efx.c 78.6 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/aer.h>
25
#include <linux/interrupt.h>
26 27
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
28
#include "nic.h"
29
#include "selftest.h"
30

31
#include "mcdi.h"
32
#include "workarounds.h"
33

34 35 36 37 38 39 40 41 42
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43
const char *const efx_loopback_mode_names[] = {
44
	[LOOPBACK_NONE]		= "NONE",
45
	[LOOPBACK_DATA]		= "DATAPATH",
46 47 48
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
49 50 51
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
52 53 54 55 56 57
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 59
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
60 61
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 63
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 66
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67
	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 69
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 72 73
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74
const char *const efx_reset_type_names[] = {
75 76 77 78 79 80 81 82 83 84 85 86 87
	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
	[RESET_TYPE_ALL]                = "ALL",
	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
	[RESET_TYPE_WORLD]              = "WORLD",
	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
	[RESET_TYPE_DISABLE]            = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH]      = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH]      = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
88 89
};

90 91 92 93 94 95
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

96 97 98 99 100 101 102 103 104
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
105 106
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
107
 *
108
 * This is only used in MSI-X interrupt mode
109
 */
110 111
static bool separate_tx_channels;
module_param(separate_tx_channels, bool, 0444);
112 113
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
114 115 116 117 118 119 120

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
121 122
 * monitor.
 * On Falcon-based NICs, this will:
123 124
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
125 126
 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 * chance to start.
127
 */
S
stephen hemminger 已提交
128
static unsigned int efx_monitor_interval = 1 * HZ;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161
 * The default (0) means to assign an interrupt to each core.
162 163 164 165 166
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

167 168
static bool phy_flash_cfg;
module_param(phy_flash_cfg, bool, 0644);
169 170
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

171
static unsigned irq_adapt_low_thresh = 8000;
172 173 174 175
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

176
static unsigned irq_adapt_high_thresh = 16000;
177 178 179 180
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

181 182 183 184 185 186 187
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

188 189 190 191 192
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
193

B
Ben Hutchings 已提交
194 195
static void efx_soft_enable_interrupts(struct efx_nic *efx);
static void efx_soft_disable_interrupts(struct efx_nic *efx);
196
static void efx_remove_channel(struct efx_channel *channel);
197
static void efx_remove_channels(struct efx_nic *efx);
198
static const struct efx_channel_type efx_default_channel_type;
199
static void efx_remove_port(struct efx_nic *efx);
200
static void efx_init_napi_channel(struct efx_channel *channel);
201
static void efx_fini_napi(struct efx_nic *efx);
202
static void efx_fini_napi_channel(struct efx_channel *channel);
203 204 205
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
206 207 208

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209
		if ((efx->state == STATE_READY) ||	\
210
		    (efx->state == STATE_RECOVERY) ||	\
211
		    (efx->state == STATE_DISABLED))	\
212 213 214
			ASSERT_RTNL();			\
	} while (0)

215 216
static int efx_check_disabled(struct efx_nic *efx)
{
217
	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 219 220 221 222 223 224
		netif_err(efx, drv, efx->net_dev,
			  "device is disabled due to earlier errors\n");
		return -EIO;
	}
	return 0;
}

225 226 227 228 229 230 231 232 233 234 235 236 237
/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
238
static int efx_process_channel(struct efx_channel *channel, int budget)
239
{
240
	int spent;
241

242
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
243
		return 0;
244

245
	spent = efx_nic_process_eventq(channel, budget);
246 247 248 249
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

250
		efx_rx_flush_packet(channel);
251
		efx_fast_push_rx_descriptors(rx_queue);
252 253
	}

254
	return spent;
255 256 257 258 259 260 261 262 263 264 265
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
266
	struct efx_nic *efx = channel->efx;
267
	int spent;
268

269 270 271
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
272

273
	spent = efx_process_channel(channel, budget);
274

275
	if (spent < budget) {
276
		if (efx_channel_has_rx_queue(channel) &&
277 278 279 280
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
281 282
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
283
					efx->type->push_irq_moderation(channel);
284
				}
285 286
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
287 288 289
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
290
					efx->type->push_irq_moderation(channel);
291
				}
292 293 294 295 296
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

297 298
		efx_filter_rfs_expire(channel);

299
		/* There is no race here; although napi_disable() will
300
		 * only wait for napi_complete(), this isn't a problem
301
		 * since efx_nic_eventq_read_ack() will have no effect if
302 303
		 * interrupts have already been disabled.
		 */
304
		napi_complete(napi);
305
		efx_nic_eventq_read_ack(channel);
306 307
	}

308
	return spent;
309 310 311 312 313 314 315 316 317
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
318 319 320
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

321
	netif_dbg(efx, probe, efx->net_dev,
322
		  "chan %d create event queue\n", channel->channel);
323

324 325 326 327 328 329
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

330
	return efx_nic_probe_eventq(channel);
331 332 333
}

/* Prepare channel's event queue */
334
static void efx_init_eventq(struct efx_channel *channel)
335
{
336 337
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
338 339 340

	channel->eventq_read_ptr = 0;

341
	efx_nic_init_eventq(channel);
342 343
}

344 345 346 347 348 349
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

350
	/* Make sure the NAPI handler sees the enabled flag set */
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

368 369
static void efx_fini_eventq(struct efx_channel *channel)
{
370 371
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
372

373
	efx_nic_fini_eventq(channel);
374 375 376 377
}

static void efx_remove_eventq(struct efx_channel *channel)
{
378 379
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
380

381
	efx_nic_remove_eventq(channel);
382 383 384 385 386 387 388 389
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

390
/* Allocate and initialise a channel structure. */
391 392 393 394 395 396 397 398
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

399 400 401
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
402

403 404 405
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
406

407 408 409 410 411 412
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
413

414 415 416 417
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
418

419 420 421 422 423 424 425 426 427 428 429 430 431
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
432

433 434 435 436 437 438 439 440
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
441

442 443 444
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
445
			tx_queue->channel = channel;
446 447
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
448 449 450
	}

	rx_queue = &channel->rx_queue;
451 452
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
453 454 455 456 457 458
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

