intel_pm.c 210.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57
static void gen9_init_clock_gating(struct drm_device *dev)
58
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80 81 82 83 84
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

85 86 87 88
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

89 90
	/*
	 * FIXME:
91
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
92 93
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
94
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
95 96 97 98 99 100 101 102

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
103 104
}

105 106
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
107
	struct drm_i915_private *dev_priv = dev->dev_private;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
146
	struct drm_i915_private *dev_priv = dev->dev_private;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317 318
	struct drm_device *dev = dev_priv->dev;
	u32 val;
319

320
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
321
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
322
		POSTING_READ(FW_BLC_SELF_VLV);
323
		dev_priv->wm.vlv.cxsr = enable;
324 325
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
326
		POSTING_READ(FW_BLC_SELF);
327 328 329 330
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
331
		POSTING_READ(DSPFW3);
332 333 334 335
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
336
		POSTING_READ(FW_BLC_SELF);
337 338 339 340
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
341
		POSTING_READ(INSTPM);
342 343 344
	} else {
		return;
	}
345

346 347
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
348 349
}

350

351 352 353 354 355 356 357 358 359 360 361 362 363 364
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
365
static const int pessimal_latency_ns = 5000;
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

422
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

438
static int i830_get_fifo_size(struct drm_device *dev, int plane)
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

455
static int i845_get_fifo_size(struct drm_device *dev, int plane)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
473 474 475 476 477
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
480 481 482 483 484
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params pineview_cursor_wm = {
487 488 489 490 491
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
492 493
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
494 495 496 497 498
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
499 500
};
static const struct intel_watermark_params g4x_wm_info = {
501 502 503 504 505
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
506 507
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
508 509 510 511 512
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
513 514
};
static const struct intel_watermark_params i965_cursor_wm_info = {
515 516 517 518 519
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
520 521
};
static const struct intel_watermark_params i945_wm_info = {
522 523 524 525 526
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
527 528
};
static const struct intel_watermark_params i915_wm_info = {
529 530 531 532 533
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
534
};
535
static const struct intel_watermark_params i830_a_wm_info = {
536 537 538 539 540
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
541
};
542 543 544 545 546 547 548
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
549
static const struct intel_watermark_params i845_wm_info = {
550 551 552 553 554
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
555 556 557 558 559 560
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
561
 * @cpp: bytes per pixel
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
577
					int fifo_size, int cpp,
578 579 580 581 582 583 584 585 586 587
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
588
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
589 590 591 592 593 594 595 596 597 598 599 600 601 602
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
603 604 605 606 607 608 609 610 611 612 613

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

614 615 616 617 618 619 620
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

621
	for_each_crtc(dev, crtc) {
622
		if (intel_crtc_active(crtc)) {
623 624 625 626 627 628 629 630 631
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

632
static void pineview_update_wm(struct drm_crtc *unused_crtc)
633
{
634
	struct drm_device *dev = unused_crtc->dev;
635 636 637 638 639 640 641 642 643 644
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645
		intel_set_memory_cxsr(dev_priv, false);
646 647 648 649 650
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
651
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
652
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
653
		int clock = adjusted_mode->crtc_clock;
654 655 656 657

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
658
					cpp, latency->display_sr);
659 660
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
661
		reg |= FW_WM(wm, SR);
662 663 664 665 666 667
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
668
					cpp, latency->cursor_sr);
669 670
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
671
		reg |= FW_WM(wm, CURSOR_SR);
672 673 674 675 676
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
677
					cpp, latency->display_hpll_disable);
678 679
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
680
		reg |= FW_WM(wm, HPLL_SR);
681 682 683 684 685
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
686
					cpp, latency->cursor_hpll_disable);
687 688
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
689
		reg |= FW_WM(wm, HPLL_CURSOR);
690 691 692
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

693
		intel_set_memory_cxsr(dev_priv, true);
694
	} else {
695
		intel_set_memory_cxsr(dev_priv, false);
696 697 698 699 700 701 702 703 704 705 706 707 708
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
709
	const struct drm_display_mode *adjusted_mode;
710
	int htotal, hdisplay, clock, cpp;
711 712 713 714
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
715
	if (!intel_crtc_active(crtc)) {
716 717 718 719 720
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

721
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
722
	clock = adjusted_mode->crtc_clock;
723
	htotal = adjusted_mode->crtc_htotal;
724
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
725
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
726 727

	/* Use the small buffer method to calculate plane watermark */
728
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
729 730 731 732 733 734 735 736 737
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
738
	line_time_us = max(htotal * 1000 / clock, 1);
739
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
740
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
795
	const struct drm_display_mode *adjusted_mode;
796
	int hdisplay, htotal, cpp, clock;
797 798 799 800 801 802 803 804 805 806 807
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
808
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
809
	clock = adjusted_mode->crtc_clock;
810
	htotal = adjusted_mode->crtc_htotal;
811
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
812
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
813

814
	line_time_us = max(htotal * 1000 / clock, 1);
815
	line_count = (latency_ns / line_time_us + 1000) / 1000;
816
	line_size = hdisplay * cpp;
817 818

	/* Use the minimum of the small and large buffer method for primary */
819
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
820 821 822 823 824 825
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
826
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
827 828 829 830 831 832 833 834
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

835 836 837
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

838 839 840 841 842 843 844 845 846 847 848 849
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

850
	I915_WRITE(DSPFW1,
851 852 853 854
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
855
	I915_WRITE(DSPFW2,
856 857 858
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
859
	I915_WRITE(DSPFW3,
860
		   FW_WM(wm->sr.cursor, CURSOR_SR));
861 862 863

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
864 865
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
866
		I915_WRITE(DSPFW8_CHV,
867 868
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
869
		I915_WRITE(DSPFW9_CHV,
870 871
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
872
		I915_WRITE(DSPHOWM,
873 874 875 876 877 878 879 880 881 882
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
883 884
	} else {
		I915_WRITE(DSPFW7,
885 886
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
887
		I915_WRITE(DSPHOWM,
888 889 890 891 892 893 894
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
895 896
	}

897 898 899 900 901 902
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

903
	POSTING_READ(DSPFW1);
904 905
}

906 907
#undef FW_WM_VLV

908 909 910 911 912 913
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

914 915 916 917
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
918
				   unsigned int cpp,
919 920 921 922 923
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
924
	ret = (ret + 1) * horiz_pixels * cpp;
925 926 927 928 929 930 931 932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

937 938
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

939 940 941
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
942 943

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
944 945 946 947 948 949 950 951 952
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
953
	int clock, htotal, cpp, width, wm;
954 955 956 957 958 959 960

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

961
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
977
		wm = vlv_wm_method2(clock, htotal, width, cpp,
978 979 980 981 982 983
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1085
static void vlv_compute_wm(struct intel_crtc *crtc)
1086 1087 1088 1089 1090 1091 1092 1093 1094
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1095
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1096
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1097 1098 1099

	wm_state->num_active_planes = 0;

1100
	vlv_compute_fifo(crtc);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1157
					wm_state->wm[level].cursor;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1176
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1177 1178 1179 1180 1181 1182 1183
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1274 1275 1276 1277 1278 1279
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1280
	wm->level = to_i915(dev)->wm.max_level;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1299 1300 1301
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1328
	vlv_compute_wm(intel_crtc);
1329 1330
	vlv_merge_wm(dev, &wm);

1331 1332 1333
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1334
		return;
1335
	}
1336 1337 1338 1339 1340 1341 1342 1343 1344

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1345
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1346 1347
		intel_set_memory_cxsr(dev_priv, false);

1348 1349 1350
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1351 1352 1353 1354 1355 1356 1357 1358
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1359
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1371 1372
}

1373 1374
#define single_plane_enabled(mask) is_power_of_2(mask)

1375
static void g4x_update_wm(struct drm_crtc *crtc)
1376
{
1377
	struct drm_device *dev = crtc->dev;
1378 1379 1380 1381 1382
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1383
	bool cxsr_enabled;
1384

1385
	if (g4x_compute_wm0(dev, PIPE_A,
1386 1387
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1388
			    &planea_wm, &cursora_wm))
1389
		enabled |= 1 << PIPE_A;
1390

1391
	if (g4x_compute_wm0(dev, PIPE_B,
1392 1393
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1394
			    &planeb_wm, &cursorb_wm))
1395
		enabled |= 1 << PIPE_B;
1396 1397 1398 1399 1400 1401

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1402
			     &plane_sr, &cursor_sr)) {
1403
		cxsr_enabled = true;
1404
	} else {
1405
		cxsr_enabled = false;
1406
		intel_set_memory_cxsr(dev_priv, false);
1407 1408
		plane_sr = cursor_sr = 0;
	}
1409

1410 1411
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1412 1413 1414 1415 1416
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1417 1418 1419 1420
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1421
	I915_WRITE(DSPFW2,
1422
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1423
		   FW_WM(cursora_wm, CURSORA));
1424 1425
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1426
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1427
		   FW_WM(cursor_sr, CURSOR_SR));
1428 1429 1430

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1431 1432
}

1433
static void i965_update_wm(struct drm_crtc *unused_crtc)
1434
{
1435
	struct drm_device *dev = unused_crtc->dev;
1436 1437 1438 1439
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1440
	bool cxsr_enabled;
1441 1442 1443 1444 1445 1446

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1447
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1448
		int clock = adjusted_mode->crtc_clock;
1449
		int htotal = adjusted_mode->crtc_htotal;
1450
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1451
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1452 1453 1454
		unsigned long line_time_us;
		int entries;

