denali.c 45.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64 65 66

#define SUPPORT_8BITECC		1

67 68 69 70
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
71 72
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

73 74
/*
 * this macro allows us to convert from an MTD structure to our own
75 76
 * device context (denali) structure.
 */
77 78 79 80
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
81

82 83 84 85
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
86 87 88
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
89
#define PIPELINE_ACCESS		0x2000
90 91 92 93 94 95 96 97 98

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

99 100 101 102
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
103 104 105 106
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
107 108 109 110
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
111 112
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

113 114 115 116
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
117
 * abstracts this common operation.
118
 */
119 120
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
121
{
122 123
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
124 125 126 127 128 129
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
130
	iowrite32(address, denali->flash_mem);
131 132 133
	*pdata = ioread32(denali->flash_mem + 0x10);
}

134 135 136 137
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
138 139 140 141 142 143 144 145 146 147 148 149 150
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
151
	uint32_t cmd;
152 153 154 155

	/* initialize the data buffer to store status */
	reset_buf(denali);

156 157 158 159 160
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
161 162 163 164 165
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
166
	uint32_t irq_status;
167
	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
168 169 170

	clear_interrupts(denali);

171
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
172 173

	irq_status = wait_for_irq(denali, irq_mask);
174

175
	if (irq_status & INTR_STATUS__TIME_OUT)
176
		dev_err(denali->dev, "reset bank failed.\n");
177 178 179
}

/* Reset the flash controller */
180
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
181
{
182
	int i;
183

184
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
185
		__FILE__, __LINE__, __func__);
186

187
	for (i = 0; i < denali->max_banks; i++)
188 189
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
190

191
	for (i = 0; i < denali->max_banks; i++) {
192
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
193
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
194
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
204
			  denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

236
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
237
		__FILE__, __LINE__, __func__);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

257 258
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
259 260 261 262 263 264 265 266 267

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

268
	while (acc_clks * CLK_X - Trea[mode] < 3)
269 270
		acc_clks++;

271
	if (data_invalid - acc_clks * CLK_X < 2)
272
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
273
			 __FILE__, __LINE__);
274 275 276 277 278 279 280 281 282 283

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
284
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
285 286 287 288 289 290 291 292 293
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
294 295
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
296 297
		acc_clks = 6;

298 299 300 301 302 303 304 305
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
306 307 308 309 310 311
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
312 313 314

	/*
	 * we needn't to do a reset here because driver has already
315
	 * reset all the banks before
316
	 */
317 318 319 320 321
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
322 323
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
324 325 326
			break;
	}

327
	nand_onfi_timing_set(denali, i);
328

329 330 331 332
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
333 334 335 336 337 338
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

339 340
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
341
{
342
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
343
		/* Set timing register values according to datasheet */
344 345 346 347 348 349 350
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
351 352 353 354 355 356 357
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

358 359 360 361
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
362 363
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
364
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365 366
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
367
		iowrite32(tmp,
368
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
369
#if SUPPORT_15BITECC
370
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
371
#elif SUPPORT_8BITECC
372
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
373 374 375 376
#endif
	}
}

377 378
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
379 380 381
{
	uint32_t main_size, spare_size;

382
	switch (device_id) {
383 384
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
385 386 387
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
388 389 390 391
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
392
		iowrite32(main_size,
393
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
394
		iowrite32(spare_size,
395
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
396
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
397
#if SUPPORT_15BITECC
398
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
399
#elif SUPPORT_8BITECC
400
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
401 402 403
#endif
		break;
	default:
404
		dev_warn(denali->dev,
405
			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
406 407
			 "Will use default parameter values instead.\n",
			 device_id);
408 409 410
	}
}

411 412
/*
 * determines how many NAND chips are connected to the controller. Note for
413
 * Intel CE4100 devices we don't support more than one device.
414 415 416
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
417
	uint32_t id[denali->max_banks];
418 419 420
	int i;

	denali->total_used_banks = 1;
421
	for (i = 0; i < denali->max_banks; i++) {
422 423
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
424
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
425

426
		dev_dbg(denali->dev,
427 428 429 430 431 432 433 434 435 436 437 438 439
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