459 460 461 462 463 464
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

465 466
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
467

468 469 470 471
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

472 473
	rc = efx_probe_eventq(channel);
	if (rc)
474
		goto fail;
475 476 477 478

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
479
			goto fail;
480 481 482 483 484
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
485
			goto fail;
486 487 488 489 490 491
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

492 493
fail:
	efx_remove_channel(channel);
494 495 496
	return rc;
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
515

516 517 518 519
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

520 521
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
B
Ben Hutchings 已提交
522 523
					efx->msi_context[channel->channel].name,
					sizeof(efx->msi_context[0].name));
524 525
}

526 527 528 529 530 531 532 533
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

534 535 536 537 538 539
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

557 558 559 560
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
561
static void efx_start_datapath(struct efx_nic *efx)
562
{
563
	bool old_rx_scatter = efx->rx_scatter;
564 565 566
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;
567
	size_t rx_buf_len;
568

569 570 571 572
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
573 574 575
	efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			   efx->type->rx_buffer_padding);
576
	rx_buf_len = (sizeof(struct efx_rx_page_state) +
577
		      NET_IP_ALIGN + efx->rx_dma_len);
578 579 580 581
	if (rx_buf_len <= PAGE_SIZE) {
		efx->rx_scatter = false;
		efx->rx_buffer_order = 0;
	} else if (efx->type->can_rx_scatter) {
582
		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
583
		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
584 585 586
			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
				       EFX_RX_BUF_ALIGNMENT) >
			     PAGE_SIZE);
587 588 589 590 591 592 593 594
		efx->rx_scatter = true;
		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
		efx->rx_buffer_order = 0;
	} else {
		efx->rx_scatter = false;
		efx->rx_buffer_order = get_order(rx_buf_len);
	}

595 596 597 598 599 600 601 602 603 604 605
	efx_rx_config_page_split(efx);
	if (efx->rx_buffer_order)
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u; page order=%u batch=%u\n",
			  efx->rx_dma_len, efx->rx_buffer_order,
			  efx->rx_pages_per_batch);
	else
		netif_dbg(efx, drv, efx->net_dev,
			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
			  efx->rx_dma_len, efx->rx_page_buf_step,
			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
606

607 608 609
	/* RX filters also have scatter-enabled flags */
	if (efx->rx_scatter != old_rx_scatter)
		efx_filter_update_rx_scatter(efx);
610

611 612 613 614 615 616 617 618 619 620
	/* We must keep at least one descriptor in a TX ring empty.
	 * We could avoid this when the queue size does not exactly
	 * match the hardware ring size, but it's not that important.
	 * Therefore we stop the queue when one more skb might fill
	 * the ring completely.  We wake it when half way back to
	 * empty.
	 */
	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;

621 622
	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
623 624
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
625

626
		efx_for_each_channel_rx_queue(rx_queue, channel) {
627
			efx_init_rx_queue(rx_queue);
628 629
			efx_nic_generate_fill_event(rx_queue);
		}
630

631
		WARN_ON(channel->rx_pkt_n_frags);
632 633
	}

634 635
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
636 637
}

638
static void efx_stop_datapath(struct efx_nic *efx)
639 640 641 642
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
643
	struct pci_dev *dev = efx->pci_dev;
644
	int rc;
645 646 647 648

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

649 650 651 652 653 654
	/* Stop RX refill */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_rx_queue(rx_queue, channel)
			rx_queue->refill_enabled = false;
	}

655
	/* Only perform flush if dma is enabled */
656
	if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		rc = efx_nic_flush_queues(efx);

		if (rc && EFX_WORKAROUND_7803(efx)) {
			/* Schedule a reset to recover from the flush failure. The
			 * descriptor caches reference memory we're about to free,
			 * but falcon_reconfigure_mac_wrapper() won't reconnect
			 * the MACs because of the pending reset. */
			netif_err(efx, drv, efx->net_dev,
				  "Resetting to recover from flush failure\n");
			efx_schedule_reset(efx, RESET_TYPE_ALL);
		} else if (rc) {
			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
		} else {
			netif_dbg(efx, drv, efx->net_dev,
				  "successfully flushed all queues\n");
		}
673
	}
674

675
	efx_for_each_channel(channel, efx) {
676 677 678 679 680 681 682 683 684 685
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
686 687 688

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
689
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
690 691 692 693 694 695 696 697 698
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

699 700
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
701 702 703

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
704
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
705 706
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
707
	channel->type->post_remove(channel);
708 709
}

710 711 712 713 714 715 716 717 718 719 720 721 722
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
723
	unsigned i, next_buffer_table = 0;
724 725 726 727 728
	int rc;

	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
751

752
	efx_device_detach_sync(efx);
753
	efx_stop_all(efx);
B
Ben Hutchings 已提交
754
	efx_soft_disable_interrupts(efx);
755

756
	/* Clone channels (where possible) */
757 758
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
759 760 761
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

780 781
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
782 783

	for (i = 0; i < efx->n_channels; i++) {
784 785 786 787 788 789 790
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
791
	}
792

793
out:
794 795 796 797 798 799 800 801 802
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
803

B
Ben Hutchings 已提交
804
	efx_soft_enable_interrupts(efx);
805
	efx_start_all(efx);
806
	netif_device_attach(efx->net_dev);
807 808 809 810 811 812 813 814 815 816 817 818 819 820
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

821
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
822
{
823
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
824 825
}

826 827
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
828
	.post_remove		= efx_channel_dummy_op_void,
829 830 831 832 833 834 835 836 837 838
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

839 840 841 842
void efx_channel_dummy_op_void(struct efx_channel *channel)
{
}

843 844 845 846 847 848 849 850 851 852
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
853
void efx_link_status_changed(struct efx_nic *efx)
854
{
855 856
	struct efx_link_state *link_state = &efx->link_state;

857 858 859 860 861 862 863
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

864
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
865 866
		efx->n_link_state_changes++;

867
		if (link_state->up)
868 869 870 871 872 873
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
874
	if (link_state->up)
875 876 877 878 879
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
880
	else
881
		netif_info(efx, link, efx->net_dev, "link down\n");
882 883
}