1455
		line_time_us = max(htotal * 1000 / clock, 1);
1456 1457 1458

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459
			cpp * hdisplay;
1460 1461 1462 1463 1464 1465 1466 1467 1468
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469
			cpp * crtc->cursor->state->crtc_w;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1481
		cxsr_enabled = true;
1482
	} else {
1483
		cxsr_enabled = false;
1484
		/* Turn off self refresh if both pipes are enabled */
1485
		intel_set_memory_cxsr(dev_priv, false);
1486 1487 1488 1489 1490 1491
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1492 1493 1494 1495 1496 1497
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1498
	/* update cursor SR watermark */
1499
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1500 1501 1502

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1503 1504
}

1505 1506
#undef FW_WM

1507
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1508
{
1509
	struct drm_device *dev = unused_crtc->dev;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1524
		wm_info = &i830_a_wm_info;
1525 1526 1527

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1528
	if (intel_crtc_active(crtc)) {
1529
		const struct drm_display_mode *adjusted_mode;
1530
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1531 1532 1533
		if (IS_GEN2(dev))
			cpp = 4;

1534
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1535
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1536
					       wm_info, fifo_size, cpp,
1537
					       pessimal_latency_ns);
1538
		enabled = crtc;
1539
	} else {
1540
		planea_wm = fifo_size - wm_info->guard_size;
1541 1542 1543 1544 1545 1546
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1547 1548 1549

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1550
	if (intel_crtc_active(crtc)) {
1551
		const struct drm_display_mode *adjusted_mode;
1552
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1553 1554 1555
		if (IS_GEN2(dev))
			cpp = 4;

1556
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1557
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1558
					       wm_info, fifo_size, cpp,
1559
					       pessimal_latency_ns);
1560 1561 1562 1563
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1564
	} else {
1565
		planeb_wm = fifo_size - wm_info->guard_size;
1566 1567 1568
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1569 1570 1571

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1572
	if (IS_I915GM(dev) && enabled) {
1573
		struct drm_i915_gem_object *obj;
1574

1575
		obj = intel_fb_obj(enabled->primary->state->fb);
1576 1577

		/* self-refresh seems busted with untiled */
1578
		if (obj->tiling_mode == I915_TILING_NONE)
1579 1580 1581
			enabled = NULL;
	}

1582 1583 1584 1585 1586 1587
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1588
	intel_set_memory_cxsr(dev_priv, false);
1589 1590 1591 1592 1593

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1594
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1595
		int clock = adjusted_mode->crtc_clock;
1596
		int htotal = adjusted_mode->crtc_htotal;
1597
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1598
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1599 1600 1601
		unsigned long line_time_us;
		int entries;

1602
		line_time_us = max(htotal * 1000 / clock, 1);
1603 1604 1605

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1606
			cpp * hdisplay;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1633 1634
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1635 1636
}

1637
static void i845_update_wm(struct drm_crtc *unused_crtc)
1638
{
1639
	struct drm_device *dev = unused_crtc->dev;
1640 1641
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1642
	const struct drm_display_mode *adjusted_mode;
1643 1644 1645 1646 1647 1648 1649
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1650
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1651
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1652
				       &i845_wm_info,
1653
				       dev_priv->display.get_fifo_size(dev, 0),
1654
				       4, pessimal_latency_ns);
1655 1656 1657 1658 1659 1660 1661 1662
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1663
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1664
{
1665
	uint32_t pixel_rate;
1666

1667
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1668 1669 1670 1671

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1672
	if (pipe_config->pch_pfit.enabled) {
1673
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1674 1675 1676 1677
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1678 1679 1680 1681 1682 1683 1684 1685

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1686 1687 1688
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1689 1690 1691 1692 1693 1694 1695
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1696
/* latency must be in 0.1us units. */
1697
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1698 1699 1700
{
	uint64_t ret;

1701 1702 1703
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1704
	ret = (uint64_t) pixel_rate * cpp * latency;
1705 1706 1707 1708 1709
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1710
/* latency must be in 0.1us units. */
1711
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1712
			       uint32_t horiz_pixels, uint8_t cpp,
1713 1714 1715 1716
			       uint32_t latency)
{
	uint32_t ret;

1717 1718
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1719 1720
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1721

1722
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1723
	ret = (ret + 1) * horiz_pixels * cpp;
1724 1725 1726 1727
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1728
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1729
			   uint8_t cpp)
1730
{
1731 1732 1733 1734 1735 1736
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1737
	if (WARN_ON(!cpp))
1738 1739 1740 1741
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1742
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1743 1744
}

1745
struct ilk_wm_maximums {
1746 1747 1748 1749 1750 1751
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1752 1753 1754 1755
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1756
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1757
				   const struct intel_plane_state *pstate,
1758 1759
				   uint32_t mem_value,
				   bool is_lp)
1760
{
1761 1762
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1763 1764
	uint32_t method1, method2;

1765
	if (!cstate->base.active || !pstate->visible)
1766 1767
		return 0;

1768
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1769 1770 1771 1772

	if (!is_lp)
		return method1;

1773 1774
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1775
				 drm_rect_width(&pstate->dst),
1776
				 cpp, mem_value);
1777 1778

	return min(method1, method2);
1779 1780
}

1781 1782 1783 1784
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1785
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1786
				   const struct intel_plane_state *pstate,
1787 1788
				   uint32_t mem_value)
{
1789 1790
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1791 1792
	uint32_t method1, method2;

1793
	if (!cstate->base.active || !pstate->visible)
1794 1795
		return 0;

1796
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1797 1798
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1799
				 drm_rect_width(&pstate->dst),
1800
				 cpp, mem_value);
1801 1802 1803
	return min(method1, method2);
}

1804 1805 1806 1807
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1808
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1809
				   const struct intel_plane_state *pstate,
1810 1811
				   uint32_t mem_value)
{
1812 1813 1814 1815 1816 1817 1818
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1819

1820
	if (!cstate->base.active)
1821 1822
		return 0;

1823 1824
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1825
			      width, cpp, mem_value);
1826 1827
}

1828
/* Only for WM_LP. */
1829
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1830
				   const struct intel_plane_state *pstate,
1831
				   uint32_t pri_val)
1832
{
1833 1834
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1835

1836
	if (!cstate->base.active || !pstate->visible)
1837 1838
		return 0;

1839
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1840 1841
}

1842 1843
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1844 1845 1846
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1847 1848 1849 1850 1851
		return 768;
	else
		return 512;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1886 1887 1888
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1889
				     const struct intel_wm_config *config,
1890 1891 1892 1893 1894 1895
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1896
	if (is_sprite && !config->sprites_enabled)
1897 1898 1899
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1900
	if (level == 0 || config->num_pipes_active > 1) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1912
	if (config->sprites_enabled) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1924
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1925 1926 1927 1928
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1929 1930
				      int level,
				      const struct intel_wm_config *config)
1931 1932
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1933
	if (level > 0 && config->num_pipes_active > 1)
1934 1935 1936
		return 64;

	/* otherwise just report max that registers can hold */
1937
	return ilk_cursor_wm_reg_max(dev, level);
1938 1939
}

1940
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1941 1942 1943
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1944
				    struct ilk_wm_maximums *max)
1945
{
1946 1947 1948
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1949
	max->fbc = ilk_fbc_wm_reg_max(dev);
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1962
static bool ilk_validate_wm_level(int level,
1963
				  const struct ilk_wm_maximums *max,
1964
				  struct intel_wm_level *result)
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2003
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2004
				 const struct intel_crtc *intel_crtc,
2005
				 int level,
2006
				 struct intel_crtc_state *cstate,
2007 2008 2009
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2010
				 struct intel_wm_level *result)
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2035 2036 2037
	result->enable = true;
}

2038
static uint32_t
2039 2040
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2041 2042
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2043 2044
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2045
	u32 linetime, ips_linetime;
2046

2047 2048 2049 2050 2051
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2052
		return 0;
2053

2054 2055 2056
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2057 2058 2059
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2060
					 dev_priv->cdclk_freq);
2061

2062 2063
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2064 2065
}

2066
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2067 2068 2069
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2070 2071
	if (IS_GEN9(dev)) {
		uint32_t val;
2072
		int ret, i;
2073
		int level, max_level = ilk_wm_max_level(dev);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2116
		/*
2117 2118
		 * WaWmMemoryReadLatency:skl
		 *
2119 2120 2121 2122 2123 2124 2125 2126
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2127 2128 2129 2130 2131
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2132 2133 2134 2135 2136
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2137 2138 2139
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2140

2141 2142
				break;
			}
2143
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2144 2145 2146 2147 2148
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2149 2150 2151 2152
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2153 2154 2155 2156 2157 2158 2159
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2160 2161 2162 2163 2164 2165 2166
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2167 2168 2169
	}
}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2188
int ilk_wm_max_level(const struct drm_device *dev)
2189 2190
{
	/* how many WM levels are we expecting */
2191
	if (INTEL_INFO(dev)->gen >= 9)
2192 2193
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2194
		return 4;
2195
	else if (INTEL_INFO(dev)->gen >= 6)
2196
		return 3;
2197
	else
2198 2199
		return 2;
}
2200

2201 2202
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2203
				   const uint16_t wm[8])
2204 2205
{
	int level, max_level = ilk_wm_max_level(dev);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2216 2217 2218 2219 2220 2221 2222
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2223 2224 2225 2226 2227 2228 2229 2230
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2268
static void ilk_setup_wm_latency(struct drm_device *dev)
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2281 2282 2283 2284