440
	if (denali->platform == INTEL_CE4100) {
441 442
		/*
		 * Platform limitations of the CE4100 device limit
443
		 * users to a single chip solution for NAND.
444 445
		 * Multichip support is not enabled.
		 */
446
		if (denali->total_used_banks != 1) {
447
			dev_err(denali->dev,
448
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
449 450 451
			BUG();
		}
	}
452
	dev_dbg(denali->dev,
453 454 455
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

456 457 458 459 460 461 462
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
463 464 465 466 467 468
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
469

470 471 472 473
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
474 475
}

476
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
477 478
{
	uint16_t status = PASS;
479
	uint32_t id_bytes[8], addr;
480 481
	uint8_t maf_id, device_id;
	int i;
482

483
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
484
			__FILE__, __LINE__, __func__);
485

486 487 488 489 490
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
491 492 493
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
494
	for (i = 0; i < 8; i++)
495 496 497
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
498 499 500 501 502

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
503
	} else if (maf_id == 0xEC) { /* Samsung NAND */
504
		get_samsung_nand_para(denali, device_id);
505
	} else if (maf_id == 0x98) { /* Toshiba NAND */
506
		get_toshiba_nand_para(denali);
507 508
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
509 510
	}

511
	dev_info(denali->dev,
512
			"Dump timing register values:\n"
513 514
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
515 516 517
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
518
			ioread32(denali->flash_reg + RE_2_RE),
519 520 521 522 523 524 525 526
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

527 528
	/*
	 * If the user specified to override the default timings
529
	 * with a specific ONFI mode, we apply those changes here.
530 531
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
532
		nand_onfi_timing_set(denali, onfi_timing_mode);
533 534 535 536

	return status;
}

537
static void denali_set_intr_modes(struct denali_nand_info *denali,
538 539
					uint16_t INT_ENABLE)
{
540
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
541
		__FILE__, __LINE__, __func__);
542 543

	if (INT_ENABLE)
544
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
545
	else
546
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
547 548
}

549 550
/*
 * validation function to verify that the controlling software is making
551
 * a valid request
552 553 554
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
555
	return flash_bank >= 0 && flash_bank < 4;
556 557 558 559
}

static void denali_irq_init(struct denali_nand_info *denali)
{
560
	uint32_t int_mask;
561
	int i;
562 563

	/* Disable global interrupts */
564
	denali_set_intr_modes(denali, false);
565 566 567 568

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
569
	for (i = 0; i < denali->max_banks; ++i)
570
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
571 572 573 574 575 576

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
577
	denali_set_intr_modes(denali, false);
578 579 580
	free_irq(irqnum, denali);
}

581 582
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
583
{
584 585
	int i;

586
	for (i = 0; i < denali->max_banks; ++i)
587
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
588 589
}

590 591
/*
 * This function only returns when an interrupt that this driver cares about
592
 * occurs. This is to reduce the overhead of servicing interrupts
593 594 595
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
596
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
597 598 599
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
600 601
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
602
{
603
	uint32_t intr_status_reg;
604

605
	intr_status_reg = INTR_STATUS(denali->flash_bank);
606

607
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
608 609 610 611
}

static void clear_interrupts(struct denali_nand_info *denali)
{
612 613
	uint32_t status;

614 615 616
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
617
	clear_interrupt(denali, status);
618 619 620 621 622 623 624

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
625
	uint32_t intr_status_reg;
626

627
	intr_status_reg = INTR_STATUS(denali->flash_bank);
628 629 630 631

	return ioread32(denali->flash_reg + intr_status_reg);
}

632 633 634
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
635 636 637 638
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
639
	uint32_t irq_status;
640 641 642 643
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

644
	/* check to see if a valid NAND chip has been selected. */
645
	if (is_flash_bank_valid(denali->flash_bank)) {
646 647 648 649
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
650 651
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
652 653 654
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
655 656 657 658
			/*
			 * store the status in the device context for someone
			 * to read
			 */
659 660 661 662 663 664 665 666 667 668 669 670 671 672
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
673 674
	unsigned long comp_res;
	uint32_t intr_status;
675 676
	unsigned long timeout = msecs_to_jiffies(1000);

677
	do {
678 679
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
680 681 682
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

683
		if (intr_status & irq_mask) {
684 685 686 687 688
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
689 690 691 692 693 694

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
695 696
	} while (comp_res != 0);