B
Ben Hutchings 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

897
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

912 913
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
914 915 916 917 918 919 920 921
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
922
{
B
Ben Hutchings 已提交
923 924
	enum efx_phy_mode phy_mode;
	int rc;
925

B
Ben Hutchings 已提交
926
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
927

928
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
929 930
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
931

B
Ben Hutchings 已提交
932 933
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
934 935 936 937 938
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
939
	rc = efx->type->reconfigure_port(efx);
940

B
Ben Hutchings 已提交
941 942
	if (rc)
		efx->phy_mode = phy_mode;
943

B
Ben Hutchings 已提交
944
	return rc;
945 946 947 948
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
949
int efx_reconfigure_port(struct efx_nic *efx)
950
{
B
Ben Hutchings 已提交
951 952
	int rc;

953 954 955
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
956
	rc = __efx_reconfigure_port(efx);
957
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
958 959

	return rc;
960 961
}

962 963 964
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
965 966 967 968 969
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
970
	if (efx->port_enabled)
971
		efx->type->reconfigure_mac(efx);
972 973 974
	mutex_unlock(&efx->mac_lock);
}

975 976 977 978
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

979
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
980

981 982 983
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

984 985
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
986
	if (rc)
987
		return rc;
988

989 990
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
991 992 993 994 995 996 997 998

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

999
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1000

1001 1002
	mutex_lock(&efx->mac_lock);

1003
	rc = efx->phy_op->init(efx);
1004
	if (rc)
1005
		goto fail1;
1006

1007
	efx->port_initialized = true;
1008

B
Ben Hutchings 已提交
1009 1010
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1011
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1012 1013 1014 1015 1016 1017

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1018
	mutex_unlock(&efx->mac_lock);
1019
	return 0;
1020

1021
fail2:
1022
	efx->phy_op->fini(efx);
1023 1024
fail1:
	mutex_unlock(&efx->mac_lock);
1025
	return rc;
1026 1027 1028 1029
}

static void efx_start_port(struct efx_nic *efx)
{
1030
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1031 1032 1033
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1034
	efx->port_enabled = true;
1035 1036 1037

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1038
	efx->type->reconfigure_mac(efx);
1039

1040 1041 1042
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1043
/* Prevent efx_mac_work() and efx_monitor() from working */
1044 1045
static void efx_stop_port(struct efx_nic *efx)
{
1046
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1047 1048

	mutex_lock(&efx->mac_lock);
1049
	efx->port_enabled = false;
1050 1051 1052
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1053 1054
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1055 1056 1057 1058
}

static void efx_fini_port(struct efx_nic *efx)
{
1059
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1060 1061 1062 1063

	if (!efx->port_initialized)
		return;

1064
	efx->phy_op->fini(efx);
1065
	efx->port_initialized = false;
1066

1067
	efx->link_state.up = false;
1068 1069 1070 1071 1072
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1073
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1074

1075
	efx->type->remove_port(efx);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1091
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1092 1093 1094

	rc = pci_enable_device(pci_dev);
	if (rc) {
1095 1096
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1108 1109
		if (dma_supported(&pci_dev->dev, dma_mask)) {
			rc = dma_set_mask(&pci_dev->dev, dma_mask);
1110 1111 1112
			if (rc == 0)
				break;
		}
1113 1114 1115
		dma_mask >>= 1;
	}
	if (rc) {
1116 1117
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1118 1119
		goto fail2;
	}
1120 1121
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1122
	rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1123
	if (rc) {
1124 1125
		/* dma_set_coherent_mask() is not *allowed* to
		 * fail with a mask that dma_set_mask() accepted,
1126 1127
		 * but just in case...
		 */
1128 1129
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1130 1131 1132
		goto fail2;
	}

1133 1134
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1135
	if (rc) {
1136 1137
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1138 1139 1140
		rc = -EIO;
		goto fail3;
	}
1141 1142
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1143
	if (!efx->membase) {
1144 1145 1146 1147
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1148 1149 1150
		rc = -ENOMEM;
		goto fail4;
	}
1151 1152 1153 1154
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1155 1156 1157 1158

	return 0;

 fail4:
1159
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1160
 fail3:
1161
	efx->membase_phys = 0;
1162 1163 1164 1165 1166 1167 1168 1169
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1170
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1171 1172 1173 1174 1175 1176 1177

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1178
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1179
		efx->membase_phys = 0;
1180 1181 1182 1183 1184
	}

	pci_disable_device(efx->pci_dev);
}

1185
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1186
{
1187
	cpumask_var_t thread_mask;
1188
	unsigned int count;
1189
	int cpu;
1190

1191 1192 1193 1194 1195 1196 1197 1198
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1210 1211
	}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1223 1224 1225 1226 1227 1228 1229 1230
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1231
static int efx_probe_interrupts(struct efx_nic *efx)
1232
{
1233 1234
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1235 1236
	unsigned int extra_channels = 0;
	unsigned int i, j;
1237
	int rc;
1238

1239 1240 1241 1242
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1243
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1244
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1245
		unsigned int n_channels;
1246

1247
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1248 1249
		if (separate_tx_channels)
			n_channels *= 2;
1250
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1251
		n_channels = min(n_channels, max_channels);
1252

B
Ben Hutchings 已提交
1253
		for (i = 0; i < n_channels; i++)
1254
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1255
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1256
		if (rc > 0) {
1257 1258
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1259
				  " available (%d < %u).\n", rc, n_channels);
1260 1261
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1262 1263
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1264
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1265
					     n_channels);
1266 1267 1268
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1269
			efx->n_channels = n_channels;
1270 1271
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1272
			if (separate_tx_channels) {
1273 1274 1275 1276
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1277
			} else {
1278 1279
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1280
			}
1281
			for (i = 0; i < efx->n_channels; i++)
1282 1283
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1284 1285 1286
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1287 1288
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1289 1290 1291 1292 1293
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1294
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1295 1296
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1297 1298
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1299
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1300
		} else {
1301 1302
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1303 1304 1305 1306 1307 1308
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1309
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1310 1311
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1312 1313
		efx->legacy_irq = efx->pci_dev->irq;
	}
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1330
	/* RSS might be usable on VFs even if it is disabled on the PF */
1331
	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1332 1333
			   efx->n_rx_channels : efx_vf_size(efx));