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2285 2286 2287

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2288 2289
}

2290 2291 2292 2293 2294 2295 2296 2297
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2321
/* Compute new watermarks for the pipe */
2322
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2323
{
2324 2325
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2326
	struct intel_pipe_wm *pipe_wm;
2327
	struct drm_device *dev = state->dev;
2328
	const struct drm_i915_private *dev_priv = dev->dev_private;
2329
	struct intel_plane *intel_plane;
2330
	struct intel_plane_state *pristate = NULL;
2331
	struct intel_plane_state *sprstate = NULL;
2332
	struct intel_plane_state *curstate = NULL;
2333
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2334
	struct ilk_wm_maximums max;
2335

2336 2337
	pipe_wm = &cstate->wm.optimal.ilk;

2338
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2339 2340 2341 2342 2343 2344
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2345 2346

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2347
			pristate = ps;
2348
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2349
			sprstate = ps;
2350
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2351
			curstate = ps;
2352 2353
	}

2354
	pipe_wm->pipe_enabled = cstate->base.active;
2355 2356 2357 2358 2359 2360 2361
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2362
	usable_level = max_level;
2363

2364
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2365
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2366
		usable_level = 1;
2367 2368

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2369
	if (pipe_wm->sprites_scaled)
2370
		usable_level = 0;
2371

2372
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2373 2374 2375 2376
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2377

2378
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2379
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2380

2381
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2382
		return -EINVAL;
2383 2384 2385 2386

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2387
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2388

2389
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2390
				     pristate, sprstate, curstate, wm);
2391 2392 2393 2394 2395 2396

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2397 2398
		if (level > usable_level)
			continue;
2399

2400 2401 2402
		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2403
			usable_level = level;
2404 2405
	}

2406
	return 0;
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
	struct intel_pipe_wm *a = &newstate->wm.intermediate;
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
	*a = newstate->wm.optimal.ilk;
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2471 2472
	ret_wm->enable = true;

2473
	for_each_intel_crtc(dev, intel_crtc) {
2474
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2475 2476 2477 2478
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2479

2480 2481 2482 2483 2484
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2485
		if (!wm->enable)
2486
			ret_wm->enable = false;
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2499
			 const struct intel_wm_config *config,
2500
			 const struct ilk_wm_maximums *max,
2501 2502
			 struct intel_pipe_wm *merged)
{
2503
	struct drm_i915_private *dev_priv = dev->dev_private;
2504
	int level, max_level = ilk_wm_max_level(dev);
2505
	int last_enabled_level = max_level;
2506

2507 2508 2509
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2510
		last_enabled_level = 0;
2511

2512 2513
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2514 2515 2516 2517 2518 2519 2520

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2521 2522 2523 2524 2525
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2526 2527 2528 2529 2530 2531

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2532 2533
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2534 2535 2536
			wm->fbc_val = 0;
		}
	}
2537 2538 2539 2540 2541 2542 2543

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2544
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2545
	    intel_fbc_is_active(dev_priv)) {
2546 2547 2548 2549 2550 2551
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2552 2553
}

2554 2555 2556 2557 2558 2559
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2560 2561 2562 2563 2564
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2565
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2566 2567 2568 2569 2570
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2571
static void ilk_compute_wm_results(struct drm_device *dev,
2572
				   const struct intel_pipe_wm *merged,
2573
				   enum intel_ddb_partitioning partitioning,
2574
				   struct ilk_wm_values *results)
2575
{
2576 2577
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2578

2579
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2580
	results->partitioning = partitioning;
2581

2582
	/* LP1+ register values */
2583
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2584
		const struct intel_wm_level *r;
2585

2586
		level = ilk_wm_lp_to_level(wm_lp, merged);
2587

2588
		r = &merged->wm[level];
2589

2590 2591 2592 2593 2594
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2595
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2596 2597 2598
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2599 2600 2601
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2602 2603 2604 2605 2606 2607 2608
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2609 2610 2611 2612
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2613 2614 2615 2616 2617
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2618
	}
2619

2620
	/* LP0 register values */
2621
	for_each_intel_crtc(dev, intel_crtc) {
2622
		enum pipe pipe = intel_crtc->pipe;
2623 2624
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2625 2626 2627 2628

		if (WARN_ON(!r->enable))
			continue;

2629
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2630

2631 2632 2633 2634
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2635 2636 2637
	}
}

2638 2639
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2640
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2641 2642
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2643
{
2644 2645
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2646

2647 2648 2649 2650 2651
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2652 2653
	}

2654 2655
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2656 2657 2658
			return r2;
		else
			return r1;
2659
	} else if (level1 > level2) {
2660 2661 2662 2663 2664 2665
		return r1;
	} else {
		return r2;
	}
}

2666 2667 2668 2669 2670 2671 2672 2673
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2674
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2675 2676
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2677 2678 2679 2680 2681
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2682
	for_each_pipe(dev_priv, pipe) {
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2726 2727
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2728
{
2729
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2730
	bool changed = false;
2731

2732 2733 2734
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2735
		changed = true;
2736 2737 2738 2739
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2740
		changed = true;
2741 2742 2743 2744
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2745
		changed = true;
2746
	}
2747

2748 2749 2750 2751
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2752

2753 2754 2755 2756 2757 2758 2759
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2760 2761
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2762 2763
{
	struct drm_device *dev = dev_priv->dev;
2764
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2765 2766 2767
	unsigned int dirty;
	uint32_t val;

2768
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2769 2770 2771 2772 2773
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2774
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2775
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2776
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2777
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2778
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2779 2780
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2781
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2782
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2783
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2784
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2785
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2786 2787
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2788
	if (dirty & WM_DIRTY_DDB) {
2789
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2804 2805
	}

2806
	if (dirty & WM_DIRTY_FBC) {
2807 2808 2809 2810 2811 2812 2813 2814
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2815 2816 2817 2818 2819
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2820 2821 2822 2823 2824
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2825

2826
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2827
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2828
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2829
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2830
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2831
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2832 2833

	dev_priv->wm.hw = *results;
2834 2835
}

2836
bool ilk_disable_lp_wm(struct drm_device *dev)
2837 2838 2839 2840 2841 2842
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2843 2844 2845 2846 2847 2848
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2849
#define BXT_DDB_SIZE		512
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2873 2874
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2875
				   const struct intel_crtc_state *cstate,
2876 2877 2878
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2879
	struct drm_crtc *for_crtc = cstate->base.crtc;
2880 2881 2882 2883
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2884
	if (!cstate->base.active) {
2885 2886 2887 2888 2889
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2890 2891 2892 2893
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2894 2895 2896 2897 2898

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2899
		if (!to_intel_crtc(crtc)->active)
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2910
	alloc->end = alloc->start + pipe_size;
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2921 2922 2923 2924
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2925 2926
	if (entry->end)
		entry->end += 1;
2927 2928
}

2929 2930
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2931 2932 2933 2934 2935
{
	enum pipe pipe;
	int plane;
	u32 val;

2936 2937
	memset(ddb, 0, sizeof(*ddb));

2938
	for_each_pipe(dev_priv, pipe) {
2939 2940 2941 2942
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2943 2944
			continue;

2945
		for_each_plane(dev_priv, pipe, plane) {
2946 2947 2948 2949 2950 2951
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2952 2953
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2954 2955

		intel_display_power_put(dev_priv, power_domain);
2956 2957 2958
	}
}

2959
static unsigned int
2960 2961 2962
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2963
{
2964
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2965
	struct drm_framebuffer *fb = pstate->fb;
2966 2967 2968 2969 2970 2971 2972
	uint32_t width = 0, height = 0;

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
2973 2974

	/* for planar format */
2975
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2976
		if (y)  /* y-plane data rate */
2977
			return width * height *
2978
				drm_format_plane_cpp(fb->pixel_format, 0);
2979
		else    /* uv-plane data rate */
2980
			return (width / 2) * (height / 2) *
2981
				drm_format_plane_cpp(fb->pixel_format, 1);
2982 2983 2984
	}

	/* for packed formats */
2985
	return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2986 2987 2988 2989 2990 2991 2992 2993
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2994
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2995
{
2996 2997 2998
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2999 3000
	unsigned int total_data_rate = 0;

3001 3002
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
3003

3004
		if (pstate->fb == NULL)
3005 3006
			continue;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
3020 3021 3022 3023 3024 3025
	}

	return total_data_rate;
}

static void
3026
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3027 3028
		      struct skl_ddb_allocation *ddb /* out */)
{
3029
	struct drm_crtc *crtc = cstate->base.crtc;
3030
	struct drm_device *dev = crtc->dev;
3031 3032
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
3033
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3034
	struct intel_plane *intel_plane;
3035
	enum pipe pipe = intel_crtc->pipe;
3036
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3037
	uint16_t alloc_size, start, cursor_blocks;
3038
	uint16_t minimum[I915_MAX_PLANES];
3039
	uint16_t y_minimum[I915_MAX_PLANES];
3040 3041
	unsigned int total_data_rate;

3042
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3043
	alloc_size = skl_ddb_entry_size(alloc);
3044 3045
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3046 3047
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3048 3049 3050 3051
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
3052 3053
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3054 3055

	alloc_size -= cursor_blocks;
3056
	alloc->end -= cursor_blocks;
3057

3058
	/* 1. Allocate the mininum required blocks for each active plane */
3059 3060 3061 3062
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
3063

3064
		if (!to_intel_plane_state(plane->state)->visible)
3065
			continue;
3066

3067
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3068 3069
			continue;

3070 3071 3072 3073
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
3074 3075
	}

3076
	/*
3077 3078
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3079 3080 3081
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3082
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3083

