waitqueue_head(&efx->flush_wq);
2590 2591

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2592 2593 2594
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2595 2596
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2597 2598 2599 2600 2601 2602
	}

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2603 2604 2605 2606
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2607
	if (!efx->workqueue)
2608
		goto fail;
2609

2610
	return 0;
2611 2612 2613 2614

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2615 2616 2617 2618
}

static void efx_fini_struct(struct efx_nic *efx)
{
2619 2620 2621 2622 2623
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2641 2642 2643 2644 2645 2646
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2647
	efx_disable_interrupts(efx);
2648
	efx_nic_fini_interrupt(efx);
2649
	efx_fini_port(efx);
2650
	efx->type->fini(efx);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2669
	efx_disable_interrupts(efx);
2670 2671
	rtnl_unlock();

2672
	efx_sriov_fini(efx);
2673 2674
	efx_unregister_netdev(efx);

2675 2676
	efx_mtd_remove(efx);

2677 2678 2679
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2680
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2681 2682

	efx_fini_struct(efx);
2683
	pci_set_drvdata(pci_dev, NULL);
2684
	free_netdev(efx->net_dev);
2685 2686

	pci_disable_pcie_error_reporting(pci_dev);
2687 2688
};

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2752
	efx_init_napi(efx);
2753

2754
	rc = efx->type->init(efx);
2755
	if (rc) {
2756 2757
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2758
		goto fail3;
2759 2760 2761 2762
	}

	rc = efx_init_port(efx);
	if (rc) {
2763 2764
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2765
		goto fail4;
2766 2767
	}

2768
	rc = efx_nic_init_interrupt(efx);
2769
	if (rc)
2770
		goto fail5;
2771 2772 2773
	rc = efx_enable_interrupts(efx);
	if (rc)
		goto fail6;
2774 2775 2776

	return 0;

2777 2778
 fail6:
	efx_nic_fini_interrupt(efx);
2779
 fail5:
2780 2781
	efx_fini_port(efx);
 fail4:
2782
	efx->type->fini(efx);
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2793
 * theoretically).  It sets up PCI mappings, resets the NIC,
2794 2795 2796 2797 2798
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2799
static int efx_pci_probe(struct pci_dev *pci_dev,
2800
			 const struct pci_device_id *entry)
2801 2802 2803
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2804
	int rc;
2805 2806

	/* Allocate and initialise a struct net_device and struct efx_nic */
2807 2808
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2809 2810
	if (!net_dev)
		return -ENOMEM;
2811 2812 2813
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2814
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2815
			      NETIF_F_RXCSUM);
2816
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2817
		net_dev->features |= NETIF_F_TSO6;
2818 2819
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2820 2821 2822 2823
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2824
	pci_set_drvdata(pci_dev, efx);
2825
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2826
	rc = efx_init_struct(efx, pci_dev, net_dev);
2827 2828 2829
	if (rc)
		goto fail1;

2830
	netif_info(efx, probe, efx->net_dev,
2831
		   "Solarflare NIC detected\n");
2832

2833 2834
	efx_print_product_vpd(efx);

2835 2836 2837 2838 2839
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2840 2841 2842
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2843 2844 2845

	rc = efx_register_netdev(efx);
	if (rc)
2846
		goto fail4;
2847

2848 2849 2850 2851 2852
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2853
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2854

2855
	/* Try to create MTDs, but allow this to fail */
2856
	rtnl_lock();
2857
	rc = efx_mtd_probe(efx);
2858
	rtnl_unlock();
2859 2860 2861 2862
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2863 2864 2865 2866 2867
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2868 2869 2870
	return 0;

 fail4:
2871
	efx_pci_remove_main(efx);
2872 2873 2874 2875 2876
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2877
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2878
	WARN_ON(rc > 0);
2879
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2880 2881 2882 2883
	free_netdev(net_dev);
	return rc;
}

2884 2885 2886 2887
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2888 2889
	rtnl_lock();

2890 2891
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2892

2893
		efx_device_detach_sync(efx);
2894

2895
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2896
		efx_disable_interrupts(efx);
2897
	}
2898

2899 2900
	rtnl_unlock();

2901 2902 2903 2904 2905
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
2906
	int rc;
2907 2908
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2909 2910
	rtnl_lock();

2911
	if (efx->state != STATE_DISABLED) {
2912 2913 2914
		rc = efx_enable_interrupts(efx);
		if (rc)
			goto fail;
2915

2916 2917 2918
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2919

2920
		efx_start_all(efx);
2921

2922
		netif_device_attach(efx->net_dev);
2923

2924
		efx->state = STATE_READY;
2925

2926 2927
		efx->type->resume_wol(efx);
	}
2928

2929 2930
	rtnl_unlock();

2931 2932 2933
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2934
	return 0;
2935 2936 2937 2938 2939

fail:
	rtnl_unlock();

	return rc;
2940 2941 2942 2943 2944 2945 2946 2947 2948
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2949
	efx->reset_pending = 0;
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
2976 2977
	rc = efx_pm_thaw(dev);
	return rc;
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2991
static const struct dev_pm_ops efx_pm_ops = {
2992 2993 2994 2995 2996 2997 2998 2999
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

3000 3001 3002 3003
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
3004 3005
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
3022
		efx_disable_interrupts(efx);
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3040
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

3099
static struct pci_driver efx_pci_driver = {
3100
	.name		= KBUILD_MODNAME,
3101 3102 3103
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
3104
	.driver.pm	= &efx_pm_ops,
3105
	.err_handler	= &efx_err_handlers,
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3128 3129 3130 3131
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3132 3133 3134 3135 3136
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3137 3138 3139 3140 3141 3142 3143 3144

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3145 3146
	destroy_workqueue(reset_workqueue);
 err_reset:
3147 3148
	efx_fini_sriov();
 err_sriov:
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3159
	destroy_workqueue(reset_workqueue);
3160
	efx_fini_sriov();
3161 3162 3163 3164 3165 3166 3167
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3168 3169
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3170 3171 3172
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);