1334
	return 0;
1335 1336
}

B
Ben Hutchings 已提交
1337
static void efx_soft_enable_interrupts(struct efx_nic *efx)
1338 1339 1340
{
	struct efx_channel *channel;

1341 1342
	BUG_ON(efx->state == STATE_DISABLED);

B
Ben Hutchings 已提交
1343 1344
	efx->irq_soft_enabled = true;
	smp_wmb();
1345 1346

	efx_for_each_channel(channel, efx) {
B
Ben Hutchings 已提交
1347
		if (!channel->type->keep_eventq)
1348
			efx_init_eventq(channel);
1349 1350 1351 1352 1353 1354
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

B
Ben Hutchings 已提交
1355
static void efx_soft_disable_interrupts(struct efx_nic *efx)
1356 1357 1358
{
	struct efx_channel *channel;

1359 1360 1361
	if (efx->state == STATE_DISABLED)
		return;

1362 1363
	efx_mcdi_mode_poll(efx);

B
Ben Hutchings 已提交
1364 1365 1366 1367
	efx->irq_soft_enabled = false;
	smp_wmb();

	if (efx->legacy_irq)
1368 1369 1370 1371 1372 1373 1374
		synchronize_irq(efx->legacy_irq);

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
B
Ben Hutchings 已提交
1375
		if (!channel->type->keep_eventq)
1376
			efx_fini_eventq(channel);
1377 1378 1379
	}
}

B
Ben Hutchings 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void efx_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	BUG_ON(efx->state == STATE_DISABLED);

	if (efx->eeh_disabled_legacy_irq) {
		enable_irq(efx->legacy_irq);
		efx->eeh_disabled_legacy_irq = false;
	}

	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_init_eventq(channel);
	}

	efx_soft_enable_interrupts(efx);
}

static void efx_disable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_soft_disable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
		if (channel->type->keep_eventq)
			efx_fini_eventq(channel);
	}

	efx_nic_disable_interrupts(efx);
}

1415 1416 1417 1418 1419
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1420
	efx_for_each_channel(channel, efx)
1421 1422 1423 1424 1425 1426 1427 1428
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1429
static void efx_set_channels(struct efx_nic *efx)
1430
{
1431 1432 1433
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1434
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1435
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1436

1437 1438
	/* We need to mark which channels really have RX and TX
	 * queues, and adjust the TX queue numbers if we have separate
1439 1440 1441
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
1442 1443 1444 1445 1446
		if (channel->channel < efx->n_rx_channels)
			channel->rx_queue.core_index = channel->channel;
		else
			channel->rx_queue.core_index = -1;

1447 1448 1449 1450
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1451 1452 1453 1454
}

static int efx_probe_nic(struct efx_nic *efx)
{
1455
	size_t i;
1456 1457
	int rc;

1458
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1459 1460

	/* Carry out hardware-type specific initialisation */
1461
	rc = efx->type->probe(efx);
1462 1463 1464
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1465
	/* Determine the number of channels and queues by trying to hook
1466
	 * in MSI-X interrupts. */
1467 1468 1469
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1470

1471 1472
	efx->type->dimension_resources(efx);

1473 1474
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1475
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1476
		efx->rx_indir_table[i] =
1477
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1478

1479
	efx_set_channels(efx);
1480 1481
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1482 1483

	/* Initialise the interrupt moderation settings */
1484 1485
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1486 1487

	return 0;
1488 1489 1490 1491

fail:
	efx->type->remove(efx);
	return rc;
1492 1493 1494 1495
}

static void efx_remove_nic(struct efx_nic *efx)
{
1496
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1497 1498

	efx_remove_interrupts(efx);
1499
	efx->type->remove(efx);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1514
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1515 1516 1517 1518 1519
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1520
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1521 1522 1523
		goto fail2;
	}

1524 1525 1526 1527 1528
	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
		rc = -EINVAL;
		goto fail3;
	}
1529
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1530

B
Ben Hutchings 已提交
1531 1532 1533 1534
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1535
		goto fail3;
B
Ben Hutchings 已提交
1536 1537
	}

1538 1539 1540 1541
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1542 1543
	return 0;

B
Ben Hutchings 已提交
1544
 fail4:
1545
	efx_remove_filters(efx);
1546 1547 1548 1549 1550 1551 1552 1553
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1554 1555 1556 1557 1558 1559
/* If the interface is supposed to be running but is not, start
 * the hardware and software data path, regular activity for the port
 * (MAC statistics, link polling, etc.) and schedule the port to be
 * reconfigured.  Interrupts must already be enabled.  This function
 * is safe to call multiple times, so long as the NIC is not disabled.
 * Requires the RTNL lock.
1560
 */
1561 1562 1563
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);
1564
	BUG_ON(efx->state == STATE_DISABLED);
1565 1566 1567

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
1568
	if (efx->port_enabled || !netif_running(efx->net_dev))
1569 1570 1571
		return;

	efx_start_port(efx);
1572
	efx_start_datapath(efx);
1573

1574 1575
	/* Start the hardware monitor if there is one */
	if (efx->type->monitor != NULL)
1576 1577
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1578 1579 1580 1581 1582

	/* If link state detection is normally event-driven, we have
	 * to poll now because we could have missed a change
	 */
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1583 1584 1585 1586 1587
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1588

1589
	efx->type->start_stats(efx);
1590 1591 1592 1593 1594 1595 1596
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1597
	/* Make sure the hardware monitor and event self-test are stopped */
1598
	cancel_delayed_work_sync(&efx->monitor_work);
1599
	efx_selftest_async_cancel(efx);
1600
	/* Stop scheduled port reconfigurations */
1601
	cancel_work_sync(&efx->mac_work);
1602 1603
}

1604 1605 1606 1607 1608
/* Quiesce the hardware and software data path, and regular activity
 * for the port without bringing the link down.  Safe to call multiple
 * times with the NIC in almost any state, but interrupts should be
 * enabled.  Requires the RTNL lock.
 */
1609 1610 1611 1612 1613 1614 1615 1616
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1617
	efx->type->stop_stats(efx);
1618 1619
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1620
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1621 1622
	efx_flush_all(efx);