3084
	start = alloc->start;
3085 3086 3087
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3088 3089
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3090
		int id = skl_wm_plane_id(intel_plane);
3091

3092
		if (!to_intel_plane_state(pstate)->visible)
3093 3094
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3095 3096
			continue;

3097
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3098 3099

		/*
3100
		 * allocation for (packed formats) or (uv-plane part of planar format):
3101 3102 3103
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3104
		plane_blocks = minimum[id];
3105 3106
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3107

3108 3109
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3110 3111

		start += plane_blocks;
3112 3113 3114 3115

		/*
		 * allocation for y_plane part of planar format:
		 */
3116 3117 3118 3119 3120
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3121 3122 3123
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3124 3125
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3126 3127 3128 3129

			start += y_plane_blocks;
		}

3130 3131 3132 3133
	}

}

3134
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3135 3136
{
	/* TODO: Take into account the scalers once we support them */
3137
	return config->base.adjusted_mode.crtc_clock;
3138 3139 3140 3141
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3142
 * for the read latency) and cpp should always be <= 8, so that
3143 3144 3145
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3146
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3147 3148 3149 3150 3151 3152
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3153
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3154 3155 3156 3157 3158 3159
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3160
			       uint32_t horiz_pixels, uint8_t cpp,
3161
			       uint64_t tiling, uint32_t latency)
3162
{
3163 3164 3165
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3166 3167 3168 3169

	if (latency == 0)
		return UINT_MAX;

3170
	plane_bytes_per_line = horiz_pixels * cpp;
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3181 3182
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3183
				plane_blocks_per_line;
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3195 3196 3197 3198 3199
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3200 3201 3202 3203 3204
		return true;

	return false;
}

3205
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3206 3207
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3208
				 uint16_t ddb_allocation,
3209
				 int level,
3210 3211
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3212
{
3213 3214
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3215 3216
	struct intel_plane_state *intel_pstate =
					to_intel_plane_state(plane->state);
3217 3218 3219 3220 3221
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3222
	uint8_t cpp;
3223
	uint32_t width = 0, height = 0;
3224

3225
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3226 3227
		return false;

3228 3229 3230 3231 3232 3233
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(plane->state->rotation))
		swap(width, height);

3234
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3235
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3236
				 cpp, latency);
3237 3238
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
3239 3240 3241
				 width,
				 cpp,
				 fb->modifier[0],
3242
				 latency);
3243

3244
	plane_bytes_per_line = width * cpp;
3245
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3246

3247 3248
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3249 3250
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3251
		if (intel_rotation_90_or_270(plane->state->rotation)) {
3252
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3253 3254 3255
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3256
			switch (cpp) {
3257 3258 3259 3260 3261 3262 3263 3264
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3265
			}
3266 3267
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3268 3269 3270 3271 3272 3273 3274
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3275

3276 3277
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3278

3279
	if (level >= 1 && level <= 7) {
3280 3281
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3282 3283 3284 3285
			res_lines += 4;
		else
			res_blocks++;
	}
3286

3287
	if (res_blocks >= ddb_allocation || res_lines > 31)
3288 3289 3290 3291
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3292 3293 3294 3295 3296 3297

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3298
				 struct intel_crtc_state *cstate,
3299 3300 3301
				 int level,
				 struct skl_wm_level *result)
{
3302 3303 3304
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3305
	uint16_t ddb_blocks;
3306 3307 3308 3309
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3310 3311 3312

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3313
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3314 3315
						cstate,
						intel_plane,
3316
						ddb_blocks,
3317
						level,
3318 3319 3320 3321 3322
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3323
static uint32_t
3324
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3325
{
3326
	if (!cstate->base.active)
3327 3328
		return 0;

3329
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3330
		return 0;
3331

3332 3333
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3334 3335
}

3336
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3337
				      struct skl_wm_level *trans_wm /* out */)
3338
{
3339
	struct drm_crtc *crtc = cstate->base.crtc;
3340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3341
	struct intel_plane *intel_plane;
3342

3343
	if (!cstate->base.active)
3344
		return;
3345 3346

	/* Until we know more, just disable transition WMs */
3347 3348 3349
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3350
		trans_wm->plane_en[i] = false;
3351
	}
3352 3353
}

3354
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3355 3356 3357
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3358
	struct drm_device *dev = cstate->base.crtc->dev;
3359 3360 3361 3362
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3363 3364
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3365
	}
3366
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3367

3368
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3369 3370 3371 3372 3373 3374 3375 3376 3377
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3378 3379
	uint32_t temp;
	int i;
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3396 3397
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3398

3399
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3400 3401
			temp |= PLANE_WM_EN;

3402
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3403 3404 3405

	}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3418 3419 3420
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3421 3422
		temp |= PLANE_WM_EN;

3423
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3424

3425 3426 3427
	r->wm_linetime[pipe] = p_wm->linetime;
}

3428 3429
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3430 3431 3432 3433 3434 3435 3436 3437
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3438 3439 3440 3441 3442 3443
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3444
	for_each_intel_crtc(dev, crtc) {
3445 3446 3447
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3448 3449
		if (!new->dirty[pipe])
			continue;
3450

3451
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3452

3453 3454 3455 3456 3457
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3458
				   new->plane[pipe][PLANE_CURSOR][level]);
3459
		}
3460 3461 3462
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3463 3464
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3465

3466
		for (i = 0; i < intel_num_planes(crtc); i++) {
3467 3468 3469
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3470 3471 3472 3473
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3474 3475

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3476
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3477 3478 3479
	}
}

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3504 3505
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3506 3507 3508
{
	int plane;

3509 3510
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3511
	for_each_plane(dev_priv, pipe, plane) {
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3538
	bool reallocated[I915_MAX_PIPES] = {};
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3561
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3586
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3587
			intel_wait_for_vblank(dev, pipe);
3588
			reallocated[pipe] = true;
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3611
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3612 3613 3614
	}
}

3615 3616 3617 3618 3619
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3620
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3621

3622
	skl_allocate_pipe_ddb(cstate, ddb);
3623
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3624

3625
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3626 3627
		return false;

3628
	intel_crtc->wm.active.skl = *pipe_wm;
3629

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3653
	for_each_intel_crtc(dev, intel_crtc) {
3654 3655 3656 3657 3658 3659 3660 3661 3662
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3663
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3664 3665 3666 3667 3668 3669 3670 3671 3672
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3673
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3674 3675 3676 3677
		r->dirty[intel_crtc->pipe] = true;
	}
}

3678 3679 3680 3681 3682 3683 3684
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3685
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3686 3687 3688 3689 3690 3691 3692

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3693 3694
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3695 3696 3697

}

3698 3699 3700 3701 3702 3703
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3704 3705
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3706

3707 3708 3709 3710 3711

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3712

3713
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3714 3715
		return;

3716
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3717 3718
	results->dirty[intel_crtc->pipe] = true;

3719
	skl_update_other_pipe_wm(dev, crtc, results);
3720
	skl_write_wm_values(dev_priv, results);
3721
	skl_flush_wm_values(dev_priv, results);
3722 3723 3724

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3725 3726
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3745
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3746
{
3747
	struct drm_device *dev = dev_priv->dev;
3748
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3749
	struct ilk_wm_maximums max;
3750
	struct intel_wm_config config = {};
3751
	struct ilk_wm_values results = {};
3752
	enum intel_ddb_partitioning partitioning;
3753

3754 3755 3756 3757
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3758 3759

	/* 5/6 split only in single pipe config on IVB+ */
3760
	if (INTEL_INFO(dev)->gen >= 7 &&
3761 3762 3763
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3764

3765
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3766
	} else {
3767
		best_lp_wm = &lp_wm_1_2;
3768 3769
	}

3770
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3771
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3772

3773
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3774

3775
	ilk_write_wm_values(dev_priv, &results);
3776 3777
}

3778
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3779
{
3780 3781
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3782

3783 3784 3785 3786 3787
	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.ilk = cstate->wm.intermediate;
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3788

3789 3790 3791 3792
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3793

3794 3795 3796 3797 3798 3799
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
		intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3820 3821
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3822
					val & PLANE_WM_BLOCKS_MASK;
3823
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3836 3837
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3838
					val & PLANE_WM_BLOCKS_MASK;
3839
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 3853
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3866
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3867 3868 3869 3870
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3871
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3872

3873
	if (!intel_crtc->active)
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3886
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3887 3888 3889 3890 3891 3892 3893 3894
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3895
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3896
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3897 3898

	intel_crtc->wm.active.skl = *active;
3899 3900 3901 3902
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3903 3904
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3905 3906
	struct drm_crtc *crtc;

3907
	skl_ddb_get_hw_state(dev_priv, ddb);
3908 3909 3910 3911
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3912 3913 3914 3915
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3916
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3917
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918 3919
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3920
	enum pipe pipe = intel_crtc->pipe;
3921
	static const i915_reg_t wm0_pipe_reg[] = {
3922 3923 3924 3925 3926 3927
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3928
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3929
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3930

3931 3932
	memset(active, 0, sizeof(*active));

3933
	active->pipe_enabled = intel_crtc->active;
3934 3935

	if (active->pipe_enabled) {
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3960 3961

	intel_crtc->wm.active.ilk = *active;
3962 3963
}

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4081 4082 4083 4084 4085 4086 4087 4088 4089
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4090
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4117 4118 4119
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4120
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4121 4122
	struct drm_crtc *crtc;

4123
	for_each_crtc(dev, crtc)
4124 4125 4126 4127 4128 4129 4130
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4131 4132 4133 4134
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4135