697
	if (comp_res == 0) {
698
		/* timeout */
699
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
700
				intr_status, irq_mask);
701 702 703 704 705 706

		intr_status = 0;
	}
	return intr_status;
}

707 708 709 710
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
711
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
712 713
				bool transfer_spare)
{
714
	int ecc_en_flag, transfer_spare_flag;
715 716 717 718 719 720

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
721
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
722
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
723 724
}

725 726
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
727
 * controller's user guide for more information (section 4.2.3.6).
728
 */
729
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
730 731
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
732 733
{
	int status = PASS;
734 735
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
736

737
	if (op == DENALI_READ)
738
		irq_mask = INTR_STATUS__LOAD_COMP;
739 740 741 742
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
743 744 745

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

746
	clear_interrupts(denali);
747 748 749

	addr = BANK(denali->flash_bank) | denali->page;

750
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
751
		cmd = MODE_01 | addr;
752
		iowrite32(cmd, denali->flash_mem);
753
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
754
		/* read spare area */
755
		cmd = MODE_10 | addr;
756
		index_addr(denali, cmd, access_type);
757

758
		cmd = MODE_01 | addr;
759
		iowrite32(cmd, denali->flash_mem);
760
	} else if (op == DENALI_READ) {
761
		/* setup page read request for access type */
762
		cmd = MODE_10 | addr;
763
		index_addr(denali, cmd, access_type);
764

765 766 767 768
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
769
		 */
770
		if (access_type == SPARE_ACCESS) {
771
			cmd = MODE_01 | addr;
772
			iowrite32(cmd, denali->flash_mem);
773
		} else {
774
			index_addr(denali, cmd,
775
					PIPELINE_ACCESS | op | page_count);
776

777 778
			/*
			 * wait for command to be accepted
779
			 * can always use status0 bit as the
780 781
			 * mask is identical for each bank.
			 */
782 783
			irq_status = wait_for_irq(denali, irq_mask);

784
			if (irq_status == 0) {
785
				dev_err(denali->dev,
786 787
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
788
				status = FAIL;
789
			} else {
790
				cmd = MODE_01 | addr;
791
				iowrite32(cmd, denali->flash_mem);
792 793 794 795 796 797 798
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
799
static int write_data_to_flash_mem(struct denali_nand_info *denali,
800
				   const uint8_t *buf, int len)
801
{
802 803
	uint32_t *buf32;
	int i;
804

805 806 807 808
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
809 810 811 812 813
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
814
		iowrite32(*buf32++, denali->flash_mem + 0x10);
815
	return i * 4; /* intent is to return the number of bytes read */
816 817 818
}

/* helper function that simply reads a buffer from the flash */
819
static int read_data_from_flash_mem(struct denali_nand_info *denali,
820
				    uint8_t *buf, int len)
821
{
822 823
	uint32_t *buf32;
	int i;
824

825 826 827 828 829
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
830 831 832 833 834 835 836
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
837
	return i * 4; /* intent is to return the number of bytes read */
838 839 840 841 842 843
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
844
	uint32_t irq_status;
845 846
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
847 848 849 850
	int status = 0;

	denali->page = page;

851
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
852
							DENALI_WRITE) == PASS) {
853 854 855 856 857
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

858
		if (irq_status == 0) {
859
			dev_err(denali->dev, "OOB write failed\n");
860 861
			status = -EIO;
		}
862
	} else {
863
		dev_err(denali->dev, "unable to send pipeline command\n");
864
		status = -EIO;
865 866 867 868 869 870 871 872
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
873 874
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
875 876 877

	denali->page = page;

878
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
879
							DENALI_READ) == PASS) {
880
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
881

882 883 884 885 886
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
887 888 889
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
890
			dev_err(denali->dev, "page on OOB timeout %d\n",
891
					denali->page);
892

893 894
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
895 896 897
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
898
		 * if you are in MAIN_ACCESS.
899 900
		 */
		addr = BANK(denali->flash_bank) | denali->page;
901
		cmd = MODE_10 | addr;
902
		index_addr(denali, cmd, MAIN_ACCESS);
903 904 905
	}
}

906 907
/*
 * this function examines buffers to see if they contain data that
908 909
 * indicate that the buffer is part of an erased region of flash.
 */
910
static bool is_erased(uint8_t *buf, int len)
911
{
912
	int i;
913