1623 1624 1625 1626 1627 1628
	/* Stop the kernel transmit interface.  This is only valid if
	 * the device is stopped or detached; otherwise the watchdog
	 * may fire immediately.
	 */
	WARN_ON(netif_running(efx->net_dev) &&
		netif_device_present(efx->net_dev));
1629 1630 1631
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1632 1633 1634 1635
}

static void efx_remove_all(struct efx_nic *efx)
{
1636
	efx_remove_channels(efx);
1637
	efx_remove_filters(efx);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1648
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1649
{
1650 1651
	if (usecs == 0)
		return 0;
1652
	if (usecs * 1000 < quantum_ns)
1653
		return 1; /* never round down to 0 */
1654
	return usecs * 1000 / quantum_ns;
1655 1656
}

1657
/* Set interrupt moderation parameters */
1658 1659 1660
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1661
{
1662
	struct efx_channel *channel;
1663 1664 1665 1666 1667
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1668 1669 1670

	EFX_ASSERT_RESET_SERIALISED(efx);

1671
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1672 1673
		return -EINVAL;

1674 1675 1676
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1677 1678 1679 1680 1681 1682 1683
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1684
	efx->irq_rx_adaptive = rx_adaptive;
1685
	efx->irq_rx_moderation = rx_ticks;
1686
	efx_for_each_channel(channel, efx) {
1687
		if (efx_channel_has_rx_queue(channel))
1688
			channel->irq_moderation = rx_ticks;
1689
		else if (efx_channel_has_tx_queues(channel))
1690 1691
			channel->irq_moderation = tx_ticks;
	}
1692 1693

	return 0;
1694 1695
}

1696 1697 1698
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1699 1700 1701 1702
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1703
	*rx_adaptive = efx->irq_rx_adaptive;
1704 1705 1706
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1707 1708 1709 1710 1711 1712 1713 1714

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1715
		*tx_usecs = DIV_ROUND_UP(
1716
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1717 1718
			efx->timer_quantum_ns,
			1000);
1719 1720
}

1721 1722 1723 1724 1725 1726
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1727
/* Run periodically off the general workqueue */
1728 1729 1730 1731 1732
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1733 1734 1735
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1736
	BUG_ON(efx->type->monitor == NULL);
1737 1738 1739

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1740 1741 1742 1743 1744 1745
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1762
	struct efx_nic *efx = netdev_priv(net_dev);
1763
	struct mii_ioctl_data *data = if_mii(ifr);
1764

1765 1766 1767
	if (cmd == SIOCSHWTSTAMP)
		return efx_ptp_ioctl(efx, ifr, cmd);

1768 1769 1770 1771 1772 1773
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1774 1775 1776 1777 1778 1779 1780 1781
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1782 1783 1784 1785 1786 1787 1788 1789 1790
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1791
static void efx_init_napi(struct efx_nic *efx)
1792 1793 1794
{
	struct efx_channel *channel;

1795 1796
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1797 1798 1799 1800 1801 1802 1803
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1804 1805 1806 1807 1808 1809
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1810 1811
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1828
	struct efx_nic *efx = netdev_priv(net_dev);
1829 1830
	struct efx_channel *channel;

1831
	efx_for_each_channel(channel, efx)
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1846
	struct efx_nic *efx = netdev_priv(net_dev);
1847 1848
	int rc;

1849 1850
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1851

1852 1853 1854
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1855 1856
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1857 1858
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1859

1860 1861 1862 1863
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1864
	efx_start_all(efx);
1865
	efx_selftest_async_start(efx);
1866 1867 1868 1869 1870 1871 1872 1873 1874
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1875
	struct efx_nic *efx = netdev_priv(net_dev);
1876

1877 1878
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1879

1880 1881
	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
1882 1883 1884 1885

	return 0;
}

1886
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1887 1888
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1889
{
1890
	struct efx_nic *efx = netdev_priv(net_dev);
1891 1892
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1893
	spin_lock_bh(&efx->stats_lock);
1894

1895
	efx->type->update_stats(efx);
1896 1897 1898 1899 1900

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1901
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1919 1920
	spin_unlock_bh(&efx->stats_lock);

1921 1922 1923 1924 1925 1926
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1927
	struct efx_nic *efx = netdev_priv(net_dev);
1928

1929 1930 1931
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1932

1933
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1934 1935 1936 1937 1938 1939
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1940
	struct efx_nic *efx = netdev_priv(net_dev);
1941
	int rc;
1942

1943 1944 1945
	rc = efx_check_disabled(efx);
	if (rc)
		return rc;
1946 1947 1948
	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

1949
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1950

1951 1952 1953
	efx_device_detach_sync(efx);
	efx_stop_all(efx);

B
Ben Hutchings 已提交
1954
	mutex_lock(&efx->mac_lock);
1955
	net_dev->mtu = new_mtu;
1956
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1957 1958
	mutex_unlock(&efx->mac_lock);

1959
	efx_start_all(efx);
1960
	netif_device_attach(efx->net_dev);
1961
	return 0;
1962 1963 1964 1965
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1966
	struct efx_nic *efx = netdev_priv(net_dev);
1967 1968 1969 1970
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	if (!is_valid_ether_addr(new_addr)) {
1971 1972 1973
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1974
		return -EADDRNOTAVAIL;
1975 1976 1977
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1978
	efx_sriov_mac_address_changed(efx);
1979 1980

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1981
	mutex_lock(&efx->mac_lock);
1982
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1983
	mutex_unlock(&efx->mac_lock);
1984 1985 1986 1987

	return 0;
}

1988
/* Context: netif_addr_lock held, BHs disabled. */
1989
static void efx_set_rx_mode(struct net_device *net_dev)
1990
{
1991
	struct efx_nic *efx = netdev_priv(net_dev);
1992
	struct netdev_hw_addr *ha;
1993 1994 1995 1996
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1997
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1998 1999

	/* Build multicast hash table */
2000
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2001 2002 2003
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
2004 2005
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
2006
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2007
			__set_bit_le(bit, mc_hash);
2008 2009
		}