4136
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4137 4138 4139 4140 4141
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4142 4143 4144 4145 4146

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4179
void intel_update_watermarks(struct drm_crtc *crtc)
4180
{
4181
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4182 4183

	if (dev_priv->display.update_wm)
4184
		dev_priv->display.update_wm(crtc);
4185 4186
}

4187
/*
4188 4189 4190 4191 4192 4193 4194 4195
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4196 4197 4198 4199 4200
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4201 4202
	assert_spin_locked(&mchdev_lock);

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4220
static void ironlake_enable_drps(struct drm_device *dev)
4221 4222
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4223
	u32 rgvmodectl;
4224 4225
	u8 fmax, fmin, fstart, vstart;

4226 4227
	spin_lock_irq(&mchdev_lock);

4228 4229
	rgvmodectl = I915_READ(MEMMODECTL);

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4250
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4251 4252
		PXVFREQ_PX_SHIFT;

4253 4254
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4255

4256 4257 4258
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4275
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4276
		DRM_ERROR("stuck trying to change perf mode\n");
4277
	mdelay(1);
4278 4279 4280

	ironlake_set_drps(dev, fstart);

4281 4282
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4283
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4284
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4285
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4286 4287

	spin_unlock_irq(&mchdev_lock);
4288 4289
}

4290
static void ironlake_disable_drps(struct drm_device *dev)
4291 4292
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4293 4294 4295 4296 4297
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4298 4299 4300 4301 4302 4303 4304 4305 4306

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4307
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4308
	mdelay(1);
4309 4310
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4311
	mdelay(1);
4312

4313
	spin_unlock_irq(&mchdev_lock);
4314 4315
}

4316 4317 4318 4319 4320
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4321
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4322
{
4323
	u32 limits;
4324

4325 4326 4327 4328 4329 4330
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4331
	if (IS_GEN9(dev_priv)) {
4332 4333 4334 4335 4336 4337 4338 4339
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4340 4341 4342 4343

	return limits;
}

4344 4345 4346
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4347 4348
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4349 4350 4351 4352

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4353
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4354 4355 4356 4357
			new_power = BETWEEN;
		break;

	case BETWEEN:
4358
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4359
			new_power = LOW_POWER;
4360
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4361 4362 4363 4364
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4365
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4366 4367 4368 4369
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4370
	if (val <= dev_priv->rps.min_freq_softlimit)
4371
		new_power = LOW_POWER;
4372
	if (val >= dev_priv->rps.max_freq_softlimit)
4373 4374 4375 4376 4377 4378 4379 4380
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4381 4382
		ei_up = 16000;
		threshold_up = 95;
4383 4384

		/* Downclock if less than 85% busy over 32ms */
4385 4386
		ei_down = 32000;
		threshold_down = 85;
4387 4388 4389 4390
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4391 4392
		ei_up = 13000;
		threshold_up = 90;
4393 4394

		/* Downclock if less than 75% busy over 32ms */
4395 4396
		ei_down = 32000;
		threshold_down = 75;
4397 4398 4399 4400
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4401 4402
		ei_up = 10000;
		threshold_up = 85;
4403 4404

		/* Downclock if less than 60% busy over 32ms */
4405 4406
		ei_down = 32000;
		threshold_down = 60;
4407 4408 4409
		break;
	}

4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4428
	dev_priv->rps.power = new_power;
4429 4430
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4431 4432 4433
	dev_priv->rps.last_adj = 0;
}

4434 4435 4436 4437 4438
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4439
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4440
	if (val < dev_priv->rps.max_freq_softlimit)
4441
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4442

4443 4444
	mask &= dev_priv->pm_rps_events;

4445
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4446 4447
}

4448 4449 4450
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4451
static void gen6_set_rps(struct drm_device *dev, u8 val)
4452 4453
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4454

4455
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4456
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4457 4458
		return;

4459
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4460 4461
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4462

C
Chris Wilson 已提交
4463 4464 4465 4466 4467
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4468

4469 4470 4471 4472
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4473 4474 4475 4476 4477 4478 4479
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4480
	}
4481 4482 4483 4484

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4485
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4486
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4487

4488 4489
	POSTING_READ(GEN6_RPNSWREQ);

4490
	dev_priv->rps.cur_freq = val;
4491
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4492 4493
}

4494 4495 4496 4497 4498
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4499 4500
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4501 4502 4503 4504 4505

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4506 4507
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4508
	if (val != dev_priv->rps.cur_freq) {
4509
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4510 4511 4512
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4513 4514 4515 4516 4517

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4518
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4519 4520
 *
 * * If Gfx is Idle, then
4521 4522 4523
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4524 4525 4526
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4527
	u32 val = dev_priv->rps.idle_freq;
4528

4529
	if (dev_priv->rps.cur_freq <= val)
4530 4531
		return;

4532 4533 4534 4535 4536
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4537 4538
}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4551 4552
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4553 4554
	struct drm_device *dev = dev_priv->dev;

4555
	mutex_lock(&dev_priv->rps.hw_lock);
4556
	if (dev_priv->rps.enabled) {
4557
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4558
			vlv_set_rps_idle(dev_priv);
4559
		else
4560
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4561
		dev_priv->rps.last_adj = 0;
4562
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4563
	}
4564
	mutex_unlock(&dev_priv->rps.hw_lock);
4565

4566
	spin_lock(&dev_priv->rps.client_lock);
4567 4568
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4569
	spin_unlock(&dev_priv->rps.client_lock);
4570 4571
}

4572
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4573 4574
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4575
{
4576 4577 4578 4579 4580 4581 4582
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4583

4584 4585 4586
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4587
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4588 4589
		rps = NULL;

4590 4591 4592 4593 4594 4595 4596 4597
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4598

4599 4600 4601
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4602 4603
		} else
			dev_priv->rps.boosts++;
4604
	}
4605
	spin_unlock(&dev_priv->rps.client_lock);
4606 4607
}

4608
void intel_set_rps(struct drm_device *dev, u8 val)
4609
{
4610
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4611 4612 4613
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4614 4615
}

4616
static void gen9_disable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4617 4618 4619 4620
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4621
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4622 4623
}

4624 4625 4626 4627 4628 4629 4630
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4631
static void gen6_disable_rps(struct drm_device *dev)
4632 4633 4634 4635
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4636
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4637
	I915_WRITE(GEN6_RP_CONTROL, 0);
4638 4639
}

4640 4641 4642 4643 4644 4645 4646
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4647 4648 4649 4650
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4651 4652
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4653
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4654

4655
	I915_WRITE(GEN6_RC_CONTROL, 0);
4656

4657
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4658 4659
}

B
Ben Widawsky 已提交
4660 4661
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4662
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4663 4664 4665 4666 4667
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4668 4669
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4670 4671 4672
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4673 4674 4675

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4676
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4677 4678
}

4679 4680
static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
{
4681 4682
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4696 4697 4698
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4723
{
4724 4725
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4726 4727
		return 0;

4728 4729 4730 4731 4732 4733 4734 4735
	if (!enable_rc6)
		return 0;

	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4736
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4737 4738 4739
	if (enable_rc6 >= 0) {
		int mask;

4740
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4741 4742 4743 4744 4745 4746
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4747 4748
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4749 4750 4751

		return enable_rc6 & mask;
	}
4752

4753
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4754
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4755 4756

	return INTEL_RC6_ENABLE;
4757 4758
}

I
Imre Deak 已提交
4759 4760 4761 4762 4763
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4764
static void gen6_init_rps_frequencies(struct drm_device *dev)
4765
{
4766 4767 4768 4769 4770
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4771 4772
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4773
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4786 4787 4788
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4789
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4790 4791
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4792 4793 4794 4795 4796
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4797 4798 4799 4800
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4801 4802
	}

4803
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4804 4805 4806 4807 4808 4809 4810 4811 4812
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4813 4814
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4815 4816 4817 4818
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4819 4820 4821
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4822 4823
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4824 4825 4826 4827
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4828 4829
}

J
Jesse Barnes 已提交
4830
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4831
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4832 4833 4834 4835 4836
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4837 4838
	gen6_init_rps_frequencies(dev);

4839
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4840
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
		gen9_disable_rps(dev);
4851 4852 4853 4854
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4855 4856 4857 4858 4859 4860 4861 4862
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4863 4864
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4865 4866 4867 4868
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4869
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
4870 4871 4872 4873 4874

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4875 4876
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4877
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
4878 4879 4880 4881 4882 4883 4884
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4885
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4886 4887 4888 4889 4890

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4891 4892

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4893
	if (IS_SKYLAKE(dev))
4894 4895 4896
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4897 4898
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4899
	for_each_engine(engine, dev_priv)
4900
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4901 4902 4903 4904

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4905 4906
	I915_WRITE(GEN6_RC_SLEEP, 0);

4907 4908 4909 4910
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4911 4912 4913
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4914
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4915
	/* WaRsUseTimeoutMode */
4916
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4917
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4918
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4919 4920 4921
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4922 4923
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4924 4925 4926
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4927
	}
Z
Zhe Wang 已提交
4928

4929 4930
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4931
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4932
	 */
4933
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4934 4935 4936 4937
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4938

4939
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4940 4941 4942

}

4943 4944 4945
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4946
	struct intel_engine_cs *engine;
4947
	uint32_t rc6_mask = 0;
4948 4949 4950 4951 4952 4953

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4954
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4955 4956 4957 4958

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4959 4960
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4961 4962 4963 4964 4965

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4966
	for_each_engine(engine, dev_priv)
4967
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
4968
	I915_WRITE(GEN6_RC_SLEEP, 0);
4969 4970 4971 4972
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4973 4974 4975 4976