914 915 916 917 918 919 920 921 922 923
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
924 925
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
926 927
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

928
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
929
		       uint32_t irq_status, unsigned int *max_bitflips)
930 931
{
	bool check_erased_page = false;
932
	unsigned int bitflips = 0;
933

934
	if (irq_status & INTR_STATUS__ECC_ERR) {
935
		/* read the ECC errors. we'll ignore them for now */
936 937
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
938
		denali_set_intr_modes(denali, false);
939

940
		do {
941
			err_address = ioread32(denali->flash_reg +
942 943 944 945
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

946
			err_correction_info = ioread32(denali->flash_reg +
947
						ERR_CORRECTION_INFO);
948
			err_correction_value =
949 950 951
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

952
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
953 954
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
955
				 * means error happened in OOB, so we ignore
956 957 958 959
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
960
				 */
961
				if (err_byte < ECC_SECTOR_SIZE) {
962 963
					struct mtd_info *mtd =
						nand_to_mtd(&denali->nand);
964
					int offset;
965

966 967 968 969 970
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
971 972
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
973
					mtd->ecc_stats.corrected++;
974
					bitflips++;
975
				}
976
			} else {
977 978
				/*
				 * if the error is not correctable, need to
979 980
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
981
				 */
982 983 984
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
985 986
		/*
		 * Once handle all ecc errors, controller will triger
987 988
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
989
		 */
990
		while (!(read_interrupt_status(denali) &
991
				INTR_STATUS__ECC_TRANSACTION_DONE))
992 993 994
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
995
	}
996
	*max_bitflips = bitflips;
997 998 999 1000
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1001
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1002
{
1003
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1004 1005 1006 1007
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1008
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1009
{
1010
	uint32_t mode;
1011
	const int page_count = 1;
1012
	uint32_t addr = denali->buf.dma_buf;
1013 1014 1015 1016 1017 1018 1019 1020 1021

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1022
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1023 1024

	/* 3. set memory low address bits 23:8 */
1025
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1026

1027
	/* 4. interrupt when complete, burst len = 64 bytes */
1028 1029 1030
	index_addr(denali, mode | 0x14000, 0x2400);
}

1031 1032 1033 1034
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1035
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1036 1037 1038 1039
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1040
	size_t size = mtd->writesize + mtd->oobsize;
1041
	uint32_t irq_status;
1042 1043
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1044

1045 1046
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1047 1048 1049 1050 1051 1052 1053 1054
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1055
	if (raw_xfer) {
1056
		/* transfer the data to the spare area */
1057 1058 1059
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1060 1061
	}

1062
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1063 1064

	clear_interrupts(denali);
1065
	denali_enable_dma(denali, true);
1066

1067
	denali_setup_dma(denali, DENALI_WRITE);
1068 1069 1070 1071

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1072
	if (irq_status == 0) {
1073 1074
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1075
		denali->status = NAND_STATUS_FAIL;
1076 1077
	}

1078
	denali_enable_dma(denali, false);
1079
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1080 1081

	return 0;
1082 1083 1084 1085
}

/* NAND core entry points */

1086 1087
/*
 * this is the callback that the NAND core calls to write a page. Since
1088 1089
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1090
 */
1091
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1092
				const uint8_t *buf, int oob_required, int page)
1093
{
1094 1095 1096 1097
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1098
	return write_page(mtd, chip, buf, false);
1099 1100
}

1101 1102
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1103
 * raw access is similar to ECC page writes, so all the work is done in the
1104
 * write_page() function above.
1105
 */
1106
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1107 1108
				 const uint8_t *buf, int oob_required,
				 int page)
1109
{
1110 1111 1112 1113
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1114
	return write_page(mtd, chip, buf, true);
1115 1116
}

1117
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1118 1119
			    int page)
{
1120
	return write_oob_data(mtd, chip->oob_poi, page);
1121 1122
}

1123
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1124
			   int page)
1125 1126 1127
{
	read_oob_data(mtd, chip->oob_poi, page);

1128
	return 0;
1129 1130 1131
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1132
			    uint8_t *buf, int oob_required, int page)
1133
{
1134
	unsigned int max_bitflips;
1135 1136 1137
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
1138
	size_t size = mtd->writesize + mtd->oobsize;
1139