2010 2011 2012 2013
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
2014
		__set_bit_le(0xff, mc_hash);
2015
	}
2016

2017 2018 2019
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
2020 2021
}

2022
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2033 2034 2035
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2036
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2037 2038 2039 2040 2041 2042
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2043
	.ndo_set_rx_mode	= efx_set_rx_mode,
2044
	.ndo_set_features	= efx_set_features,
2045 2046 2047 2048 2049 2050
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2051 2052 2053
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2054
	.ndo_setup_tc		= efx_setup_tc,
2055 2056 2057
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2058 2059
};

2060 2061 2062 2063 2064 2065 2066
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2067 2068 2069
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2070
	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2071

2072 2073 2074
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2075 2076 2077 2078 2079 2080 2081 2082

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2083 2084 2085 2086 2087 2088
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
2089
static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
B
Ben Hutchings 已提交
2090

2091 2092 2093
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2094
	struct efx_channel *channel;
2095 2096 2097 2098
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2099
	net_dev->netdev_ops = &efx_netdev_ops;
2100
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2101
	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2102

2103
	rtnl_lock();
2104

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	/* Enable resets to be scheduled and check whether any were
	 * already requested.  If so, the NIC is probably hosed so we
	 * abort.
	 */
	efx->state = STATE_READY;
	smp_mb(); /* ensure we change state before checking reset_pending */
	if (efx->reset_pending) {
		netif_err(efx, probe, efx->net_dev,
			  "aborting probe due to scheduled reset\n");
		rc = -EIO;
		goto fail_locked;
	}

2118 2119 2120
	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2121
	efx_update_name(efx);
2122

2123 2124 2125
	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(net_dev);

2126 2127 2128 2129
	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2130 2131
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2132 2133
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2134 2135
	}

2136
	rtnl_unlock();
2137

B
Ben Hutchings 已提交
2138 2139
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2140 2141
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2142 2143 2144
		goto fail_registered;
	}

2145
	return 0;
B
Ben Hutchings 已提交
2146

2147 2148 2149
fail_registered:
	rtnl_lock();
	unregister_netdevice(net_dev);
2150
fail_locked:
2151
	efx->state = STATE_UNINIT;
2152
	rtnl_unlock();
2153
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2154
	return rc;
2155 2156 2157 2158 2159 2160 2161
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	if (!efx->net_dev)
		return;

2162
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2163

2164 2165
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2166 2167 2168 2169 2170

	rtnl_lock();
	unregister_netdevice(efx->net_dev);
	efx->state = STATE_UNINIT;
	rtnl_unlock();
2171 2172 2173 2174 2175 2176 2177 2178
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2179 2180
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2181
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2182 2183 2184
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2185
	efx_stop_all(efx);
B
Ben Hutchings 已提交
2186
	efx_disable_interrupts(efx);
2187 2188

	mutex_lock(&efx->mac_lock);
2189 2190
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2191
	efx->type->fini(efx);
2192 2193
}

B
Ben Hutchings 已提交
2194 2195 2196 2197 2198
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2199
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2200 2201 2202
{
	int rc;

B
Ben Hutchings 已提交
2203
	EFX_ASSERT_RESET_SERIALISED(efx);
2204

2205
	rc = efx->type->init(efx);
2206
	if (rc) {
2207
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2208
		goto fail;
2209 2210
	}

2211 2212 2213
	if (!ok)
		goto fail;

2214
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2215 2216 2217 2218
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2219 2220
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2221 2222
	}

2223
	efx->type->reconfigure_mac(efx);
2224

B
Ben Hutchings 已提交
2225
	efx_enable_interrupts(efx);
B
Ben Hutchings 已提交
2226
	efx_restore_filters(efx);
2227
	efx_sriov_reset(efx);
2228 2229 2230 2231 2232 2233 2234 2235 2236

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2237 2238 2239

	mutex_unlock(&efx->mac_lock);

2240 2241 2242
	return rc;
}

2243 2244
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2245
 *
2246
 * Caller must hold the rtnl_lock.
2247
 */
2248
int efx_reset(struct efx_nic *efx, enum reset_type method)
2249
{
2250 2251
	int rc, rc2;
	bool disabled;
2252

2253 2254
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2255

2256
	efx_device_detach_sync(efx);
B
Ben Hutchings 已提交
2257
	efx_reset_down(efx, method);
2258

2259
	rc = efx->type->reset(efx, method);
2260
	if (rc) {
2261
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2262
		goto out;
2263 2264
	}

2265 2266 2267 2268
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2269 2270 2271 2272 2273 2274 2275

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2276
out:
2277
	/* Leave device stopped if necessary */
2278 2279 2280
	disabled = rc ||
		method == RESET_TYPE_DISABLE ||
		method == RESET_TYPE_RECOVER_OR_DISABLE;
2281 2282 2283 2284 2285
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2286 2287
	}

2288
	if (disabled) {
2289
		dev_close(efx->net_dev);
2290
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2291 2292
		efx->state = STATE_DISABLED;
	} else {
2293
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2294
		netif_device_attach(efx->net_dev);
2295
	}
2296 2297 2298
	return rc;
}

2299 2300 2301 2302 2303
/* Try recovery mechanisms.
 * For now only EEH is supported.
 * Returns 0 if the recovery mechanisms are unsuccessful.
 * Returns a non-zero value otherwise.
 */
2304
int efx_try_recovery(struct efx_nic *efx)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
{
#ifdef CONFIG_EEH
	/* A PCI error can occur and not be seen by EEH because nothing
	 * happens on the PCI bus. In this case the driver may fail and
	 * schedule a 'recover or reset', leading to this recovery handler.
	 * Manually call the eeh failure check function.
	 */
	struct eeh_dev *eehdev =
		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));

	if (eeh_dev_check_failure(eehdev)) {
		/* The EEH mechanisms will handle the error and reset the
		 * device if necessary.
		 */
		return 1;
	}
#endif
	return 0;
}

2325 2326 2327 2328 2329
/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2330
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	unsigned long pending;
	enum reset_type method;

	pending = ACCESS_ONCE(efx->reset_pending);
	method = fls(pending) - 1;