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4977
	intel_print_rc6_info(dev, rc6_mask);
4978 4979 4980 4981 4982 4983 4984 4985
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4986 4987

	/* 4 Program defaults and thresholds for RPS*/
4988 4989 4990 4991
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5006 5007

	/* 5: Enable RPS */
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5018
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5019
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5020

5021
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5022 5023
}

5024
static void gen6_enable_rps(struct drm_device *dev)
5025
{
5026
	struct drm_i915_private *dev_priv = dev->dev_private;
5027
	struct intel_engine_cs *engine;
5028
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5029 5030
	u32 gtfifodbg;
	int rc6_mode;
5031
	int ret;
5032

5033
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5034

5035 5036 5037 5038 5039 5040 5041 5042 5043
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5044 5045
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5046 5047 5048 5049
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5050
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5051

5052 5053
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
5054

5055 5056 5057 5058 5059 5060 5061 5062 5063
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5064
	for_each_engine(engine, dev_priv)
5065
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5066 5067 5068

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5069
	if (IS_IVYBRIDGE(dev))
5070 5071 5072
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5073
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5074 5075
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5076
	/* Check if we are enabling RC6 */
5077 5078 5079 5080
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5081 5082 5083 5084
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5085

5086 5087 5088
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5089

B
Ben Widawsky 已提交
5090
	intel_print_rc6_info(dev, rc6_mask);
5091 5092 5093 5094 5095 5096

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5097 5098
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5099 5100
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5101
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5102
	if (ret)
B
Ben Widawsky 已提交
5103
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5104 5105 5106 5107

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5108
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5109
				 (pcu_mbox & 0xff) * 50);
5110
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5111 5112
	}

5113
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5114
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5115

5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5130
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5131 5132
}

5133
static void __gen6_update_ring_freq(struct drm_device *dev)
5134
{
5135
	struct drm_i915_private *dev_priv = dev->dev_private;
5136
	int min_freq = 15;
5137 5138
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5139
	unsigned int max_gpu_freq, min_gpu_freq;
5140
	int scaling_factor = 180;
5141
	struct cpufreq_policy *policy;
5142

5143
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5154
		max_ia_freq = tsc_khz;
5155
	}
5156 5157 5158 5159

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5160
	min_ring_freq = I915_READ(DCLK) & 0xf;
5161 5162
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5163

5164
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5165 5166 5167 5168 5169 5170 5171 5172
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5173 5174 5175 5176 5177
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5178 5179
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5180 5181
		unsigned int ia_freq = 0, ring_freq = 0;

5182
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5183 5184 5185 5186 5187 5188
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5189 5190 5191
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5192
			ring_freq = mult_frac(gpu_freq, 5, 4);
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5209

B
Ben Widawsky 已提交
5210 5211
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5212 5213 5214
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5215 5216 5217
	}
}

5218 5219 5220 5221
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5222
	if (!HAS_CORE_RING_FREQ(dev))
5223 5224 5225 5226 5227 5228 5229
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5230
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5231
{
5232
	struct drm_device *dev = dev_priv->dev;
5233 5234
	u32 val, rp0;

5235
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5236

5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5252
	}
5253 5254 5255

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5269 5270 5271 5272
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5273 5274 5275
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5276 5277 5278
	return rp1;
}

5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5290
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5291 5292 5293
{
	u32 val, rp0;

5294
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5307
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5308
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5309
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5310 5311 5312 5313 5314
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5315
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5316
{
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5328 5329
}

5330 5331 5332 5333 5334 5335 5336 5337 5338
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
5350
	struct drm_i915_private *dev_priv = to_i915(dev);
5351
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5352 5353 5354 5355 5356 5357
	unsigned long pctx_paddr, paddr;
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5358
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5359
		paddr = (dev_priv->mm.stolen_base +
5360
			 (ggtt->stolen_size - pctx_size));
5361 5362 5363 5364

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5365 5366

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5367 5368
}

5369 5370 5371 5372 5373 5374 5375 5376
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5377
	mutex_lock(&dev->struct_mutex);
5378

5379 5380 5381 5382 5383 5384 5385 5386
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5387
								      I915_GTT_OFFSET_NONE,
5388 5389 5390 5391
								      pctx_size);
		goto out;
	}

5392 5393
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5405
		goto out;
5406 5407 5408 5409 5410 5411
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5412
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5413
	dev_priv->vlv_pctx = pctx;
5414
	mutex_unlock(&dev->struct_mutex);
5415 5416
}

5417 5418 5419 5420 5421 5422 5423
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5424
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5425 5426 5427
	dev_priv->vlv_pctx = NULL;
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5439 5440 5441
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5442
	u32 val;
5443 5444 5445

	valleyview_setup_pctx(dev);

5446 5447
	vlv_init_gpll_ref_freq(dev_priv);

5448 5449
	mutex_lock(&dev_priv->rps.hw_lock);

5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5463
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5464

5465 5466 5467
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5468
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5469 5470 5471 5472
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5473
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5474 5475
			 dev_priv->rps.efficient_freq);

5476 5477
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5478
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5479 5480
			 dev_priv->rps.rp1_freq);

5481 5482
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5483
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5484 5485
			 dev_priv->rps.min_freq);

5486 5487
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5498 5499
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5500
	struct drm_i915_private *dev_priv = dev->dev_private;
5501
	u32 val;
5502

5503
	cherryview_setup_pctx(dev);
5504

5505 5506
	vlv_init_gpll_ref_freq(dev_priv);

5507 5508
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5509
	mutex_lock(&dev_priv->sb_lock);
5510
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5511
	mutex_unlock(&dev_priv->sb_lock);
5512

5513 5514 5515 5516
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5517
	default:
5518 5519 5520
		dev_priv->mem_freq = 1600;
		break;
	}
5521
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5522

5523 5524 5525
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5526
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5527 5528 5529 5530
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5531
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5532 5533
			 dev_priv->rps.efficient_freq);

5534 5535
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5536
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5537 5538
			 dev_priv->rps.rp1_freq);

5539 5540
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5541
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5542
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5543 5544
			 dev_priv->rps.min_freq);

5545 5546 5547 5548 5549 5550
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5551 5552
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5553 5554 5555 5556 5557 5558 5559 5560
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5561 5562
}

5563 5564 5565 5566 5567
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5568 5569 5570
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5571
	struct intel_engine_cs *engine;
5572
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5573 5574 5575

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5576 5577
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5588
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5589

5590 5591 5592
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5593 5594 5595 5596 5597
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5598
	for_each_engine(engine, dev_priv)
5599
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5600 5601
	I915_WRITE(GEN6_RC_SLEEP, 0);

5602 5603
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5617
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5618 5619 5620

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5621
	/* 4 Program defaults and thresholds for RPS*/
5622
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5633
		   GEN6_RP_MEDIA_IS_GFX |
5634 5635 5636 5637
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5638 5639 5640 5641 5642 5643
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5644 5645
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5646 5647 5648
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5649
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5650 5651 5652 5653
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5654
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5655 5656 5657
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5658 5659
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5660

5661
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5662

5663
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5664 5665
}

5666 5667 5668
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5669
	struct intel_engine_cs *engine;
5670
	u32 gtfifodbg, val, rc6_mode = 0;
5671 5672 5673

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5674 5675
	valleyview_check_pctx(dev_priv);

5676 5677
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5678 5679
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5680 5681 5682
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5683
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5684
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5685

5686 5687 5688
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5689
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5709
	for_each_engine(engine, dev_priv)
5710
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5711

5712
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5713 5714

	/* allows RC6 residency counter to work */
5715
	I915_WRITE(VLV_COUNTER_CONTROL,
5716 5717
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5718 5719
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5720

5721
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5722
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5723 5724 5725

	intel_print_rc6_info(dev, rc6_mode);

5726
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5727

D
Deepak S 已提交
5728 5729 5730 5731 5732 5733
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5734
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5735

5736 5737 5738
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5739
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5740 5741
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5742
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5743
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5744
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5745
			 dev_priv->rps.cur_freq);
5746

5747
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5748 5749
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5750

5751
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5752

5753
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5754 5755
}

5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5785
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5786 5787 5788 5789 5790 5791
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5792 5793
	assert_spin_locked(&mchdev_lock);

5794
	diff1 = now - dev_priv->ips.last_time1;
5795 5796 5797 5798 5799 5800 5801

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5802
		return dev_priv->ips.chipset_power;
5803 5804 5805 5806 5807 5808 5809 5810

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5811 5812
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5813 5814
		diff += total_count;
	} else {
5815
		diff = total_count - dev_priv->ips.last_count1;
5816 5817 5818
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5819 5820
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5831 5832
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5833

5834
	dev_priv->ips.chipset_power = ret;
5835 5836 5837 5838

	return ret;
}

5839 5840
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5841
	struct drm_device *dev = dev_priv->dev;
5842 5843
	unsigned long val;

5844
	if (INTEL_INFO(dev)->gen != 5)
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5883
{
5884
	struct drm_device *dev = dev_priv->dev;
5885 5886 5887
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5888
	if (INTEL_INFO(dev)->is_mobile)
5889 5890 5891
		return vm > 0 ? vm : 0;

	return vd;
5892 5893
}

5894
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5895
{
5896
	u64 now, diff, diffms;
5897 5898
	u32 count;

5899
	assert_spin_locked(&mchdev_lock);
5900

5901 5902 5903
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5904 5905 5906 5907 5908 5909 5910