1140
	uint32_t irq_status;
1141 1142
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1143 1144
	bool check_erased_page = false;

1145
	if (page != denali->page) {
1146 1147 1148
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1149 1150 1151
		BUG();
	}

1152 1153
	setup_ecc_for_xfer(denali, true, false);

1154
	denali_enable_dma(denali, true);
1155
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1156 1157

	clear_interrupts(denali);
1158
	denali_setup_dma(denali, DENALI_READ);
1159 1160 1161 1162

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1163
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1164 1165

	memcpy(buf, denali->buf.buf, mtd->writesize);
1166

1167
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1168
	denali_enable_dma(denali, false);
1169

1170
	if (check_erased_page) {
1171
		read_oob_data(mtd, chip->oob_poi, denali->page);
1172 1173

		/* check ECC failures that may have occurred on erased pages */
1174
		if (check_erased_page) {
1175 1176 1177 1178
			if (!is_erased(buf, mtd->writesize))
				mtd->ecc_stats.failed++;
			if (!is_erased(buf, mtd->oobsize))
				mtd->ecc_stats.failed++;
1179
		}
1180
	}
1181
	return max_bitflips;
1182 1183 1184
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1185
				uint8_t *buf, int oob_required, int page)
1186 1187 1188
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1189
	size_t size = mtd->writesize + mtd->oobsize;
1190
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1191

1192
	if (page != denali->page) {
1193 1194 1195
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1196 1197 1198
		BUG();
	}

1199
	setup_ecc_for_xfer(denali, false, true);
1200
	denali_enable_dma(denali, true);
1201

1202
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1203 1204

	clear_interrupts(denali);
1205
	denali_setup_dma(denali, DENALI_READ);
1206 1207

	/* wait for operation to complete */
1208
	wait_for_irq(denali, irq_mask);
1209

1210
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1211

1212
	denali_enable_dma(denali, false);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1244

1245 1246 1247 1248 1249
	denali->status = 0;

	return status;
}

1250
static int denali_erase(struct mtd_info *mtd, int page)
1251 1252 1253
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1254
	uint32_t cmd, irq_status;
1255

1256
	clear_interrupts(denali);
1257 1258 1259

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1260
	index_addr(denali, cmd, 0x1);
1261 1262

	/* wait for erase to complete or failure to occur */
1263 1264
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1265

1266
	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1267 1268
}

1269
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1270 1271 1272
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1273 1274
	uint32_t addr, id;
	int i;
1275

1276
	switch (cmd) {
1277 1278 1279 1280 1281 1282
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1283
	case NAND_CMD_PARAM:
1284
		reset_buf(denali);
1285 1286
		/*
		 * sometimes ManufactureId read from register is not right
1287 1288
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1289
		 */
1290 1291
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1292
		index_addr(denali, addr | 1, col);
1293
		for (i = 0; i < 8; i++) {
1294
			index_addr_read_data(denali, addr | 2, &id);
1295
			write_byte_to_buf(denali, id);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1309
		pr_err(": unsupported command received 0x%x\n", cmd);
1310
		break;
1311 1312 1313 1314 1315 1316 1317
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1318 1319
	/*
	 * tell driver how many bit controller will skip before
1320 1321 1322
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1323
	 */
1324 1325
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1326
	detect_max_banks(denali);
1327
	denali_nand_reset(denali);
1328 1329
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1330
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1331

1332
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1333 1334

	/* Should set value for these registers when init */
1335 1336
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1337 1338
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1339 1340
}

1341 1342
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1343 1344
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1345
 */
1346 1347
#define ECC_8BITS	14
#define ECC_15BITS	26
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1407
/* initialize driver data structures */
1408
static void denali_drv_init(struct denali_nand_info *denali)
1409
{
1410 1411 1412 1413
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1414 1415
	init_completion(&denali->complete);

1416 1417 1418 1419
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1420 1421 1422 1423 1424 1425 1426 1427 1428
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1429
int denali_init(struct denali_nand_info *denali)
1430
{
1431
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1432
	int ret;
1433

1434
	if (denali->platform == INTEL_CE4100) {
1435 1436
		/*
		 * Due to a silicon limitation, we can only support
1437 1438
		 * ONFI timing mode 1 and below.
		 */
1439
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1440 1441
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1442 1443 1444
		}
	}