	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
	     method == RESET_TYPE_RECOVER_OR_ALL) &&
	    efx_try_recovery(efx))
		return;
2341

2342
	if (!pending)
2343 2344
		return;

2345
	rtnl_lock();
2346 2347 2348 2349 2350 2351

	/* We checked the state in efx_schedule_reset() but it may
	 * have changed by now.  Now that we have the RTNL lock,
	 * it cannot change again.
	 */
	if (efx->state == STATE_READY)
2352
		(void)efx_reset(efx, method);
2353

2354
	rtnl_unlock();
2355 2356 2357 2358 2359 2360
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

2361 2362 2363 2364 2365 2366 2367
	if (efx->state == STATE_RECOVERY) {
		netif_dbg(efx, drv, efx->net_dev,
			  "recovering: skip scheduling %s reset\n",
			  RESET_TYPE(type));
		return;
	}

2368 2369 2370
	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
2371
	case RESET_TYPE_RECOVER_OR_ALL:
2372 2373
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
2374
	case RESET_TYPE_RECOVER_OR_DISABLE:
2375
		method = type;
2376 2377
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2378 2379
		break;
	default:
2380
		method = efx->type->map_reset_reason(type);
2381 2382 2383
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2384 2385
		break;
	}
2386

2387
	set_bit(method, &efx->reset_pending);
2388 2389 2390 2391 2392 2393 2394
	smp_mb(); /* ensure we change reset_pending before checking state */

	/* If we're not READY then just leave the flags set as the cue
	 * to abort probing or reschedule the reset later.
	 */
	if (ACCESS_ONCE(efx->state) != STATE_READY)
		return;
2395

2396 2397 2398 2399
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2400
	queue_work(reset_workqueue, &efx->reset_work);
2401 2402 2403 2404 2405 2406 2407 2408 2409
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2410
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2411 2412
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2413
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2414 2415
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2416
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2417
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2418
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2419
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2420
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2421 2422 2423 2424 2425
	{0}			/* end of list */
};

/**************************************************************************
 *
2426
 * Dummy PHY/MAC operations
2427
 *
2428
 * Can be used for some unimplemented operations
2429 2430 2431 2432 2433 2434 2435 2436 2437
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2438 2439

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2440 2441 2442
{
	return false;
}
2443

2444
static const struct efx_phy_operations efx_dummy_phy_operations = {
2445
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2446
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2447
	.poll		 = efx_port_dummy_op_poll,
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2460
static int efx_init_struct(struct efx_nic *efx,
2461 2462
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2463
	int i;
2464 2465 2466

	/* Initialise common structures */
	spin_lock_init(&efx->biu_lock);
2467 2468 2469
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2470 2471
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2472
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2473
	efx->pci_dev = pci_dev;
2474
	efx->msg_enable = debug;
2475
	efx->state = STATE_UNINIT;
2476 2477 2478 2479 2480 2481
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2482
	efx->mdio.dev = net_dev;
2483
	INIT_WORK(&efx->mac_work, efx_mac_work);
2484
	init_waitqueue_head(&efx->flush_wq);
2485 2486

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2487 2488 2489
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
B
Ben Hutchings 已提交
2490 2491
		efx->msi_context[i].efx = efx;
		efx->msi_context[i].index = i;
2492 2493 2494 2495 2496 2497 2498 2499
	}

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2500 2501 2502 2503
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2504
	if (!efx->workqueue)
2505
		goto fail;
2506

2507
	return 0;
2508 2509 2510 2511

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2512 2513 2514 2515
}

static void efx_fini_struct(struct efx_nic *efx)
{
2516 2517 2518 2519 2520
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2538 2539 2540 2541 2542 2543
	/* Flush reset_work. It can no longer be scheduled since we
	 * are not READY.
	 */
	BUG_ON(efx->state == STATE_READY);
	cancel_work_sync(&efx->reset_work);

B
Ben Hutchings 已提交
2544
	efx_disable_interrupts(efx);
2545
	efx_nic_fini_interrupt(efx);
2546
	efx_fini_port(efx);
2547
	efx->type->fini(efx);
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	dev_close(efx->net_dev);
B
Ben Hutchings 已提交
2566
	efx_disable_interrupts(efx);
2567 2568
	rtnl_unlock();

2569
	efx_sriov_fini(efx);
2570 2571
	efx_unregister_netdev(efx);

2572 2573
	efx_mtd_remove(efx);

2574 2575 2576
	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2577
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2578 2579

	efx_fini_struct(efx);
2580
	pci_set_drvdata(pci_dev, NULL);
2581
	free_netdev(efx->net_dev);
2582 2583

	pci_disable_pcie_error_reporting(pci_dev);
2584 2585
};

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2649
	efx_init_napi(efx);
2650

2651
	rc = efx->type->init(efx);
2652
	if (rc) {
2653 2654
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2655
		goto fail3;
2656 2657 2658 2659
	}

	rc = efx_init_port(efx);
	if (rc) {
2660 2661
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2662
		goto fail4;
2663 2664
	}

2665
	rc = efx_nic_init_interrupt(efx);
2666
	if (rc)
2667
		goto fail5;
B
Ben Hutchings 已提交
2668
	efx_enable_interrupts(efx);
2669 2670 2671

	return 0;

2672
 fail5:
2673 2674
	efx_fini_port(efx);
 fail4:
2675
	efx->type->fini(efx);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2686
 * theoretically).  It sets up PCI mappings, resets the NIC,
2687 2688 2689 2690 2691
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
B
Bill Pemberton 已提交
2692
static int efx_pci_probe(struct pci_dev *pci_dev,
2693
			 const struct pci_device_id *entry)
2694 2695 2696
{
	struct net_device *net_dev;
	struct efx_nic *efx;
2697
	int rc;
2698 2699