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5911 5912
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5913 5914
		diff += count;
	} else {
5915
		diff = count - dev_priv->ips.last_count2;
5916 5917
	}

5918 5919
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5920 5921 5922 5923

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5924
	dev_priv->ips.gfx_power = diff;
5925 5926
}

5927 5928
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5929 5930 5931
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5932 5933
		return;

5934
	spin_lock_irq(&mchdev_lock);
5935 5936 5937

	__i915_update_gfx_val(dev_priv);

5938
	spin_unlock_irq(&mchdev_lock);
5939 5940
}

5941
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5942 5943 5944 5945
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5946 5947
	assert_spin_locked(&mchdev_lock);

5948
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5968
	corr2 = (corr * dev_priv->ips.corr);
5969 5970 5971 5972

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5973
	__i915_update_gfx_val(dev_priv);
5974

5975
	return dev_priv->ips.gfx_power + state2;
5976 5977
}

5978 5979
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5980
	struct drm_device *dev = dev_priv->dev;
5981 5982
	unsigned long val;

5983
	if (INTEL_INFO(dev)->gen != 5)
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6006
	spin_lock_irq(&mchdev_lock);
6007 6008 6009 6010
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6011 6012
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6013 6014 6015 6016

	ret = chipset_val + graphics_val;

out_unlock:
6017
	spin_unlock_irq(&mchdev_lock);
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6033
	spin_lock_irq(&mchdev_lock);
6034 6035 6036 6037 6038 6039
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6040 6041
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6042 6043

out_unlock:
6044
	spin_unlock_irq(&mchdev_lock);
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6061
	spin_lock_irq(&mchdev_lock);
6062 6063 6064 6065 6066 6067
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6068 6069
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6070 6071

out_unlock:
6072
	spin_unlock_irq(&mchdev_lock);
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6086
	struct intel_engine_cs *engine;
6087 6088
	bool ret = false;

6089
	spin_lock_irq(&mchdev_lock);
6090 6091 6092 6093
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6094
	for_each_engine(engine, dev_priv)
6095
		ret |= !list_empty(&engine->request_list);
6096 6097

out_unlock:
6098
	spin_unlock_irq(&mchdev_lock);
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6115
	spin_lock_irq(&mchdev_lock);
6116 6117 6118 6119 6120 6121
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6122
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6123

6124
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6125 6126 6127
		ret = false;

out_unlock:
6128
	spin_unlock_irq(&mchdev_lock);
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6156 6157
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6158
	spin_lock_irq(&mchdev_lock);
6159
	i915_mch_dev = dev_priv;
6160
	spin_unlock_irq(&mchdev_lock);
6161 6162 6163 6164 6165 6166

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6167
	spin_lock_irq(&mchdev_lock);
6168
	i915_mch_dev = NULL;
6169
	spin_unlock_irq(&mchdev_lock);
6170
}
6171

6172
static void intel_init_emon(struct drm_device *dev)
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6190
		I915_WRITE(PEW(i), 0);
6191
	for (i = 0; i < 3; i++)
6192
		I915_WRITE(DEW(i), 0);
6193 6194 6195

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6196
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6217
		I915_WRITE(PXW(i), val);
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6233
		I915_WRITE(PXWL(i), 0);
6234 6235 6236 6237 6238 6239

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6240
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6241 6242
}

6243 6244
void intel_init_gt_powersave(struct drm_device *dev)
{
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6255

6256 6257 6258
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6259
		valleyview_init_gt_powersave(dev);
6260 6261 6262 6263
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6264 6265
	struct drm_i915_private *dev_priv = dev->dev_private;

6266 6267 6268
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6269
		valleyview_cleanup_gt_powersave(dev);
6270 6271 6272

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6273 6274
}

6275 6276 6277 6278 6279 6280
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6281
	gen6_disable_rps_interrupts(dev);
6282 6283
}

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6296 6297 6298
	if (INTEL_INFO(dev)->gen < 6)
		return;

6299
	gen6_suspend_rps(dev);
6300 6301 6302

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6303 6304
}

6305 6306
void intel_disable_gt_powersave(struct drm_device *dev)
{
6307 6308
	struct drm_i915_private *dev_priv = dev->dev_private;

6309
	if (IS_IRONLAKE_M(dev)) {
6310
		ironlake_disable_drps(dev);
6311
	} else if (INTEL_INFO(dev)->gen >= 6) {
6312
		intel_suspend_gt_powersave(dev);
6313

6314
		mutex_lock(&dev_priv->rps.hw_lock);
6315 6316
		if (INTEL_INFO(dev)->gen >= 9) {
			gen9_disable_rc6(dev);
Z
Zhe Wang 已提交
6317
			gen9_disable_rps(dev);
6318
		} else if (IS_CHERRYVIEW(dev))
6319 6320
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6321 6322 6323
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6324

6325
		dev_priv->rps.enabled = false;
6326
		mutex_unlock(&dev_priv->rps.hw_lock);
6327
	}
6328 6329
}

6330 6331 6332 6333 6334 6335 6336
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6337
	mutex_lock(&dev_priv->rps.hw_lock);
6338

6339
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6340

6341 6342 6343
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6344
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6345
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6346
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6347
		gen9_enable_rps(dev);
6348
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6349
			__gen6_update_ring_freq(dev);
6350 6351
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6352
		__gen6_update_ring_freq(dev);
6353 6354
	} else {
		gen6_enable_rps(dev);
6355
		__gen6_update_ring_freq(dev);
6356
	}
6357 6358 6359 6360 6361 6362 6363

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6364
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6365

6366
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6367

6368
	mutex_unlock(&dev_priv->rps.hw_lock);
6369 6370

	intel_runtime_pm_put(dev_priv);
6371 6372
}

6373 6374
void intel_enable_gt_powersave(struct drm_device *dev)
{
6375 6376
	struct drm_i915_private *dev_priv = dev->dev_private;

6377 6378 6379 6380
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6381 6382
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
6383
		mutex_lock(&dev->struct_mutex);
6384
		intel_init_emon(dev);
6385
		mutex_unlock(&dev->struct_mutex);
6386
	} else if (INTEL_INFO(dev)->gen >= 6) {
6387 6388 6389 6390
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6391 6392 6393 6394 6395 6396 6397
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6398
		 */
6399 6400 6401
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6402 6403 6404
	}
}

6405 6406 6407 6408
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6409 6410 6411 6412
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6413 6414 6415
	dev_priv->rps.enabled = false;
}

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6428 6429 6430
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6431
	enum pipe pipe;
6432

6433
	for_each_pipe(dev_priv, pipe) {
6434 6435 6436
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6437 6438 6439

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6440 6441 6442
	}
}

6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6457
static void ironlake_init_clock_gating(struct drm_device *dev)
6458 6459
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6460
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6461

6462 6463 6464 6465
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6466 6467 6468
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6486
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6487 6488 6489
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6490 6491

	ilk_init_lp_watermarks(dev);
6492 6493 6494 6495 6496 6497 6498 6499 6500

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6501
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6502 6503 6504 6505 6506 6507 6508 6509
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6510 6511
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6512 6513 6514 6515 6516 6517
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6518

6519
	/* WaDisableRenderCachePipelinedFlush:ilk */
6520 6521
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6522

6523 6524 6525
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6526
	g4x_disable_trickle_feed(dev);
6527

6528 6529 6530 6531 6532 6533 6534
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6535
	uint32_t val;
6536 6537 6538 6539 6540 6541

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6542 6543 6544
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6545 6546
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6547 6548 6549
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6550
	for_each_pipe(dev_priv, pipe) {
6551 6552 6553
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6554
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6555
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6556 6557 6558
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6559 6560
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6561
	/* WADP0ClockGatingDisable */
6562
	for_each_pipe(dev_priv, pipe) {
6563 6564 6565
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6566 6567
}

6568 6569 6570 6571 6572 6573
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6574 6575 6576
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6577 6578
}

6579
static void gen6_init_clock_gating(struct drm_device *dev)
6580 6581
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6582
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6583

6584
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6585 6586 6587 6588 6589

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6590
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6591 6592 6593
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6594 6595 6596
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6597 6598 6599
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6600 6601 6602 6603
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6604 6605
	 */
	I915_WRITE(GEN6_GT_MODE,
6606
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6607

6608
	ilk_init_lp_watermarks(dev);
6609 6610

	I915_WRITE(CACHE_MODE_0,
6611
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6627
	 *
6628 6629
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6630 6631 6632 6633 6634
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6635
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6636 6637
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6638

6639 6640 6641 6642 6643 6644 6645 6646
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6647 6648 6649 6650 6651 6652 6653 6654
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6655 6656
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6657 6658 6659 6660 6661 6662 6663
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6664 6665 6666 6667
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6668

6669
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6670

6671
	cpt_init_clock_gating(dev);
6672 6673

	gen6_check_mch_setup(dev);
6674 6675 6676 6677 6678 6679
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6680
	/*
6681
	 * WaVSThreadDispatchOverride:ivb,vlv
6682 6683 6684 6685
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6686 6687 6688 6689 6690 6691 6692 6693
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6694 6695 6696 6697 6698 6699 6700 6701
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6702
	if (HAS_PCH_LPT_LP(dev))
6703 6704 6705
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6706 6707

	/* WADPOClockGatingDisable:hsw */
6708 6709
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6710
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6711 6712
}

6713 6714 6715 6716
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6717
	if (HAS_PCH_LPT_LP(dev)) {
6718 6719 6720 6721 6722 6723 6724
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6725 6726 6727 6728
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6729
	gen9_init_clock_gating(dev);
6730 6731 6732 6733 6734