1445 1446 1447 1448 1449
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1450

1451
	mtd->dev.parent = denali->dev;
1452 1453 1454
	denali_hw_init(denali);
	denali_drv_init(denali);

1455 1456 1457 1458
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1459
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1460
			DENALI_NAND_NAME, denali)) {
1461
		dev_err(denali->dev, "Unable to request IRQ\n");
1462
		return -ENODEV;
1463 1464 1465
	}

	/* now that our ISR is registered, we can enable interrupts */
1466
	denali_set_intr_modes(denali, true);
1467
	mtd->name = "denali-nand";
1468 1469 1470 1471 1472 1473 1474

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1475 1476
	/*
	 * scan for NAND devices attached to the controller
1477
	 * this is the first stage in a two step process to register
1478 1479
	 * with the nand subsystem
	 */
1480
	if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
1481
		ret = -ENXIO;
1482
		goto failed_req_irq;
1483
	}
1484

1485 1486 1487
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1488
			     mtd->writesize + mtd->oobsize,
1489 1490 1491 1492 1493 1494 1495 1496 1497
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
1498
		dev_err(denali->dev, "No usable DMA configuration\n");
1499 1500 1501 1502
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1503
			     mtd->writesize + mtd->oobsize,
1504 1505
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1506
		dev_err(denali->dev, "Failed to map DMA buffer\n");
1507
		ret = -EIO;
1508
		goto failed_req_irq;
1509 1510
	}

1511 1512 1513 1514
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1515 1516 1517 1518 1519 1520 1521 1522 1523
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
1524 1525 1526 1527
	mtd->writesize <<= (denali->devnum - 1);
	mtd->oobsize <<= (denali->devnum - 1);
	mtd->erasesize <<= (denali->devnum - 1);
	mtd->size = denali->nand.numchips * denali->nand.chipsize;
1528 1529
	denali->bbtskipbytes *= denali->devnum;

1530 1531
	/*
	 * second stage of the NAND scan
1532
	 * this stage requires information regarding ECC and
1533 1534
	 * bad block management.
	 */
1535 1536 1537 1538 1539 1540

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1541
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1542
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1543 1544
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1545 1546 1547
	/* no subpage writes on denali */
	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;

1548 1549
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1550 1551 1552
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1553
	if (!nand_is_slc(&denali->nand) &&
1554 1555
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1556 1557
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1558
		denali->nand.ecc.strength = 15;
1559
		denali->nand.ecc.bytes = ECC_15BITS;
1560
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1561 1562
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1563
			ECC_SECTOR_SIZE))) {
1564
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1565
		goto failed_req_irq;
1566
	} else {
M
Mike Dunn 已提交
1567
		denali->nand.ecc.strength = 8;
1568
		denali->nand.ecc.bytes = ECC_8BITS;
1569
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1570 1571
	}

1572
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1573
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1574
	denali->nand.ecc.strength *= denali->devnum;
1575

1576 1577 1578 1579 1580
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1581
	denali->totalblks = mtd->size >> denali->nand.phys_erase_shift;
1582 1583
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1584
	/* override the default read operations */
1585
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1586 1587 1588 1589 1590 1591
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1592
	denali->nand.erase = denali_erase;
1593

1594
	if (nand_scan_tail(mtd)) {
1595
		ret = -ENXIO;
1596
		goto failed_req_irq;
1597 1598
	}

1599
	ret = mtd_device_register(mtd, NULL, 0);
1600
	if (ret) {
1601
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1602
		goto failed_req_irq;
1603 1604 1605
	}
	return 0;

1606
failed_req_irq:
1607 1608
	denali_irq_cleanup(denali->irq, denali);

1609 1610
	return ret;
}
1611
EXPORT_SYMBOL(denali_init);
1612 1613

/* driver exit point */
1614
void denali_remove(struct denali_nand_info *denali)
1615
{
1616
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1617 1618 1619 1620 1621
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1622
	int bufsize = mtd->writesize + mtd->oobsize;
1623

1624
	nand_release(mtd);
1625
	denali_irq_cleanup(denali->irq, denali);
1626
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1627
			 DMA_BIDIRECTIONAL);
1628
}
1629
EXPORT_SYMBOL(denali_remove);