	/* Allocate and initialise a struct net_device and struct efx_nic */
2700 2701
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2702 2703
	if (!net_dev)
		return -ENOMEM;
2704 2705 2706
	efx = netdev_priv(net_dev);
	efx->type = (const struct efx_nic_type *) entry->driver_data;
	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2707
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2708
			      NETIF_F_RXCSUM);
2709
	if (efx->type->offload_features & NETIF_F_V6_CSUM)
B
Ben Hutchings 已提交
2710
		net_dev->features |= NETIF_F_TSO6;
2711 2712
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2713 2714 2715 2716
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2717
	pci_set_drvdata(pci_dev, efx);
2718
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2719
	rc = efx_init_struct(efx, pci_dev, net_dev);
2720 2721 2722
	if (rc)
		goto fail1;

2723
	netif_info(efx, probe, efx->net_dev,
2724
		   "Solarflare NIC detected\n");
2725

2726 2727
	efx_print_product_vpd(efx);

2728 2729 2730 2731 2732
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2733 2734 2735
	rc = efx_pci_probe_main(efx);
	if (rc)
		goto fail3;
2736 2737 2738

	rc = efx_register_netdev(efx);
	if (rc)
2739
		goto fail4;
2740

2741 2742 2743 2744 2745
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2746
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2747

2748
	/* Try to create MTDs, but allow this to fail */
2749
	rtnl_lock();
2750
	rc = efx_mtd_probe(efx);
2751
	rtnl_unlock();
2752 2753 2754 2755
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2756 2757 2758 2759 2760
	rc = pci_enable_pcie_error_reporting(pci_dev);
	if (rc && rc != -EINVAL)
		netif_warn(efx, probe, efx->net_dev,
			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);

2761 2762 2763
	return 0;

 fail4:
2764
	efx_pci_remove_main(efx);
2765 2766 2767 2768 2769
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
2770
	pci_set_drvdata(pci_dev, NULL);
S
Steve Hodgson 已提交
2771
	WARN_ON(rc > 0);
2772
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2773 2774 2775 2776
	free_netdev(net_dev);
	return rc;
}

2777 2778 2779 2780
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2781 2782
	rtnl_lock();

2783 2784
	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_UNINIT;
2785

2786
		efx_device_detach_sync(efx);
2787

2788
		efx_stop_all(efx);
B
Ben Hutchings 已提交
2789
		efx_disable_interrupts(efx);
2790
	}
2791

2792 2793
	rtnl_unlock();

2794 2795 2796 2797 2798 2799 2800
	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

2801 2802
	rtnl_lock();

2803
	if (efx->state != STATE_DISABLED) {
B
Ben Hutchings 已提交
2804
		efx_enable_interrupts(efx);
2805

2806 2807 2808
		mutex_lock(&efx->mac_lock);
		efx->phy_op->reconfigure(efx);
		mutex_unlock(&efx->mac_lock);
2809

2810
		efx_start_all(efx);
2811

2812
		netif_device_attach(efx->net_dev);
2813

2814
		efx->state = STATE_READY;
2815

2816 2817
		efx->type->resume_wol(efx);
	}
2818

2819 2820
	rtnl_unlock();

2821 2822 2823
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2834
	efx->reset_pending = 0;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2876
static const struct dev_pm_ops efx_pm_ops = {
2877 2878 2879 2880 2881 2882 2883 2884
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2885 2886 2887 2888
/* A PCI error affecting this device was detected.
 * At this point MMIO and DMA may be disabled.
 * Stop the software path and request a slot reset.
 */
2889 2890
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
					      enum pci_channel_state state)
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
{
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	struct efx_nic *efx = pci_get_drvdata(pdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	rtnl_lock();

	if (efx->state != STATE_DISABLED) {
		efx->state = STATE_RECOVERY;
		efx->reset_pending = 0;

		efx_device_detach_sync(efx);

		efx_stop_all(efx);
B
Ben Hutchings 已提交
2907
		efx_disable_interrupts(efx);
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

		status = PCI_ERS_RESULT_NEED_RESET;
	} else {
		/* If the interface is disabled we don't want to do anything
		 * with it.
		 */
		status = PCI_ERS_RESULT_RECOVERED;
	}

	rtnl_unlock();

	pci_disable_device(pdev);

	return status;
}

/* Fake a successfull reset, which will be performed later in efx_io_resume. */
2925
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
	int rc;

	if (pci_enable_device(pdev)) {
		netif_err(efx, hw, efx->net_dev,
			  "Cannot re-enable PCI device after reset.\n");
		status =  PCI_ERS_RESULT_DISCONNECT;
	}

	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
		/* Non-fatal error. Continue. */
	}

	return status;
}

/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
	struct efx_nic *efx = pci_get_drvdata(pdev);
	int rc;

	rtnl_lock();

	if (efx->state == STATE_DISABLED)
		goto out;

	rc = efx_reset(efx, RESET_TYPE_ALL);
	if (rc) {
		netif_err(efx, hw, efx->net_dev,
			  "efx_reset failed after PCI error (%d)\n", rc);
	} else {
		efx->state = STATE_READY;
		netif_dbg(efx, hw, efx->net_dev,
			  "Done resetting and resuming IO after PCI error.\n");
	}

out:
	rtnl_unlock();
}

/* For simplicity and reliability, we always require a slot reset and try to
 * reset the hardware when a pci error affecting the device is detected.
 * We leave both the link_reset and mmio_enabled callback unimplemented:
 * with our request for slot reset the mmio_enabled callback will never be
 * called, and the link_reset callback is not used by AER or EEH mechanisms.
 */
static struct pci_error_handlers efx_err_handlers = {
	.error_detected = efx_io_error_detected,
	.slot_reset	= efx_io_slot_reset,
	.resume		= efx_io_resume,
};

2984
static struct pci_driver efx_pci_driver = {
2985
	.name		= KBUILD_MODNAME,
2986 2987 2988
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2989
	.driver.pm	= &efx_pm_ops,
2990
	.err_handler	= &efx_err_handlers,
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

3013 3014 3015 3016
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

3017 3018 3019 3020 3021
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
3022 3023 3024 3025 3026 3027 3028 3029

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
3030 3031
	destroy_workqueue(reset_workqueue);
 err_reset:
3032 3033
	efx_fini_sriov();
 err_sriov:
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
3044
	destroy_workqueue(reset_workqueue);
3045
	efx_fini_sriov();
3046 3047 3048 3049 3050 3051 3052
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

3053 3054
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
3055 3056 3057
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);