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6735 6736 6737 6738 6739

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
6740 6741
}

6742 6743
static void skylake_init_clock_gating(struct drm_device *dev)
{
6744
	gen9_init_clock_gating(dev);
6745 6746
}

6747
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6748 6749
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6750
	enum pipe pipe;
6751
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6752

6753
	ilk_init_lp_watermarks(dev);
6754

6755
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6756
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6757

6758
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6759 6760 6761
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6762
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6763
	for_each_pipe(dev_priv, pipe) {
6764
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6765
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6766
			   BDW_DPRS_MASK_VBLANK_SRD);
6767
	}
6768

6769 6770 6771 6772 6773
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6774

6775 6776
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6777 6778 6779 6780

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6781

6782 6783 6784 6785 6786 6787 6788
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6789 6790 6791 6792 6793 6794
	/*
	 * Wait at least 100 clocks before re-enabling clock gating. See
	 * the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
6795 6796
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6797 6798 6799 6800 6801 6802 6803
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6804
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6805 6806
}

6807 6808 6809 6810
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6811
	ilk_init_lp_watermarks(dev);
6812

6813 6814 6815 6816 6817
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6818
	/* This is required by WaCatErrorRejectionIssue:hsw */
6819 6820 6821 6822
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6823 6824 6825
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6826

6827 6828 6829
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6830 6831 6832 6833
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6834
	/* WaDisable4x2SubspanOptimization:hsw */
6835 6836
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6837

6838 6839 6840
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6841 6842 6843 6844
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6845 6846
	 */
	I915_WRITE(GEN7_GT_MODE,
6847
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6848

6849 6850 6851 6852
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6853
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6854 6855
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6856 6857 6858
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6859

6860
	lpt_init_clock_gating(dev);
6861 6862
}

6863
static void ivybridge_init_clock_gating(struct drm_device *dev)
6864 6865
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6866
	uint32_t snpcr;
6867

6868
	ilk_init_lp_watermarks(dev);
6869

6870
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6871

6872
	/* WaDisableEarlyCull:ivb */
6873 6874 6875
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6876
	/* WaDisableBackToBackFlipFix:ivb */
6877 6878 6879 6880
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6881
	/* WaDisablePSDDualDispatchEnable:ivb */
6882 6883 6884 6885
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6886 6887 6888
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6889
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6890 6891 6892
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6893
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6894 6895 6896
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6897 6898 6899 6900
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6901 6902 6903 6904
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6905 6906
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6907
	}
6908

6909
	/* WaForceL3Serialization:ivb */
6910 6911 6912
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6913
	/*
6914
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6915
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6916 6917
	 */
	I915_WRITE(GEN6_UCGCTL2,
6918
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6919

6920
	/* This is required by WaCatErrorRejectionIssue:ivb */
6921 6922 6923 6924
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6925
	g4x_disable_trickle_feed(dev);
6926 6927

	gen7_setup_fixed_func_scheduler(dev_priv);
6928

6929 6930 6931 6932 6933
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6934

6935
	/* WaDisable4x2SubspanOptimization:ivb */
6936 6937
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6938

6939 6940 6941
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6942 6943 6944 6945
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6946 6947
	 */
	I915_WRITE(GEN7_GT_MODE,
6948
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6949

6950 6951 6952 6953
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6954

6955 6956
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6957 6958

	gen6_check_mch_setup(dev);
6959 6960
}

6961
static void valleyview_init_clock_gating(struct drm_device *dev)
6962 6963 6964
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6965
	/* WaDisableEarlyCull:vlv */
6966 6967 6968
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6969
	/* WaDisableBackToBackFlipFix:vlv */
6970 6971 6972 6973
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6974
	/* WaPsdDispatchEnable:vlv */
6975
	/* WaDisablePSDDualDispatchEnable:vlv */
6976
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6977 6978
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6979

6980 6981 6982
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6983
	/* WaForceL3Serialization:vlv */
6984 6985 6986
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6987
	/* WaDisableDopClockGating:vlv */
6988 6989 6990
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6991
	/* This is required by WaCatErrorRejectionIssue:vlv */
6992 6993 6994 6995
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6996 6997
	gen7_setup_fixed_func_scheduler(dev_priv);

6998
	/*
6999
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7000
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7001 7002
	 */
	I915_WRITE(GEN6_UCGCTL2,
7003
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7004

7005 7006 7007 7008 7009
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7010

7011 7012 7013 7014
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7015 7016
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7017

7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7029 7030 7031 7032 7033 7034
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7035
	/*
7036
	 * WaDisableVLVClockGating_VBIIssue:vlv
7037 7038 7039
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7040
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7041 7042
}

7043 7044 7045 7046
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7047 7048 7049 7050 7051
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7052 7053 7054 7055

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7056 7057 7058 7059

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7060 7061 7062 7063

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7064 7065 7066 7067 7068 7069

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7070 7071
}

7072
static void g4x_init_clock_gating(struct drm_device *dev)
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7088 7089 7090 7091

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7092

7093 7094 7095
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7096
	g4x_disable_trickle_feed(dev);
7097 7098
}

7099
static void crestline_init_clock_gating(struct drm_device *dev)
7100 7101 7102 7103 7104 7105 7106 7107
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7108 7109
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7110 7111 7112

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7113 7114
}

7115
static void broadwater_init_clock_gating(struct drm_device *dev)
7116 7117 7118 7119 7120 7121 7122 7123 7124
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7125 7126
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7127 7128 7129

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7130 7131
}

7132
static void gen3_init_clock_gating(struct drm_device *dev)
7133 7134 7135 7136 7137 7138 7139
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7140 7141 7142

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7143 7144 7145

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7146 7147

	/* interrupts should cause a wake up from C3 */
7148
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7149 7150 7151

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7152 7153 7154

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7155 7156
}

7157
static void i85x_init_clock_gating(struct drm_device *dev)
7158 7159 7160 7161
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7162 7163 7164 7165

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7166 7167 7168

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7169 7170
}

7171
static void i830_init_clock_gating(struct drm_device *dev)
7172 7173 7174 7175
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7176 7177 7178 7179

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7180 7181 7182 7183 7184 7185
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7186
	dev_priv->display.init_clock_gating(dev);
7187 7188
}

7189 7190 7191 7192 7193 7194
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7212
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7213
	else if (IS_KABYLAKE(dev_priv))
7214
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7249 7250 7251 7252 7253
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7254
	intel_fbc_init(dev_priv);
7255

7256 7257 7258 7259 7260 7261
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7262
	/* For FIFO watermark updates */
7263
	if (INTEL_INFO(dev)->gen >= 9) {
7264
		skl_setup_wm_latency(dev);
7265
		dev_priv->display.update_wm = skl_update_wm;
7266
	} else if (HAS_PCH_SPLIT(dev)) {
7267
		ilk_setup_wm_latency(dev);
7268

7269 7270 7271 7272
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7273
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7274 7275 7276 7277 7278 7279
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7280 7281 7282 7283
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7284
	} else if (IS_CHERRYVIEW(dev)) {
7285 7286
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7287
	} else if (IS_VALLEYVIEW(dev)) {
7288 7289
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7301
			intel_set_memory_cxsr(dev_priv, false);
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7312 7313 7314
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7315
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7316 7317
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7318
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7319 7320 7321
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7322 7323 7324
	}
}

7325
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7326
{
7327
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7328 7329 7330 7331 7332 7333 7334

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7335
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7350
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7351
{
7352
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7372

7373 7374
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7375 7376 7377 7378 7379
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7380 7381
}

7382
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7383
{
7384
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7385 7386
}

7387
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7388
{
7389 7390 7391 7392 7393
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7394 7395
}

7396
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7397
{
7398
	/* CHV needs even values */
7399
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7400 7401
}

7402
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7403
{
7404
	if (IS_GEN9(dev_priv))
7405 7406
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7407
	else if (IS_CHERRYVIEW(dev_priv))
7408
		return chv_gpu_freq(dev_priv, val);
7409
	else if (IS_VALLEYVIEW(dev_priv))
7410 7411 7412
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7413 7414
}

7415 7416
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7417
	if (IS_GEN9(dev_priv))
7418 7419
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7420
	else if (IS_CHERRYVIEW(dev_priv))
7421
		return chv_freq_opcode(dev_priv, val);
7422
	else if (IS_VALLEYVIEW(dev_priv))
7423 7424
		return byt_freq_opcode(dev_priv, val);
	else
7425
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7426
}
7427

7428 7429
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7430
	struct drm_i915_gem_request *req;
7431 7432 7433 7434 7435
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7436
	struct drm_i915_gem_request *req = boost->req;
7437

7438
	if (!i915_gem_request_completed(req, true))
7439
		gen6_rps_boost(to_i915(req->engine->dev), NULL,
7440
			       req->emitted_jiffies);
7441

7442
	i915_gem_request_unreference__unlocked(req);
7443 7444 7445 7446
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7447
				       struct drm_i915_gem_request *req)
7448 7449 7450
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7451
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7452 7453
		return;

7454 7455 7456
	if (i915_gem_request_completed(req, true))
		return;

7457 7458 7459 7460
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7461 7462
	i915_gem_request_reference(req);
	boost->req = req;
7463 7464 7465 7466 7467

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7468
void intel_pm_setup(struct drm_device *dev)
7469 7470 7471
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7472
	mutex_init(&dev_priv->rps.hw_lock);
7473
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7474

7475 7476
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7477
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7478 7479
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7480

7481
	dev_priv->pm.suspended = false;
7482
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7483
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7484
}